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The nf = 2 residual mass in lattice HQET to α
3
s order∗
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We compute the so called residual mass in Lattice Heavy Quark Effective Theory to α
3

s order in the nf = 2
(unquenched) case. The control of this additive mass renormalization is crucial for the determination of the heavy
quark mass from lattice simulations. We discuss the impact on an unquenched determination of the b-quark mass.

1. Introduction

The computation of quark masses is one of
the most successfull application of Lattice QCD.
Within this framework an interesting role is
played by the determination of the b–quark mass.
Despite the fact that one can not accomodate
the b–quark on a lattice, its mass is computed
to a very good accuracy. As it is known, the key
of the success is the use of some form of effec-
tive theory. Many approaches have been used,
whose results are consistent within errors in the
quenched approximation [1,2,3,4,5]. A popular
determination comes from Heavy Quark Effective
Theory (HQET). It shares with other approaches
the need of dealing with the mass counterterm
we will be concerned with. Within HQET, the
most direct relation between the mass of a physi-
cal hadron (MB) and the mass of the heavy quark
is

MB = mb + E + O(1/mb), (1)

in which mb is the HQET expansion mass pa-
rameter and E is the (linearly divergent) binding
energy. However, mb is not yet properly defined
at this stage. A procedure for actually making
use of the previous formula is implemented in [2].
First of all, one matches the QCD propagator to
its lattice HQET counterpart to obtain a relation
involving the pole mass

mpole
b = MB − E + δm + O(1/mb). (2)

∗Talk presented by F. Di Renzo

This relation contains the quantity whose pertur-
bative computation we are reporting on, i.e. the
so called residual mass δm, a linearly divergent
additive mass counterterm which is peculiar to a
hard cut-off regularization scheme like the lattice.
The pole mass can in turn be related to the MS

mass mb = mMS
b

mb(mb) = mpole
b

[

1 +

∞
∑

n=0

(
αs(mb)

π
)n+1Dn

]

, (3)

the Dn coefficients with n ≤ 2 being known from
[6,7]. If we are now able to compute (α0 is the
lattice coupling)

δm =
∑

n≥0

Xn α
n+1
0

(4)

one can put everything together to get

mb(mb) =

[

MB − E +

∞
∑

n=0

(αs)
n+1Xn

a

]

×

[

1 +

∞
∑

n=0

(
αs

π
)n+1Dn

]

. (5)

In this relation αs is αs(mb) (and the Xn get thus
translated into Xn). E can be computed as the
decay constant of the correlation function of two
axial currents. Knowing δm is crucial since it
cancels both the divergence of E and the renor-
malon ambiguities which come from the matching

between mpole
b and mMS

b [8]. Since both cancela-
tions take place in Perturbation Theory, one has
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to carefully assess to which accuracy one can con-
trol the procedure. While X0 has been known
for a long time, X1 was computed in [9], while

X
(nf=0)
2 was computed in [10] and then also in

[11]. The knowledge of X
(nf=0)
2 greatly improved

the accuracy of the quenched determination of the
b–quark mass.

2. The computation

X
(nf=2)
2 was computed using the same strategy

used for X
(nf=0)
2 [10]. We computed the Wilson

loops W (R, T ) for all the values of R and T up to
16. This was done on a 324 lattice using Numer-
ical Stochastic Perturbation Theory. The com-
putation was done for Wilson gauge and Wilson
quarks action and the sea quarks masses were put
to zero (i.e. the appropriate counterterms for the
perturbative critical mass were plugged in). From
Wilson loops and Creutz’s ratios one can compute

VT (R) ≡ log

(

W (R, T − 1)

W (R, T )

)

(6)

which in turn can yield the static potential via

V (R) ≡ lim
T→∞

VT (R). (7)

The static potential is just the sum of the
Coulomb potential (which can be described in
terms of a potential coupling in whose definition
the logarithmic divergencies2 are absorbed) and
the (linearly divergent) mass counterterm we are
interested in [12]

V (R) = 2 δm − CF

αV(R)

R
. (8)

This means that the perturbative computation of
the static potential can be read as the computa-
tion of the matching between the lattice and the
potential couplings, i.e. in the previous formula

αV(R) = α0 + c1(R)α2
0 + c2(R)α3

0 + . . . , (9)

the coefficients c1(R) and c2(R) being dictated by
Λ–parameters and β–functions coefficients

c1(R) = 2b0 logR + 2b0 log
 LV

 L0
2In Wilson loops also the so called corner logarithmic di-

vergencies are present, but they cancel in the Creutz’s

ratios.

and

c2(R) = c1(R)
2

+ 2b1 logR + 2b1 log
 LV

 L0
+

+
b
(V )
2 − b

(0)
2

b0
.

Since the matchings between both the potential
and the MS couplings [13] and the MS and the lat-
tice couplings [14] are known, the only unknown
quantity in Eq. (8) is δm. Our procedure was to

fit the coefficients X
(nf=2)
n by matching our per-

turbative computation of the static potential to
Eq. (8). An example of the fitting procedure can
be seen in Fig. 1. The intervals in which fits were
performed were such that: R ≥ 3, T ≥ 12 and
T > 2.5R (R is the mean value of R in the fit-
ting interval; the fitting intervals themselves were
from 3 up to 7 points long). We then choose in
terms of χ2: the errors we quote refer to the in-
terval embraced by letting χ2 vary within a given
interval. On top of that we could also inspect that
the impact of lattice artifacts was under control
(an handle is the value of known parameters en-
tering the matching relations).

3. Results

We got X0 = 2.118(2), X
(nf=2)
1 = 10.56(4)

(to be compared with the analytical values X0 =

2.118... and [9] X
(nf=2)
1 = 10.588...) and finally

X
(nf=2)
2 = 76.7(6). (10)

Using the last result the authors of [2] were able
to repeat the analysis of their nf = 2 unquenched
data. The result for the b–quark mass is [15]

mb(mb)
(unq) = (4.21 ± 0.03 ± 0.05 ± 0.04) GeV.

At least three considerations are in order. First
of all, by taking into account the value of X

(nf=2)
2

the central value moved from 4.26 to 4.21GeV and
(what is more important) the last error, which
is the one taking into account the indetermina-
tions in the perturbative matching, got roughly
halved. A second observation is that the new
analysis yields different values for the quenched
and unquenched results. Still, they are compati-
ble within errors and in the end further investiga-
tion is needed. The third point is the assessment
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Figure 1. The result of a fitting procedure as de-
scribed in the text. Solid lines are the content of
Eq. (8) once δm has been fitted, while circles are

the computed V
(i)
T (R), i.e. orders αi

0 of VT (R).
In these figures T = 15.

of sistematic errors involved in the procedure. In
this approach one sticks to finite values of the
lattice spacing. The finite lattice spacing depen-
dence is not dramatic and it gets decreased by
including the new term in the matching. On the
other hand, the control on renormalon ambigui-
ties seems firm.
After the conference the analysis was refined and
completed. The final version of the computation
can be found in [16].
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