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Cold, dense matter via the lattice NJL model ∗
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Abstract

We simulate the lattice Nambu–Jona-Lasinio (NJL) model in 3+1-dimensions at non-zero baryon

chemical potential (µ) and zero temperature (T ) and treat the results as phenomenologically rel-

evant for cold, dense quark matter. Measurements of the chiral condensate indicate a crossover

in the thermodynamic limit, whilst at high chemical potential and zero temperature we observe a

non-zero diquark condensate and a gap in the fermion dispersion relation, which together provide

evidence for BCS superfluidity. In particular, the size of gap is found to be approximately 15% the

value of the vacuum fermion mass and roughly independent of µ in the chirally restored phase.

∗ Talk presented at the Workshop on QCD in Extreme Environments, Argonne National Laboratory, IL,

USA, 29 th June to 3rd July, 2004.
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I. INTRODUCTION

Whilst many of the talks at this workshop have been concerned with QCD at extreme

temperatures, the “extreme environment” in the work presented here is that of cold, dense

matter, where QCD is believed to exhibit colour superconductivity via the condensation

of diquarks analogous to the Cooper pairs of BCS superconductors (for recent reviews on

colour superconductivity see e.g. [1, 2]). The BCS mechanism in a superconductor is a subtle

one, since the fundamental interaction between electrons is repulsive and the net attractive

interaction due to phonon exchange persists only at extremely low temperatures. In QCD,

however, the fundamental interaction between quarks is attractive in the anti-triplet channel,

such that diquark condensation should be far more robust against thermal fluctuations. In

recent years, studies of four-Fermi models with QCD instanton motivated interactions have

suggested that the BCS gap in QCD could be as large as 50-100MeV [3]. This means that

a colour superconducting phase could be relevant to the physics of compact stars where the

typical temperature is only O(1MeV). Analytic studies have shown that the ground-state of

2+1 flavour QCD at asymptotically high density is the colour-flavour-locked phase [4]. Due

to the persistence of the sign problem in lattice QCD with µ 6= 0, however, to investigate

the nature of QCD at more moderate densities one must to resort to studying model field

theories. The non-perturbative treatment of such models can potentially provide a robust

method to study colour superconducting matter at the intermediate densities relevant to

the physics of compact stars.

QCD with an SU(2) gauge group is one interesting model which can be studied non-

perturbatively as it does not suffer from a sign problem [5]. Lattice studies in recent years

have shown that two colour QCD exhibits superfluidity via Bose-Einstein condensation in

the dense phase in a manner analogous to He4, due to the bosonic nature of the two-quark

baryons [6, 7, 8]. In order to observe a BCS-style scenario, however, it seems that one must

resort to studying purely fermionic field theories such as the Nambu–Jona-Lasinio (NJL)

model [9]. This model has no gauge degrees of freedom and all orders of gluon exchange

are approximated by a point-like four-fermion interaction. The original motivation for the

formulation of this model was that it observed the same global symmetries as strongly

interacting matter and its vacuum structure exhibited chiral symmetry breaking in a manner

directly analogous to BCS superconductivity. Therefore, whilst it cannot teach us anything
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about the mechanism of (de)confinement or the interaction of charged diquarks, if one

constricts oneself to studying its global symmetries and the pattern of their breaking, it can

be an ideal model with which to study colour superconductivity in a relativistic quantum

field theory.

This talk contains results from a numerical study of the high µ, low T phase of the 3+1-

dimensional NJL model, published in [10], with the aim of showing that the ground-state of

this model is that of a conventional BCS superfluid formed in a manner analogous to super-

fluid He3. After describing the formulation of the model on the lattice in Sec. II, we present

measurements of the chiral and diquark condensates and discuss the zero temperature and

infinite volume limits in Sec. III. Finally, we present a direct measurement of the BCS gap

in Sec. IV and show that it is consistent with model predictions.

II. THE LATTICE NJL MODEL

The action of the lattice NJL model, with the lattice spacing a → 1, can be written as1

S = Sferm + Sbos =
1

2

∑

xy

Ψtr
xAxyΨy +

1

g2
∑

x̃

trΦ†
x̃Φx̃, (1)

where the bispinor Ψ defined on lattice sites x is written in terms of independent isospinors

via Ψtr ≡ (χ, χtr) and the auxiliary scalar and pseudoscalar fields defined on dual lattice

sites x̃ are introduced via the 2× 2 matrix Φ ≡ σ+ i~π.~τ . The kinetic operator A written in

the Nambu-Gor’kov basis is given by

A =







τ2 M

−M tr jτ2





 , (2)

where  and j are U(1)B symmetry breaking terms, which fix the direction of symmetry

breaking to allow the measurement of a diquark condensate on a finite volume lattice in

analogy with the bare quark mass in the measurement of the chiral condensate. In practice,

we use  and j real, positive and equal, and what we refer to as j from this point on is

actually the sum of these two terms. Also, simulations are performed in the “partially

quenched” approximation, with j being zero during the generation of our background field

1 Here, the bosonic part is corrected from that of the equivalent expression in [10] by a factor of 2, which

appeared therein due to a typographical error.
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configurations, and being made non-zero only during the measurement of the observables.

This makes the simulations far less computationally expensive, and it should be noted that

in simulations of the model in 2+ 1-dimensions, there was no discernible difference between

measurements made using this method and those made via full simulation [11]. Finally, M

is the standard fermion kinetic operator

Mpq
xy =

1

2
δpq



eµδyx+0̂ − e−µδyx−0̂ +
∑

ν=1,2,3

ην(x)(δyx+ν̂ − δyx−ν̂) + 2mδxy





+
1

16
δxy

∑

〈x̃,x〉

(σ(x̃)δpq + iε(x)~π(x̃).~τ pq) , (3)

with the parameters being the bare fermion mass m, coupling g2 and baryon chemical

potential µ. The symbol 〈x̃, x〉 denotes the set of 16 dual sites adjacent to x. The Pauli

matrices acting on isospin indices p, q are normalised so that trτiτj = 2δij. The phase factors

ην(x) = (−1)x0+···+xν−1 and ε(x) = (−1)x0+x1+x2+x3 ensure that fermions with the correct

Lorentz covariance properties emerge in the continuum limit, and that in the limit m → 0

the action (1) has a global SU(2)L⊗SU(2)R invariance. In addition, in the limit that j → 0,

the action has a U(1)B invariance under baryon number rotations.

Dimensional analysis shows that the coupling g2 has mass dimension −2, which reflects

the fact that in 3 + 1-dimensions, four-fermion models have no non-trivial continuum limit.

We deal with this by fitting our model to low energy, vacuum phenomenology and extracting

the relevant bare parameters [12]. In particular, we calculate dimensionless ratios of the

constituent fermion mass and the mass and decay rate of the pion. Setting these to 400MeV,

138MeV and 93MeV respectively fixes our bare parameters as am = 0.006 and a2/g2 = 0.495.

For details, see [10].

III. PHASE STRUCTURE AND THE ZERO TEMPERATURE LIMIT

Self-consistent treatment of the NJL model shows that for sufficiently strong coupling,

the approximate SU(2)L⊗SU(2)R chiral symmetry is spontaneously broken in the vacuum to

SU(2)V , leading to a dynamically generated quark mass Σ ≫ m, and 3 degenerate pseudo-

Goldstone modes identified with the pions. In the presence of a baryon chemical potential

µ 6= 0 the symmetry is approximately restored as µ is increased through some onset scale

µo ∼ Σ, with the order of the transition being sensitive to the parameters employed [12].

4



We determine the nature of this transition in the regime set by our phenomenological

parameter choice by studying the order parameter of chiral symmetry breaking, the chiral

condensate 〈χχ〉, defined by

〈χ̄χ〉 =
1

V

∂ lnZ

∂m
=

1

2V

〈

tr







112×2

−112×2





A−1

〉

, (4)

where Z ≡
∫

dχdχ̄dΦe−S is the partition function associated with (1). 〈χχ〉 is measured

for a range of µ over 500 equilibrated hybrid Monte Carlo trajectories of length 1.0 on

lattice volumes V = L3
s × Lt = 124, 164 and 204 with the trace taken via 5 stochastic

estimations made on every other configuration. The data were then extrapolated linearly in
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FIG. 1: Chiral and diquark condensates as functions of chemical potential.

V −1 to the infinite volume limit. The data are presented as the circular points in Fig. 1. As

expected, we see that chiral symmetry is broken at zero chemical potential, as signified by a

large chiral condensate, and is approximately restored after the condensate passes through a

broad crossover and becomes approximately zero in the high µ phase. We can also calculate

〈χχ〉 analytically via a self-consistency equation (the gap equation) in the limit that the

number of fermion species (which we rather arbitrarily refer to as the number of colours Nc)

is taken to infinity. This is plotted as the solid curve and can be seen to qualitatively agree

with the lattice data, in which the O(1/Nc) corrections are ≈ 15%.

In order to explore the possibility of a U(1)B-violating BCS phase at high µ we study the

relevant order parameter, the diquark condensate 〈qq+〉, which in analogy with the chiral

5



condensate is defined by

〈qq+〉 =
1

V

∂ lnZ

∂j
=

1

4V

〈

tr







τ2

τ2





A−1

〉

. (5)

Here, the positive subscript highlights the fact that 〈qq+〉 is the sum of contributions from

both χχ and χ̄χ̄ states. This expectation value is measured for ten values of j between

0.1 and 1.0 on the same volumes and with the same parameters with which we measure

〈χχ〉. Unlike 〈χχ〉, however, the data are found not to scale with inverse volume, but

instead appear to scale linearly with inverse temporal extent. Accordingly, we extrapolate

our data to L−1
t → 0 corresponding to the zero temperature limit. Some of these data are

presented in Fig. 2. In contrast with the measurement of 〈χχ〉, in which the bare quark mass
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FIG. 2: Diquark condensate as a function of j in the zero temperature limit for various µ.

is left non-zero as the chiral symmetry of QCD is believed to only ever be approximately

conserved, we are required to extrapolate the data for 〈qq+〉 to the j → 0 limit, in which

the phenomenologically exact U(1) symmetry related to the conservation of baryon number

is restored. By empirically fitting a quadratic curve through the µ = 0 data, one finds that

as j goes to zero so does 〈qq+〉, implying that there is no condensation in the vacuum as

expected. For values of µ in the chirally restored phase, however, the picture is not quite so

clear. It appears that the data correspond to a non-zero diquark condensate, but one can

only fit a curve though a subset of the data such that one is required to disregard data with

j ≤ 0.2. Whilst the resulting curves appear to fit the remaining data well, it is important
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to be able to justify this omission, especially as the data omitted are those closest to limit

which one is attempting to reach.

The most obvious possibility is that the condensate is suppressed due to finite volume

effects, since diquark condensation is associated with the breaking of a global symmetry; as

the symmetry breaking source is reduced to zero, the correlation length ξ of the fluctuations

of the order parameter should diverge and become comparable to the size of the lattice.

Figure 3, however, shows some results from an extensive finite volume study, which illustrates
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FIG. 3: Diquark condensate vs. j at µ = 0.8 on Lt = 12 lattices with various spacial volumes.

that 〈qq+〉 shows little or no change for any value of j, even when the spatial volume is altered

by a factor of 2.53 ≈ 16. It seems impossible, then, that this is the source of the suppression

of the condensate at low j. Another possibility is that this suppression is due to having

poor control over the extrapolation to zero temperature. Figure 4 shows the results of a

study of the model at µ = 0.8 and with various inverse temporal extents, corresponding to

various non-zero temperatures, as well as the curves fitted to j ∈ [0.3, 1.0] of our µ = 0.0

and µ = 0.8 data after the T → 0 extrapolation. At the highest temperature studied, for

which Lt = 4, if one performs a quadratic extrapolation through the data one observes that

〈qq+〉 = 0 in the j → 0 limit and that the curve closely resembles the µ = 0.0 curve at

zero temperature. This suggests that although we are within the chirally restored phase,

the temperature with Lt = 4 is above the critical temperature for superfluidity for all j. As

the temperature is decreased (i.e. as the Lt is increased to 8) the value of 〈qq+〉 at j = 1.0

immediately approaches the curve fitted to our zero temperature results, whilst for lower
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FIG. 4: Diquark condensate as a function of j at µ = 0.8 at various temperatures.

values of j this only occurs at even lower temperatures. This can be understood if one

considers the fact that the effect of j is to make the condensate robust not only to finite

volume effects, but also to other perturbations such as thermal fluctuations. For a given

value of j, therefore, there should be some pseudo-critical temperature Tc(j) below which

the data can be said to be in the superfluid phase, and which in the thermodynamic limit

should increase monotonically with j. This idea is well illustrated by the data measured

on the 303 × 12 lattice, shown in Fig. 5. An attempted fit to a single quadratic through

Fit to j 2 [0:3 : 1:0℄ at T = 0
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FIG. 5: Diquark condensate as a function of j at µ = 0.8 on a 303 × 12 lattice.

all values of j is of very poor quality, whilst by choosing to split the data at some suitable

point and fitting the two regions separately, two very reasonable fits can be obtained. In
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particular, a fit to the data with j ≤ 0.5 is consistent with 〈qq+〉|j→0 = 0 suggesting that

for these values of j, Lt = 12 is above the pseudo-critical temperature. The fit to the

data with j ≥ 0.6, however, is consistent with 〈qq+〉|j→0 6= 0 and agrees almost exactly

with the fit to data from the 124, 164 and 204 lattices extrapolated to T → 0 and then

j ∈ [0.3, 1.0] → 0, suggesting that this curve represents the true zero temperature limit

and justifies our discarding of data with j ≤ 0.2. Whilst a linear T → 0 extrapolation is

sufficient to reach this curve for 0.3 ≤ j ≤ 0.5, the condensate at j < 0.3 must be suppressed

too much for such an extrapolation to be sufficient, i.e. the temperature of the lattice on

our three lattice volumes must be too high compared with Tc(j < 0.3).

Finally, now that we can trust our T → 0 and j → 0 extrapolations, let us look back

at Fig. 1, where the diquark condensate is plotted with the chiral condensate as a function

of µ. Although there is clearly a transition from a phase with no diquark condensation to

one in which the diquark condensate has a magnitude similar to that of the vacuum chiral

condensate, this transition is far less pronounced than in the chiral case. 〈qq+〉 increases

approximately as µ2, but eventually saturates as µ approaches 1.0 and even decreases past

µ ∼ 1.1. This behaviour is directly related to the geometry of the Fermi surface for a system

defined on a cubic lattice, the area of which we can calculate in the large-Nc free fermion

limit and is plotted as the dashed curve. In the continuum, therefore, 〈qq+〉 should continue

to rise as µ2.

IV. MEASUREMENT OF THE GAP

In the previous section, we presented evidence for superfluidity in the form of a non-zero

diquark condensate at high chemical potential. Here we present more direct evidence for

a superfluid phase by mapping out the fermion dispersion relation (i.e. the energy E as a

function of momentum k) and observing a BCS energy gap ∆ about the Fermi momentum.

One advantage of this order parameter over the diquark condensate is that it is directly

related to a macroscopic property of the superfluid, the critical temperature Tc [13]. Also,

being a global order parameter, in principle it would be possible to measure in a gauge

theory such as QCD, where according to Elitzur’s theorem, one cannot write down a local

order parameter such as 〈qq+〉 in a gauge invariant way [14].
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In order to extract the dispersion relation we define the time-slice propagator

G(~k; t) =
∑

~x

G(~0, 0; ~x, t)e−i~k.~x, (6)

where

G(x; y) = A−1
xy =







Axy Nxy

N̄xy Āxy





 (7)

is the Gor’kov propagator. As in the original BCS theory [15], the fermionic degrees of

freedom can be viewed as quasi-particles with energy E relative to the system’s Fermi

energy EF . In the limit that j → 0, the propagation of these quasi-particles is described by

the “normal” 〈q(0)q(x)〉 and 〈q(0)q(x)〉 parts of (6), i.e. those that are off-diagonal in the

Nambu-Gor’kov space and related to M−1. If the Fermi surface is unstable with respect to

a BCS ground-state, the quasi-particles nearest to EF undergo particle-hole mixing and a

gap appears in the energy spectrum. The propagation of these mixed states is generated by

the diagonal, or “anomalous” 〈q(0)q(x)〉 and 〈q(0)q(x)〉 parts of (6). By a combination of

symmetry constraints and empirical observations we note that the complex matrix G(~k, t)

contains only two independent parts, one in N̄xy and one in Axy, which from hereon shall

be referred to simply as the normal and anomalous propagators and written as N(k, t) and

A(k, t) respectively.

We measure N(k, t) and A(k, t) at µ = 0.8 on lattices with Lx × Ly × Lz = 96× 12× 12

and Lt = 16, 20 and 24 using standard lattice techniques and extrapolate linearly in L−1
t

to zero temperature. This choice means that by choosing ~k = (k, 0, 0) in (6) we can study

25 independent momentum modes in the x direction between 0 and π/2a. We may then

extract the energy by fitting them to

N(k, t) = Ae−Et +Be−E(Lt−t) if t = odd

N(k, t) = 0 if t = even
(8)

and

A(k, t) = C(e−Et − e−E(Lt−t)) if t = even

A(k, t) = 0 if t = odd,
(9)

where A, B and C are kept as free parameters, as is the energy E, which as expected is found

to be the same from both (8) and (9). These parameters are then, in turn, extrapolated

to j → 0. Quadratic polynomial curves are fitted to the coefficients A(k), B(k) and C(k),

whilst the energy E(k) is fitted with a straight line. As with the extrapolation of 〈qq+〉 in
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the previous section, the extrapolations appear to smoothly fit the data except for at low j,

where the discrepancy we have attributed to non-zero temperature persists. Again, for the

purpose of the extrapolations, we believe we are justified in ignoring points with j < 0.3.
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FIG. 6: Propagator coefficients A, B and C at µ = 0.8 in the zero temperature and source limits.

Figure 6 shows the coefficients of the normal and anomalous propagators, after the ex-

trapolations to zero temperature and diquark source, plotted as functions of momentum

k. Since the normal propagator was chosen from the N̄xy part of G, the forward moving

signal proportional to the coefficient A(k) relates to the propagation of holes in the Fermi

sea, whilst the backward moving signal proportional to B(k) relates to the propagation of

particle excitations above the Fermi surface. Accordingly, we see that the low momentum

excitations near the centre of the Fermi sphere are dominated by hole degrees of freedom,

whilst the high momentum excitations are dominated by particles. To excitations at the

Fermi surface, the propagation of fermions forward and backward in time should be equal,

such that the point where A(k) and B(k) cross allows us to define the Fermi momentum kF .

The coefficient C(k) ∼ 0 at low momentum, but becomes non-zero in a broad peak about

the position of kF . This vanishing of the anomalous propagator A(k, t), even in the limit

that j → 0 is a signal of particle-hole mixing in the presence of a BCS gap.

For more direct evidence, let us look at the left panel of Fig. 7, which shows the dispersion

relation at µ = 0.8 and again extrapolated to T → 0 and j ∈ [0.3, 1.0] → 0. The solid curve

shows the dispersion relation for free massless staggered fermions, which has two distinct

branches, the hole branch where E(k) decreases with k corresponding to excitations below

EF and the particle branch where E(k) increases with k corresponding to excitations above

11



Free fermion disp. rel.

Latti
e disp. rel.

k

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

�

2

3�

8

�

4

�

8

0

Free fermion disp. rel.

Latti
e disp. rel.

2�

k

E

(

k

)

�

2

3�

8

�

4

�

8

0

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

FIG. 7: The lattice dispersion relation and typical free fermion dispersion relation at µ = 0.8. In

the right-hand panel the hole branch is plotted as negative.

EF . In contrast to this, the dispersion relation from our lattice data shows no discontinuity

between the two branches, which is another sign of particle-hole mixing. More importantly,

at no time does the curve pass through E = 0 as there is a distinct gap between this point

and the minimum; this is the BCS gap ∆ = 0.053(6). This can be seen in a more familiar

light if we plot the hole branch as negative, as illustrated in the right-hand panel of Fig. 7.

This makes the free fermion dispersion relation a smooth continuous curve, as one would

expect, whilst for the NJL dispersion relation this introduces a discontinuity at kF , which

gives a clear illustration of the BCS gap. In order to present the value of the gap as a

dimensionless ratio, we also measure the fermion mass at µ = 0 from the vacuum dispersion

relation which gives us
∆(µ = 0.8)

Σ(µ = 0.0)
= 0.15(2). (10)

Assuming a fermion mass of 400MeV, this implies that ∆(µ = 0.8) ≈ 60MeV, consistent

with the analytic predictions of [3, 16].

Finally, in order to investigate the µ dependence of ∆, we determine dispersion relations

for a range of chemical potentials in 0.50 ≤ µ ≤ 0.85, this time using data from Lt = 16 and

20 only. Whilst this means that the extrapolation to T = 0 is no longer an overdetermined

problem and requires one to estimate the error, it is worth noting that the resulting dispersion

relation at µ = 0.8 agrees with that presented in Fig. 7 for all k. By calculating E(k)

and extracting the minimum, we are able to plot ∆(µ) in Fig. 8, where it is compared

with the diquark condensate 〈qq+〉. Whilst the condensate rises with µ, the gap shows
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FIG. 8: The gap ∆ as a function of µ compared with 〈qq+〉

no evidence of any µ dependence in the chirally restored phase and a least-squares fit to

∆ = constant has a χ2 of only 0.33 per degree of freedom. In combination with Fig. 1,

this supports the simple-minded picture in which only quark pairs within a shell about

EF of thickness 2∆, independent of µ, contribute to diquark condensation, resulting in a

condensate 〈qq+〉 ∝ ∆µ2.

V. SUMMARY

In this talk we have seen evidence, first presented in [10], for a BCS superfluid phase

at high µ and low T in the 3 + 1d lattice NJL model in the form of a non-vanishing local

order parameter and, for the first time in the systematic study of a relativistic field theory,

a direct observation of a BCS gap. Given that the model shares its global symmetries with

the real world, we believe that we are justified in treating this as phenomenological evidence

for the existence of a similar colour superconducting phase in full QCD.
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APPENDIX: THE LATTICE FERMI SURFACE

The conclusions drawn from Figs. 3 and 5 (i.e. that 〈qq+〉 is approximately independent

of spatial volume and that one would need to use Lt ≫ 20 to reproduce the curves in

Fig. 2 without discarding any data) might suggest that one could successfully reach the zero

temperature limit quite cheaply by performing simulations with Lt ≫ Ls. For this reason

it is worth making the cautionary point that performing simulations with µ 6= 0 on such

lattices can lead to unexpected results. At low temperature, the Fermi-Dirac distribution

resembles a step function, with the discontinuity about the Fermi momentum smeared out

across a region δk ∼ T ∼ L−1
t ; in a finite system, the Brillouin zone is discretised into a

cubic momentum lattice with lattice spacing 2π/(aLs). For lattices with Lt ≫ Ls, therefore,

the smearing of the Fermi surface is too fine to be resolved on the coarse momentum lattice.

One consequence is that when the chemical potential is increased smoothly, the Fermi-Dirac

distribution changes only when the Fermi surface crosses a momentum mode. If one were

to study a transition, therefore, such as the chiral crossover illustrated in Fig. 1, the physics

of the system would be approximately constant except at points where the surface crosses

a mode; the transition would be turned into a series of steps. This is nicely illustrated in

Gap eqn. (48

4

)

Gap equation

Latti
e data

�

�

1.210.80.60.40.20

1

0.8

0.6

0.4

0.2

0

FIG. 9: Expectation value of the scalar field vs. µ on a 103 × 48 lattice.

Fig. 9, where the expectation value of the scalar field Σ ≡ 〈σ〉 is plotted as a function of

µ on a 103 × 48 lattice. The Solid curve is Σ solved via the gap equation in the large-Nc

limit and can be seen to change significantly only when the solutions of the free-Fermion
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dispersion relation in the infinite volume limit

µ ∼ EF =

√

√

√

√

3
∑

i=1

sin2 kF i + Σ2 (A.1)

coincide with one of the lattice momenta. The first three of these points are denoted by the

vertical lines. The lattice data agree qualitatively with this curve and the discontinuities

can be seen clearly. For this reason one cannot make the ratio Lt/Ls arbitrarily large.
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