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Abstract

Species doubling is a problem that infects most numerical methods that use
a spatial lattice. An understanding of species doubling can be found in the
Nielsen-Ninomiya theorem which gives a set of conditions that require species
doubling. The transverse lattice approach to solving field theories, which has
at least one spatial lattice, fails one of the conditions of the Nielsen-Ninomiya
theorem nevertheless one still finds species doubling for the standard Lagrangian
formulation of the transverse lattice. We will show that the Supersymmetric
Discrete Light Cone Quantization (SDLCQ) formulation of the transverse lattice
does not have species doubling.
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1 Introduction

When one formulates a theory with chiral fermions on a spatial lattice, one of the most
notorious obstacles is the Nielsen-Ninomiya theorem[1] which gives a set of conditions
that require species doubling. In our transverse lattice formulation of field theory we
use both a spatial lattice and a momentum lattice. The transverse lattice formulations
usually has some non-local interaction(s) which voids the Nielsen-Ninomiya theorem
however it still seems to have the species doubling problem [2].

Recently, the authors proposed a super Yang-Mills (SYM) model in 2+1 dimensions
on a transverse lattice with one exact supersymmetry [3]. It is well known that in the
standard Lagrangian formulation of SYM on the transverse lattice one finds a fermion
species doubling problem. We will show however that we are free from species doubling
when one uses Supersymmetric Discrete Light Cone Quantization (SDLCQ). This is
yet another demonstration of value of maintaining an exact supersymmetry in the nu-
merical approximation. Of course two popular methods of dealing with the doubling,
staggered fermions [4] and the Wilson term [5], work for the lagrangian formulation of
SYM theories on a transverse lattice. In addition Chakrabarti, De and Harindranath
recently proposed the use of the forward and backward derivatives to remove the species
doubling on the light front transverse lattice [6]. However those methods badly break
the supersymmetry and it is unclear how many of the unique properties of supersymme-
try persist. While our approach can only be used for the transverse lattice formulation
of supersymmetric theories, it resolves the doubling problem automatically.

This paper is organized as follows. In Section 2 we will see that the species doubling
arises in the standard Lagrangian formulation of the transverse lattice, but can be
resolved when one applies the method proposed by Ref. [6]. In Section 3 we show that
in the SDLCQ formulation of the transverse lattice we do not have any species doubling.
In section 4 we discuss some general reasons for this result and give the generalization
to 3+1 dimensions.

2 Fermion species doubling problem on a trans-

verse lattice

To focus on the fermion species doubling problem of the transverse lattice [3], let
us consider fermion fields only by setting the coupling g = 0 and the link variables
M,M † = 1. For this theory one spatial dimension is discretized on a spatial lattice.
We work in the light cone coordinates so that x± ≡ (x0 ± x1)/

√
2 with x± = x∓

and x⊥ ≡ x2 = −x2 is the dimension that is discretized on the spatial lattice. The
Lagrangian is given by

L =
∑

i

tr
[

Ψ̄iγ
µ∂µΨi +

i

2a
Ψ̄iγ

⊥(Ψi+1 −Ψi−1)
]

,

where i is the site index, the trace has been taken with respect to the color indices,
µ = ±, and a is the lattice spacing. The gamma matrices are defined to be γ0 = σ2,

γ1 = iσ1, and γ
⊥ = iσ3 with γ± ≡ (γ0 ± γ1)/

√
2. For Ψi = 2−1/4

(

ψi

χi

)

we find the
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equation of motion

∂−χi =
1

2
√
2a

(ψi+1 − ψi−1).

Inverting the light cone spatial derivative, we eliminate the non-dynamical field χi from
L and get

L =
∑

i

tr
[

iψi∂+ψi +
i

8a2
(ψi+1 − ψi−1)∂

−1
− (ψi+1 − ψi−1)

]

.

Note that the second term is non-local. This is sufficient to avoid the Nielsen-Ninomiya
theorem. The equation of motion for ψi is

∂+ψi =
1

8a2
∂−1
− (ψi+2 − 2ψi + ψi−2). (1)

We substitute the Fourier transformed form of ψi,

ψj(x) =
∫ π/a

−π/a
dk⊥

∫ ∞

0
dk+dk−ei(k

+x−+k−x+−k⊥(aj))ψ̃j(k),

into Eq. (1) to find a dispersion relation

k− =
1

2k+

(

sin k⊥a

a

)2

. (2)

Clearly, in the continuum limit where a→ 0, we find finite energy not only at k⊥ ≈ 0,
but also at k⊥ ≈ ±π/a for −π/a < k⊥ < π/a, yielding extra unwanted fermion species,
that is, the notorious fermion species doubling problem.

Let us point out that the same equation of motion and thus the same dispersion rela-
tion follow if one uses Heisenberg equation of motion i∂+ψi,rs(x) = [ψi,sr(x), P

−]. This is
the approach we will use in the next section. In this calculation we use the equal (light
cone) time anticommutation relation {ψi,rs(x

−), ψj,pq(y
−)} = δ(x− − y−)δijδrpδsq/2a,

where we’ve explicitly written out the color indices r, s, p, q and

P− ≡ a
∑

i

∫

dx−T+− = a
∑

i

∫

dx−tr
[

− i

8a2
(ψi+1 − ψi−1)∂

−1
− (ψi+1 − ψi−1)

]

.

T µν is the stress-energy tensor.
One might wonder what happens if we tried another difference operator, for instance,

the forward/backward derivative in place of the symmetric derivative. Answering this
question is instructive since the authors of Ref. [6] have found no fermion doubling for
chiral fermions if one uses forward and backward derivatives on the light front transverse
lattice. Following their procedure, we get in terms of ψi and χi

L =
∑

i

tr

[

iψi∂+ψi + iχi∂−χi −
i√
2a

(χi(ψi+1 − ψi) + ψi(χi − χi−1))

]

=
∑

i

tr

[

iψi∂+ψi + iχi∂−χi −
√
2i

a
χi(ψi+1 − ψi)

]

.

This yields

∂−χi =
1√
2a

(ψi+1 − ψi)
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and

L =
∑

i

tr
[

iψi∂+ψi +
i

2a2
(ψi+1 − ψi)∂

−1
− (ψi+1 − ψi)

]

.

From this we find a dispersion relation

k− =
1

2k+





sin k⊥a
2

a/2





2

.

In the continuum limit we find a finite energy only at k⊥ ≈ 0, meaning that we do not
have the doubling problem. Hence, we found that the method to remove the doubling
proposed in Ref. [6] works even for adjoint fermions.

3 Transverse lattice with SDLCQ

In Ref. [3] we proposed a discrete transverse lattice formulation of the supercharge
Q−, which gives the correct continuum form and the P− obtained from SUSY algebra
{Q−, Q−} = 2

√
2P− also gives the correct continuum form. With this P− in hand,

following the same procedure we did in the previous section, we set g = 0 andM,M † = 1
to see whether we suffer from the fermion doubling problem. This P− is given by

P− = a
∑

∫

dx−tr
[

− i

2a2
(ψi+1 − ψi)∂

−1
− (ψi+1 − ψi)

]

.

Heisenberg equation of motion yields

i∂+ψi,rs = [ψi,sr, P
−] =

i

2a2
∂−1
− (ψi+1 − 2ψi + ψi−1)rs.

Hence, it follows that

k− =
1

2k+





sin k⊥a
2

a/2





2

.

Notice, remarkably, that we have a finite energy only at k⊥ ≈ 0, so that we are free

from the species doubling problem with SDLCQ.
A word of caution is due here. This P− happens to be the same as the one obtained

in Ref. [6], where the authors used the forward and backward derivatives however we
get P− in a completely different way.

4 Discussion

We reviewed the known result that one suffers from a species doubling problem in the
transverse lattice Lagrangian formalism with the symmetric derivative in spite of the
fact that our adjoint fermions interact non-locally. We applied the method of removing
the doubling proposed by the authors of Ref. [6] originally for chiral fermions and found
that it works as well even for adjoint fermions. We then showed that we do not suffer
from species doubling in the SDLCQ formulation of the transverse lattice [3].

While we did the calculation in 2+1 dimensions, we should note that this doubling
persists in 3+1 dimensions. The authors have been working on the extension of the
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model in Ref. [3] to a 3+1 dimensional model with transverse lattices in two spatial
directions. We have found [7] that the standard transverse Lagrangian formulation
leads to the following dispersion relation,

k− =
1

2k+





(

sin k⊥1 a

a

)2

+

(

sin k⊥2 a

a

)2


 ,

where k⊥i is the i-th transverse momentum. For a model with SDLCQ formulation of
the transverse lattice,

k− =
1

2k+











sin
k⊥
1
a

2

a/2





2

+





sin
k⊥
2
a

2

a/2





2




 .

Again, we do not have any species doubling with SDLCQ.
In Ref. [3] we found that the color of physical states must be contracted at each

site. However, this constraint was derived in the standard Lagrangian formalism, which
suffers from the doubling problem. Therefore, one might ask if there is any change in
the physical constraint due to the doubling problem. We believe the answer is no. The
reason is the following. The physical constraint we found in [3] comes from the equation
of motion δL

δA−

i

− ∂+
δL

δ(∂+A−

i
)
= 0, where A−

i is the “–” component of the gauge field Aµ
i

residing at the i-th site. However, this equation of motion has nothing to do with the
terms involving the difference between fermions at different sites, which are the cause
of the doubling. Hence, even if we made some change(s) in the standard Lagrangian
e.g. by adding a Wilson term to fix the doubling problem, we would not see any change
in the equation of motion which leads to the physical constraint.

It seems that SUSY algebra by itself resolves the species doubling problem. This is
indeed expected since we do not have any doubling problems in boson sector and SUSY
requires that the number of degrees of freedom be the same for bosons and fermions.
In general it is difficult to maintain exact SUSY on a lattice, but it appears that if it is
achieved, then it automatically solves the species doubling problem. Clearly SDLCQ is
one of a class of promising approaches in the attempt to put a SYM theory on a spatial
lattice [8].
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