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In this brief review, I summarize the current theoretical knowledge in supersymmetry

on the lattice, with special emphasis on recent results in the framework of N = 1 super-

symmetric Yang Mills theory, Wess-Zumino model and Yang-Mills theory with extended

supersymmetries.

Keywords: Supersymmetry; Lattice field theory; Super Yang-Mills.

PACS Nos.: include PACS Nos.

1. Introduction

Non-perturbative studies of supersymmetric gauge theories exhibit many fascinating

properties 1 which are of great physical interest a. For this reason, much effort has

been dedicating to formulating lattice version of supersymmetric theories. See for

example 6,7 for recent reviews on the subject at the latest Lattice conferences.

While much is known analytically, the hope is that the lattice would provide

further information and confirm the existing analytical calculations. The lattice

formulation has been successful to extract non-perturbative dynamics in field the-

ory, specially in QCD, and may be able to provide additional information also for

supersymmetry. Four dimensional supersymmetric gauge theories are good labora-

tories for non supersymmetric QCD and its extensions. Whether supersymmetry

is or not an exact symmetry is a question that must be settle by going beyond

perturbation theory.

This letter is organized as follows. In Section 2, non-perturbative aspect of the

four dimensional super Yang-Mills are reviewed. In Section 3, lattice results of this

model using Wilson fermions are described while in Section 4 results using chiral

fermions are presented. Recent examples of exact supersymmetry on the lattice

including the Wess-Zumino model and final remarks are given in Section 5.

aSee for example, 2,3 for recent reviews on supersymmetric gauge theories and related topics 4,5.
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2. Non perturbative effects in N = 1 super Yang-Mills theory

The dynamics of N = 1 super Yang-Mills is similar to QCD: confinement of the

colored degrees of freedom and spontaneous chiral symmetry breaking. Its ground

state consists of at least Nc different vacua parametrized by the imaginary phase

of a non zero gluino condensate 8,9 related by discrete Z2Nc
transformations on

the gluino fields. Once one of the Nc vacua is chosen, the Z2Nc
symmetry group

spontaneously breaks down to the Z2 group. One also expects that, in each of those

ground states, the spectrum of the model consists of colorless bound states of gluinos

and gluons (see 10,11 for an interesting relation between QCD and super Yang-

Mills). The discrete chiral symmetry breaking is expected to be broken by a non-

zero gluino condensate while the confinement is realized by colorless bound states

described by the effective action belonging to chiral supermultiplets. Moreover, non

perturbative effects may cause a supersymmetry anomaly, as has been discussed in
12. In this case, not only the mass term would be responsible for a soft breaking.

Only a study of the continuum limit of the lattice supersymmetric Ward-Takahashi

identity can give us a better understanding on this subject. Some step forward in

this direction can be found in 13,14.

The continuum action density for N = 1 super Yang-Mills theory and a gauge

group SU(Nc) with a vector boson Aµ and a 4-component Majorana spinor λa reads

L = −1

4
F a
µν(x)F

a
µν (x) +

1

2
λ̄a(x)γµ(Dµλ(x))

a , (1)

where the Majorana spinor satisfies the Majorana condition λ̄a = λaTC, and Dµ is

the covariant derivative in the adjoint representation, Dµλ
a = ∂µλ

a + gfabcA
b
µλ

c.

This density action (1) is invariant under the continuum supersymmetric trans-

formations,

δAµ(x) = −2gλ̄(x)γµε , δλ(x) = − i

g
σρτFρτ (x)ε , δλ̄(x) =

i

g
ε̄σρτFρτ (x) , (2)

where σρτ = i
2 [γρ, γτ ], λ = λaT a and ε is a global Grassmann parameter with

Majorana properties. For N = 1 super Yang-Mills theory the associated Noether

current, Sµ, reads

Sµ(x) = −F a
ρτ (x)σρτγµλ

a(x) . (3)

This current is conserved, ∂µSµ = 0 (if the fields satisfy the equations of motion)

and satisfies the relation γµSµ(x) = 0.

The density action (1) has the global U(1)λ chiral symmetry

λ → e−iϕγ5λ , λ̄ → λ̄e−iϕγ5 . (4)

This symmetry is anomalous because the divergence of the axial current, J5
µ =

λ̄γµγ5λ, is non zero,

∂µJ
5
µ =

Ncg
2

32π2
εµνρσF a

µνF
a
ρσ . (5)
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The anomaly leaves a Z2Nc
subgroup of U(1)λ unbroken. Introducing of a non-

zero gluino mass term in Eq. (1), Lmass = mg̃λ̄
aλa, breaks supersymmetry softly

(which implies that the non-renormalization theorem and cancellation of divergences

are preserved 15). In the supersymmetric case, mg̃ = 0, the U(1)λ symmetry is

unbroken if ϕ ≡ kπ
Nc

for (k = 0, 1, · · · , 2Nc − 1); here ϕ is defined so that, ΘSYM →
ΘSYM − 2Ncϕ. Z2Nc

is expected to be spontaneously broken to Z2 by a value of
〈

λ̄λ
〉

6= 0 8. The consequence of this spontaneous chiral symmetry breaking is the

existence of a first order phase transition at mg̃ = 0. That means the existence of

Nc degenerate ground states with different orientations of the gluino condensate

(k = 0, · · · , Nc − 1),
〈

λ̄λ
〉

= cΛ3e
2πik
Nc , (6)

where Λ is the dynamical scale of the theory which can be calculated on the lattice,

for instance, while c is a numerical constant which depends on the renormalization

scheme used to compute Λ. Eq. (6) shows the dependence on the gauge group. For

SU(2) two degenerate ground states with opposite sign of the gluino condensate,
〈

λ̄λ
〉

< 0 and
〈

λ̄λ
〉

> 0, appear 16, while for SU(3) there are three degenerate

vacua at k = kc (for a first numerical study for SU(3) see 17).

The value of the gluino condensate (6), for the gauge group SU(2), has been

calculated in the eighties by using two different methods. One is based on strong

coupling instanton calculations,18, while the second one is based on weak coupling

instanton calculations, 19. They give different result for c (in Eq. (6)) and this was

known as the 4
5 puzzle. Various discussion about the validity of both methods can be

found in the literature 20. More recently, a third elegant method 21 calculates the

gluino condensate directly in the semiclassical approximation. This method gives

results in agreement with the weak coupling instanton approximation 19,22 and

confirm the correctness of the weak coupling instanton result.

2.1. Light hadron spectrum

Effective lagrangians are extremely useful to describe strongly interacting theories

in terms of their relevant degrees of freedom. The effective lagrangian for N = 1

super Yang-Mills, also known as supersymmetric gluodynamics, which describes

interactions between gluons and gluinos, was found by Veneziano and Yankielowicz

(VY) 23. In terms of a minimal number of degrees of freedom contained in the S,

S =
3

32π2Nc
TrW 2 , (7)

where Wα is the supersymmetric field strength, the VY lagrangian reads

LV Y =
9N2

c

4α

∫

d2θd2θ̄(S†S)1/3 +
Nc

3

∫

d2θ

[

Slog(
S

Λ3
)Nc −NcS)

]

+ h.c. . (8)

where Λ is a renormalization group invariant scale related with the super Yang-Mills

parameter. The Kähler term here is ambiguous. The one presented in Eq. (8) is the

simplest one compatible with the symmetries of the theory.
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The chiral superfield S at the component level is written as 24

S(y) = φ(y) +
√
2θχ(y) + θ2F (y) , (9)

where φ represent the scalar and pseudoscalar gluinoballs while χ is their fermionic

partner. However, no physical glueballs appear in the VY effective lagrangian. Some

attempts in order to include glueballs in the VY lagrangian have already appeared in

the literature 25,26,27 (while a completely different approach in 28 claims dynamical

breaking of supersymmetry and its absence from the spectrum). Although it is

tempting to say that F represent the scalar and pseudoscalar glueballs, it is an

auxiliary field. Hence these states are not represented in the VY lagrangian. It

has been stressed in 29 that the VY lagrangian is not an effective lagrangian in

the same sense, as for example, the pion chiral lagrangian, which describes light

degrees of freedom and can, therefore, be systematically improved by introducing

high derivative terms. Generalization of the VY lagrangian with more degrees of

freedom are discussed in the literature 25,26,27. These results are in substantial

agreement with old lattice simulations using Wilson fermions 30,31, but they were

still away from the supersymmetric limit.

Recently, Sannino and Shifman 29 constructed an effective lagrangian of the

VY type for two non-supersymmetric theories which are orientifold daughters of

supersymmetric gluodynamics and at large Nc they recover the bosonic sector of

the VY action constructed for super Yang-Mills. The spectrum consists of a massive

pseudoscalar (eta prime) and the associated scalar fields. At large Nc these states

are mapped in the pseudoscalar and scalar super Yang-Mills gluinoball. In Ref.
32, the VY lagrangian has been extended to incorporate supersymmetric glueballs

states (R = 0) while and in Ref. 33, using the extended VY lagrangian of Ref. 32

together with QCD results, it was finally deduced that gluinoballs are the lightest

states in super Yang-Mills.

3. Lattice formulation of supersymmetric gauge theories

The problem of putting a supersymmetric theory on the lattice has been addressed

in the past by several authors 34,35,36,37. One obstacle arises from the fact that

the supersymmetry algebra is actually an extension of the Poincaré algebra, which

is explicitly broken on the lattice. Schematically one has, {Q, Q̄} = 2P . We know

that Poincaré invariance is achieved automatically in the continuum limit without

fine tuning since operators that violate Poincaré invariance are all irrelevant. On

the other hand, if the supersymmetry theory contains scalar fields one can have

scalar mass terms that break supersymmetry. Since these operators are relevant,

fine tuning is necessary in order to cancel their contributions.

Another problem is the question of how to balance bosonic and fermionic modes,

the numbers of which are constrained by the supersymmetry: the naive lattice

fermion formulation results in the doubling problem 38, and produces a wrong

number of fermions. The problem can be treated as in QCD by using different
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fermion formulations. Let us briefly summarize those which have applications in

supersymmetric theories. In the first of them, one ends up with breaking of chiral

symmetry. This is the Wilson formulation.

3.1. N = 1 super Yang-Mills theory Wilson fermions

Wilson fermions are undoubled, non-chiral and ultra-local. In the Wilson formula-

tion of Curci and Veneziano (CV) 34, it is proposed to construct a non supersym-

metric discretized N = 1 super Yang-Mills with a supersymmetric continuum limit.

Here, supersymmetry is broken by the lattice itself, by the Wilson term and a soft

breaking due to the gluino mass is present. Supersymmetry is recovered in the con-

tinuum limit by tuning the bare parameters g and the gluino mass mg̃ (through the

hopping parameter) to the supersymmetric limit. The supersymmetric (and chiral)

limits are both recovered simultaneously at mg̃ = 0 (see 30 for a review on N = 1

super Yang-Mills using Wilson fermions).

The CV effective action suitable for Monte Carlo simulations is

SCV = β
∑

pl

(

1− 1

Nc
ReTrUµν

)

− 1

2
log detQ[U ] , (10)

where the bare coupling is given by β ≡ 2Nc/g
2 for the gauge group SU(Nc). The

fermion matrix Q for the gluino is defined by

Qyb,xa[U ] ≡ δxyδab − k

4
∑

µ=1

[

δy,x+µ̂(1 + γµ)Vba,xµ + δy+µ̂,x(1− γµ)V
T
ba,xµ

]

, (11)

where k is the hopping parameter defined as k = 1/(2(4 + m0a)), m0 is the bare

mass, and the matrix for the gauge field link in the adjoint representation is

Vab,xµ ≡ Vab,xµ[U ] ≡ 1

2
Tr(U †

xµTaUxµTb) . (12)

The fermion matrix for the gluino in Eq. (11) is not hermitian but it satisfies the

relation Q† = γ5Qγ5. That allows for the definition of the hermitian fermion matrix

Q̃ ≡ γ5Q. The path integral over the Majorana fermions gives the Pfaffian,
∫

[dλ]e−
1

2
λ̄Qλ =

∫

[dλ]e−
1

2
λTCQλ = Pf(M) , (13)

where M ≡ CQ is an antisymmetric matrix.

It is easy to see that Pf(M) = ±
√
detQ. In the effective CV action the absolute

value of the Pfaffian is taken into account (this may cause the sign problem). The

spectral flow is a method who checks the value of the sign of the Pfaffian. Results of

Refs.39,40 show that below the critical line kc(β), corresponding to zero gluino mass

(mg̃ = 0), negative Pfaffians practically never appear. The method of simulation

with non-even number of flavors is based on the multi-bosonic algorithm proposed

by Lüscher 41 where a two-step variant using a noisy correction step 42, has been

developed by Montvay in 43,44 called the two-step multibosonic (TSMB) algorithm.



July 10, 2018 13:8 WSPC/INSTRUCTION FILE lsusy2

6 Alessandra Feo

In the two-step variant, to represent the fermion determinant one uses a first poly-

nomial P(1)
n1

(x) for a crude approximation realizing a fine correction by another

polynomial P(2)
n2

(x) that satisfies, lim
n2→∞

P(1)
n1

(x)P(2)
n2

(x) = x−Nf/2, for x ∈ [ε, λ].

The fermion determinant is approximated as 43

det(Q†Q)Nf ≃ 1

detP
(1)
n1

(Q†Q)detP
(2)
n2

(Q†Q)
. (14)

Unquenched results for the gauge group SU(2) using TSMB have been reported in

Refs.16,39,40,45 and more recently in 46, while for SU(3) a preliminary results is

in Ref.17. Previous quenched simulations can be found in 47,48,49,50.

By studying the pattern of chiral symmetry breaking, through the study of the

first order phase transition of the gluino condensate it is then possible to determine

the value of the critical hopping parameter which correspond to the supersymmetric

limit (mg̃ = 0). In 16,17, for a fixed value of β, it is introduced a gluino mass term

that breaks supersymmetry and then it is tuned in order recover supersymmetry

in the continuum limit. At the supersymmetric (chiral) limit, a first order phase

transition (or a crossover) should shows up as a two double peak structure in the

distribution of some order parameter (the gluino condensate, in this case), indicat-

ing that the corresponding kc is the critical hopping parameter corresponding to

the supersymmetric limit. By increasing the volume the tunneling between the two

ground states becomes less and less probable and at some point practically impos-

sible. Outside the phase transition region, the observed distribution can be fitted

by a single Gaussian but in the transition region a good fit can only be obtained

with two Gaussians.

How do we know we are restoring supersymmetry in the continuum limit?

• This can be achieved for example, by investigating the low-lying mass spec-

trum and comparing with theoretical predictions. In 39,45, simulations near

the value of kc, have been performed. An accurate study of this issue is non-

trivial not only from the computational point of view but also due to several

different theoretical formulations. An independent method for checking the

supersymmetry restoration would be demanding. Recently, in 46 it is shown

that the pseudoscalar gluinoball is indeed the lighter particle of the super-

multiplet at the value of the gluino mass measured. The latter findings seem

to be more consistent with the recent predictions of Ref. 33.

• Another independent way to study the supersymmetry restoration in the

Wilson formulation is through the study of the supersymmetric Ward-

Takahashi identity (WTi). This has been achieved both numerically 40 and

in lattice perturbation theory 13,14. Let us briefly summarize these results.

3.2. The supersymmetric Ward-Takahashi identity

Numerical simulations of the WTi 40 and more recently in 46 have been performed

in order to determine non-perturbatively a substracted gluino mass and the mixing
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coefficients of the supercurrent. The supersymmetric WTi in a numerical simulation

reads 40,
〈

O(y)∇µSµ(x)
〉

+ ZTZ
−1
S

〈

O(y)∇µTµ(x)
〉

= mRZ
−1
S

〈

O(y)χ(x)
〉

, (15)

and can be computed at fixed β and k. By choosing two elements of the 4 × 4

matrices, having previously chosen the operator insertion O(y) in Eq. (15), a system

of two equations can be solved for ZTZ
−1
S and mRZ

−1
S

40. The results in Ref. 40

show a restoration of supersymmetry in the continuum limit up to O(a) effects.

The vanishing gluino mass, extrapolated when determine mRZ
−1
S , occurs at a value

of the hopping parameter in agreement to the one calculated using the pattern of

chiral symmetry breaking 16.

The supersymmetric WTi has been also studied in lattice perturbation theory, up

to one loop order, in two different papers, 13,14. In Ref. 13 the bare WTi is written

and from here the axial and supersymmetric WTi are determined. Taniguchi shows
13 that the additive mass correction appearing in the supersymmetric WTi coincide

with that from the axial U(1)R symmetry, as suggested by Curci and Veneziano in
34. On the other hand, in 14, it is written the renormalized supersymmetric WTi,

ZS

〈

O∇µSµ(x)
〉

+ ZT

〈

O∇µTµ(x)
〉

− 2(m0 − m̃)Z−1
χ

〈

OχR(x)
〉

+

ZCT

〈 δO

δξ̄(x)
|ξ=0

〉

− ZGF

〈

O
δSGF

δξ̄(x)
|ξ=0

〉

− ZFP

〈

O
δSFP

δξ̄(x)
|ξ=0

〉

+
∑

j

ZBj

〈

OBj

〉

= 0 , (16)

and the coefficient ZT is calculated in lattice perturbation theory at one loop order,

in the off-shell regime. ZT is in good agreement with the one determined in 40. In
14 it is also shown that the structure of the supercurrent mixing involves a more

complicated structure that the one proposed by Curci and Veneziano 34 and in 13.

4. Ginsparg-Wilson fermions

A key element for the construction of a chiral lattice theory, i.e., a theory in which

chiral and flavor symmetries can be preserved on the lattice, without fermion dou-

bling, is the choice of a lattice Dirac operator D, that satisfies the Ginsparg-Wilson

(GW) relation 51

γ5D +Dγ5 = aDγ5D (17)

and the hermiticity condition D† = γ5Dγ5. The operator should also be local, gauge

covariant and have a number of further properties 52,53,54,55,56,57,58.

An explicit expression for this operator has been founded by Neuberger 57,58

D =
1

a

(

1−X (X†X)−1/2

)

, X = 1− aDw , (18)

where

Dw =
1

2
γµ(∇⋆

µ +∇µ)−
a

2
∇⋆

µ∇µ (19)
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and

∇µφ(x) =
1

a
(Uµ(x)φ(x+aµ̂)−φ(x)) , ∇⋆

µφ(x) =
1

a
(φ(x)−U †

µ(x−aµ̂)φ(x−aµ̂))(20)

are the forward and backward lattice derivative, respectively. Either overlap

fermions or domain wall fermions, satisfy the GW relation. Let us briefly review

applications of domain wall fermions to super Yang-Mills.

4.1. N = 1 with domain wall fermions

N = 1 super Yang-Mills has been also studied on the lattice using the domain wall

fermion (DWF) approach. Application of DWF in supersymmetric theories has been

explored in 59,60 and also suggested in 62, with a different approach as 60. First

Monte Carlo simulations for N = 1 SU(2) super Yang-Mills with DWF, using the

lines of Refs. 59,60 are in 63. This formulation, even at non-zero lattice spacing

does not require fine-tuning. The condensate is non-zero even for small volume and

small supersymmetry breaking mass where zero mode effects due to gauge fields

with fractional topological charge appear to play a role.

DWF were introduced in 61 and were further developed in 64,65. For a recent

review on DWF for supersymmetric gauge theories see 66. The DWF approach

is defined by extending the space-time to five dimensions. Also a non-zero five

dimensional mass or domain wall height m0, which controls the number of flavors,

is present. The size of the fifth dimension, Ls, and free boundary conditions for

the fermions are implemented. As a result, the two chiral components of the Dirac

fermion are separated with one chirality bound exponentially on one wall and the

other on the opposite wall. For any value of a the two chiralities mix only by an

amount that decreases exponentially as Ls → ∞. For Ls = ∞, the chiral symmetry

is expected to be exact even at finite lattice spacing. Therefore, there is no need

for fine tuning. DWF offer the opportunity to separate the continuum limit, a → 0,

from the chiral limit, Ls → ∞. For the time being, only the study of the gluino

condensate has been performed, while the spectrum of the theory was not possible

to measure on the small lattices used in 63. In any case, due to the improved chiral

properties of DWF, even though they appear to be much more expensive than non-

chiral fermions, it would be nice to have more results with DWF or overlap fermions,

for example, concerning the spectrum of the theory.

5. Exact lattice supersymmetry: where and how

As we have already discussed, improving lattice supersymmetry is rather difficult for

gauge theories. In fact, most supersymmetric theories, as for example N = 2 or N =

4 super Yang-Mills, contain scalar bosons which typically produce supersymmetry

violating relevant operators, which need to be fined tuned in some way. For N = 1,

as we have seen, only a fine tuning is needed in order to eliminate the mass term.

Unfortunately, because there is no discrete version of supersymmetry which can be
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implemented to forbid scalar masses and unwanted relevant operators, it is desirable

to construct lattice structures which directly display at least a subset of exact

supersymmetry in order to decrease the number of fine tuning to do. This idea has

been applied to the two and four dimensional Wess-Zumino model and to super

Yang-Mills with extended supersymmetries. Let us summarize some of them.

5.1. The lattice Wess-Zumino Model

The Wess-Zumino model 67 has been extensively studied on the lattice both, nu-

merically and in lattice perturbation theory. Several interesting achievements can

be found in the old literature, starting from 35 where a lattice regularized Wess-

Zumino theory was constructed which although non-local, exhibited an explicit su-

persymmetry. Other old attemps can be found in 36, where also the case of the four

dimensional lattice Wess-Zumino model is included. An interesting old reference

is 37 where a successful construction of the two dimensional lattice Wess-Zumino

model using Wilson fermions was realized. Also the Ward identities resulting from

a lattice generalization of the continuum supersymmetry hold for each order in

perturbation theory 37.

More recently, Fujikawa and Ishibashi have studied in detail lattice supersymme-

try for the four dimensional N = 1 Wess-Zumino model. In 70 a lattice regulariza-

tion of the supersymmetric Wess-Zumino model is studied by using the Ginsparg-

Wilson operator b. Ref. 70 pointed out a conflict between the lattice chiral symmetry

and the Majorana condition for Yukawa couplings. Also, three different examples of

lagrangian for the Dirac fermions with Yukawa couplings are shown. The first one is

the most natural one consistent with lattice chiral symmetry which is softly broken

by the mass term. The second possible lagrangian incorporates continuum chiral

symmetry with Yukawa coupling which is softly broken by the mass term but not

explicitly lattice chiral, even for m = 0. Yet, another lagrangian which is suggested

by the analysis of lattice chiral gauge symmetry.

In 71 further investigations on the arguments raised in 70 are performed. In

particular it is shown that the conflict between lattice chiral symmetry and the

Majorana condition by the presence of Yukawa couplings already noted in 70 is

related in an essential way to the basic properties of the Ginsparg-Wilson operator,

namely, locality and absence species doubling. In 72 it is pointed out that the major

obstacle for the construction of a lattice supersymmetric theory is the failure of the

Leibniz rule, as has been previously noticed by 35. In 70 it is suggested that a lattice

version of a perturbatively finite theory preserves supersymmetry to all orders in

perturbation theory, in the sense that the supersymmetry breaking terms induced by

the failure of the Leibniz rule become irrelevant in the continuum limit. Differences

between Ginsparg-Wilson fermions and Wilson fermions are also analyzed.

N = 2 Wess-Zumino model has been investigated in 73 defined on the d = 2

bA previous attempt that uses a RG transformation can be found in 68 and then in 69.
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Euclidean lattice in connection with the restoration of the Leibniz rule in the limit

a → 0. In 73 also the differences between Wilson and Ginsparg-Wilson fermions

are investigated and the effects of extra interactions introduced by an analysis of

a Nicolai mapping. As for the Wilson fermions, it induces a linear divergence to

individual tadpole diagrams in the limit a → 0, which is absent when Ginsparg-

Wilson fermions are used. The N = 2 Wess-Zumino model in 73 also investigates

the effects of the extra couplings introduced by an analysis of Nicolai mapping.

The Wess-Zumino model has also been studied by Catterall and collaborators in

a series of interesting papers. In 74, a lattice version for the two dimensional Wess-

Zumino model with N = 2 supersymmetry is presented. The lattice prescription

chosen has the merit of preserving exactly a single supersymmetric invariance at

finite lattice spacing. From the form of the transformations they have derived a

set of Ward identities which would be satisfied in the continuum limit. In 74 it is

argued that the presence of one exact symmetry (together with the finiteness of the

continuum theory) guarantees that the full symmetry is restored without fine tuning

in the continuum limit. These claims have been checked by an explicit numerical

simulation of the Euclidean lattice theory and using a Fourier Hybrid Monte Carlo

algorithm 75 to handle the fermionic integration of dynamical fermions in order to

check the equality of the mass gaps in the boson and fermion sectors and to check

the first non trivial lattice Ward identity.

Further numerical investigations of the two dimensional Wess-Zumino model

can be found in 76 using the action analyzed by Golterman and Petcher 37 where

a perturbative proof was given that the continuum supersymmetric Ward identities

are recovered without fine tuning in the limit of vanishing lattice spacing by using

Wilson fermions. The numerical simulations in 76 demonstrate the existence of im-

portant non-perturbative effects in finite volumes which modify these conclusions:

It appears that in certain region of parameter space the vacuum state can contain

solitons corresponding to soliton configurations which interpolate between differ-

ent classical vacua. In the background of these solitons supersymmetry is partially

broken and a light fermion mode is observed. At fixed coupling the critical mass

separating phases of broken and unbroken supersymmetry appears to be volume

dependent. Ref. 76 also discussed the implication on supersymmetry breaking.

A very interesting paper is 77 where it is known that certain theories with ex-

tended supersymmetry can be discretized in such a way as to preserve an exact

fermionic symmetry. In the simplest model of this kind, this residual supersymmet-

ric invariance is actually a BRST symmetry. As an example, the supersymmetric

quantum mechanics which possesses two such BRST symmetries is investigated and

there it is shown that at the quantum level, the continuum BRST symmetry is pre-

served in the lattice theory. Similar conclusions are reached for the two-dimensional

complex Wess-Zumino model and imply that all the supersymmetric Ward identities

are satisfied exactly on the lattice. In 77 several numerical results supporting these

conclusions are presented. More recently, in 78, it is studied how to construct lat-

tice sigma models in one, two and four dimensions which exhibit an exact fermionic
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symmetry. These models are discretized and twisted versions of conventional super-

symmetric sigma models with N = 2 supersymmetry are showed. As an example,

the O(3) supersymmetric sigma model in two dimensions is presented.

In a recent work by D’Adda, Kanamori, Kawamoto and Nagata 79 a new for-

mulation which realizes exact twisted supersymmetry for all the supercharges on a

lattice by twisted superspace formalism is proposed. This is achieved by introduc-

ing a mild lattice noncommutativity to preserve Leibniz rule on the lattice. Explicit

examples of N = 2 twisted supersymmetry invariant BF and Wess-Zumino models

in two dimensions are shown.

Other examples on the construction of lattice non-gauge supersymmetric models

up to four supercharges in various dimensions have been studied by Giedt and Pop-

pitz 80. Here it is shown the conditions under which the interacting lattice theory

can exactly preserve one or more nilpotent anticommuting supersymmetries written

in the superfield formalism. In some cases, one exact supersymmetry guarantees the

recovering of the continuum limit without fine tuning.

Wipf and collaborators 81 investigated a class of two dimensional Wess-Zumino

models by using the nonlocal and antisymmetric SLAC derivative. They show that

SLAC derivatives allow chiral fermions without doublers and also minimizes super-

symmetry breaking lattice artifacts. In 81, the supercharges of the lattice Wess-

Zumino models are obtained by dimensional reduction of Dirac operators in high-

dimensional spaces. The normalizable zero modes of the models with N = 1 and

N = 2 supersymmetry are counted and constructed in the weak and strong-coupling

limits.

In a recent work, 82, a lattice formulation of the four dimensional Wess-Zumino

model that uses Ginsparg-Wilson fermions and keeps exact supersymmetry to the

full action is presented. The supersymmetry transformation that leaves the action

invariant at finite lattice spacing is determined by performing an iterative procedure

in the coupling constant. The closure of the algebra, generated by this transforma-

tion is also showed. In 82 a simple lattice Ward identity up to order O(g) is verified.

Ref. 83 contains a careful writeup of the study of dynamical supersymmetry

breaking by non perturbative lattice techniques in a class of the two-dimensional

N = 1Wess-Zumino models using the Hamiltonian formalism and analyze the phase

diagram of a couple of simple models based on cubic or quadratic prepotential by

explicit numerical simulations with Green Function Monte Carlo methods 84. The

results for the model with cubic prepotential indicate unbroken supersymmetry

while for quadratic prepotentials the existence of two phases of broken and unbro-

ken supersymmetry are showed. The idea has been previously applied by Beccaria

and Rampino, 85, where it is studied supersymmetry breaking in the lattice N = 1

Wess-Zumino model by the world-line path integral algorithm. The ground state

energy and supersymmetric Ward identities are exploited to support the expected

symmetry breaking in finite volume. Non-Gaussian fluctuations of the topological

charge are discussed and related to the infinite volume transition. In 86 the lattice

N = 1 Wess-Zumino model in two dimensions is studied by constructing a sequence
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ρ(L) of exact lower bounds on its ground state energy density ρ, converging to ρ

in the limit L → ∞. The bounds ρ(L) can be computed numerically on a finite

lattice with L sites and can be exploited to discuss dynamical symmetry breaking.

The transition point is determined and compared with previously and indepen-

dent method results from Campostrini and collaborators, 83, with good agreement.

High precision study of the structure of d = 4 supersymmetric Yang-Mills quantum

mechanics is showed by Wosiek and Campostrini in 87,88,89.

5.2. Super Yang-Mills theory

In Ref. 90, Itoh, Kato, Sawanaka, So and Ukita, presented an entirely new approach

towards a realization of super Yang-Mills theory on the lattice. The action consists

of staggered fermions 91 and the plaquette variables distributed in the Euclidean

space with a particular pattern. The system is shown to have fermionic symmetries

relating the fermion and the link variables. The gauge action has a novel structure.

Though it is the ordinary plaquette action, two different couplings are assigned in

the “Ichimatsu pattern” or the checkered pattern. In the naive continuum limit, the

fermionic symmetry survives as a continuum (or an O(a0)) symmetry. The trans-

formation of the fermion is proportional to the field strength multiplied by the

difference of the two gauge couplings in this limit. Ref. 92 examines compatibil-

ity and difficulties on how to accomodate Majorana and Weyl fermions in various

dimensional Euclidean lattice gauge theories.

In a series of interesting papers, Kaplan and collaborators presented a new ap-

proach to constructing lattices for gauge theories with extended supersymmetry
93,94,95. The lattice theories themselves respect certain supersymmetries, which in

many cases allows the target theory to be obtained in the continuum limit without

fine tuning. This method exploits an orbifold construction 96 for spatial lattices in

Minkowski space (and then for Euclidean space), and can be generalized to more

complicated theories with additional supersymmetry and more spacetime dimen-

sions (see 6 for a detailed review on this subject). A challenging issue would be to

dynamical simulate these theories. However, there is apparently a sign problem 97

which may be resolved due to some encouraging results 98.

Another formulation of super Yang-Mills theories with extended supersymmetry

on hypercubic lattices of various dimensions keeping one or two supercharges exactly

has been realized by Sugino, see 99,100 and references therein. It is interesting

to mention a related topic. Non-perturbative supersymmetric theories have been

also studied using the supersymmetric discrete light cone quantization (SDLCQ)

formulation, see for example papers by Pinsky and collaborators, 101,102,103, with

very interesting numerical results. The SDLCQ formulation of the transverse lattice

does not have species doubling 104.
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