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Formulation of chiral gauge theories∗
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We present a formulation of chiral gauge theories, which admits more general spectra of Dirac operators and

reveals considerably more possibilities for the structure of the chiral projections. Our two forms of correlation

functions both also apply in the presence of zero modes and for any value of the index. The decomposition of the

total set of pairs of bases into equivalence classes is carefully analyzed. Transformation properties are derived.

1. CHIRAL PROJECTIONS

Starting from the basic structure of previous
approaches to chiral gauge theories [1,2] we have
recently presented a generalization [3] in which
the Dirac operator and the chiral projections have
been considered as functions of a certain unitary
and γ5-Hermitian operator. Here we avoid the re-
strictions introduced by referring to such an op-
erator by determining the possible structures of
the chiral projections for given Dirac operator D.
For operators satisfying [D†, D] = 0 and D† =

γ5Dγ5 we have the spectral representation

D =
∑

j

λ̂j(P
+
j +P−

j ) +
∑

k

(λkP
(I)
k + λ∗kP

(II)
k )(1)

with Im λ̂j = 0 and Im λk > 0 and where

γ5P
±
j = P±

j γ5 = ±P±
j and γ5P

(I)
k = P

(II)
k γ5.

Since Tr(γ51l) = Tr(γ5P
(I)
k ) = Tr(γ5P

(II)
k ) = 0 we

get for N±
j = TrP±

j

∑

j

(N+
j −N−

j ) = 0. (2)

Associating j = 0 to zero modes the index of D
is given by I = N+

0 −N−
0 .

In contrast to the Dirac operators considered
previously those in (1) are no longer restricted to
one real eigenvalue in addition to zero and also
admit more general complex ones. They have
nevertheless appropriate realizations which also
allow numerical evaluation [4].
For the chiral projections P− and P̄+ the fun-

damental relation

P̄+D = DP− (3)
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is required. Then because of [P−, DD
†] =

[P̄+, DD
†] = 0 we obtain the decomposition

P− =
∑

j

PX
j +

∑

k

PR
k , P̄+ =

∑

j

P̄X
j +

∑

k

P̄R
k (4)

in which the projections PR
k and P̄R

k are given by

PR
k = ckP

(I)
k + (1 − ck)P

(II)
k

−
√

ck(1− ck)γ5(e
iϕkP

(I)
k + e−iϕkP

(II)
k ), (5)

P̄R
k = ckP

(I)
k + (1 − ck)P

(II)
k

+
√

ck(1 − ck)γ5
(

e−iϕ̄kP
(I)
k + eiϕ̄kP

(II)
k

)

, (6)

where 0 ≤ ck ≤ 1, ei(ϕk+ϕ̄k−2αk) = −1, eiαk =
λk/|λk| and

TrPR
k = Tr P̄R

k = TrP
(I)
k = TrP

(II)
k = : Ñk. (7)

For the other projections, with N̄ − N = I for
N̄ = Tr P̄+ and N = TrP−, we get

P̄X
0 = P+

0 , PX
0 = P−

0 , (8)

and have for j 6= 0 the two possibilities

P̄X
j = PX

j = P+
j or P̄X

j = PX
j = P−

j . (9)

With these relations for the chiral projections
we see that, introducing Tr 1l = 2d, we have

N̄ = d, N = d− I or N̄ = d+ I, N = d (10)

for the two choices in (9), respectively, and that

N = N−
0 + L, N̄ = N+

0 + L,

L =
∑

j 6=0

N±
j +

∑

k

Ñk (11)

holds, where ± refers to such two choices.
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2. CORRELATION FUNCTIONS

Non-vanishing fermionic correlation functions
are given by

〈ψσr+1
. . . ψσN

ψ̄σ̄r+1
. . . ψ̄σ̄N̄

〉f = (12)

1

r!

∑

σ̄1...σ̄r

∑

σ1,...,σr

Ῡ∗
σ̄1...σ̄N̄

Υσ1...σN
Dσ̄1σ1

. . .Dσ̄rσr

with the alternating multilinear forms

Υσ1...σN
=

N
∑

i1,...,iN=1

ǫi1,...,iNuσ1i1 . . . uσN iN , (13)

Ῡσ̄1...σ̄N̄
=

N̄
∑

j1,...jN̄=1

ǫj1,...,jN̄ ūσ̄1j1 . . . ūσ̄N̄ jN̄ , (14)

in which the bases ūσ̄j and uσi satisfy

P− = uu†, u†u = 1lw, P̄+ = ūū†, ū†ū = 1lw̄. (15)

While P− and P̄+ are invariant under unitary
basis transformations u(S) = uS, ū(S̄) = ūS̄,
the forms Υσ1...σN

and Ῡσ̄1...σ̄N̄
get multiplied by

detw S and detw̄ S̄, respectively. Therefore, in or-
der that all general correlation functions remain
invariant we have to impose the condition

detwS · detw̄S̄
† = 1. (16)

Without this condition all bases related to a chiral
projection are connected by unitary transforma-
tions. With it the total set of pairs of bases u and
ū decomposes into equivalence classes of which
one is to be chosen to describe physics. Different
equivalence classes are related by pairs of basis
transformations with

detwS · detw̄S̄
† = eiΘ, Θ 6= 0. (17)

The phase factor eiΘ determines how the results
of the respective formulations of the theory differ.

The relations obtained for the chiral projec-
tions imply ones for the bases, too. Thus from

P̄R
k = |λk|

−2DPR
k D

† (18)

putting PR
k =

∑Ñk

l=1 u
[k]
l u

[k]†
l we get

ū
[k]
l = e−iΘk |λk|

−1Du
[k]
l (19)

with phases Θk so that P̄R
k =

∑Ñk

l=1 ū
[k]
l ū

[k]†
l . For

P±
j =

∑N
±

j

l=1 u
±[j]
l u

±[j]†
l =

∑N
±

j

l=1 ū
±[j]
l ū

±[j]†
l where

j 6= 0 we have with phases Θ±
j

ū
±[j]
l = e−iΘ±

j |λ̂j |
−1Du

±[j]
l . (20)

From (19) and (20) it becomes obvious that
the L × L submatrix M̆ of ū†Du, which occurs
according to (11), has the eigenvalues

eiΘk |λk|, eiΘ
±

j |λ̂j |, (21)

with multiplicities Ñk and N±
j , respectively. Us-

ing M̆ and introducing P−
0 =

∑N
l=L+1 ulu

†
l and

P+
0 =

∑N̄
l=L+1 ūlū

†
l for the zero mode part we

find for the correlation functions the form

〈ψσr+1
. . . ψσN

ψ̄σ̄r+1
. . . ψ̄σ̄N̄

〉f = (22)

∑

σ′
r+1

,...,σ′
N

ǫ
σ′
r+1...σ

′
N

σr+1...σN

∑

σ̄′
r+1

,...,σ̄′

N̄

ǫ
σ̄′
r+1...σ̄

′

N̄

σ̄r+1...σ̄N̄

1
(L−r)!

Gσ′
r+1

σ̄′
r+1

. . .Gσ′
L
σ̄′
L

e−iθ−
z uσL+1,L+1 . . . uσNN

eiθ
+
z ū†L+1,σ̄L+1

. . . ū†
N̄σ̄N̄

detLM̆,

with G = P̆−D̆
−1 ˘̄P+, where D̆, P̆−,

˘̄P+ are the
restrictions of the operators D, P−, P̄+ to the
subspace on which 1l−P+

0 −P−
0 projects. With θ+z

and θ−z being related to the zero-mode part, the
equivalence class of pairs of bases is characterized
by the value of
∑

k

NkΘk +
∑

j 6=0

N±
j Θ±

j + θ+z − θ−z . (23)

3. GAUGE TRANSFORMATIONS

Conditions (15) and (16) determine the equiv-
alence class of pairs of bases uS, ūS̄. Gauge
transformations P ′

− = T P−T
†, P̄ ′

+ = T P̄+T
† for

[T , P−] 6= 0, [T , P̄+] 6= 0 imply that the trans-
formed equivalence class is given by

u′S′ = T uSS, ū′S̄′ = T ūS̄S̄, (24)

where u′, ū′, S′, S̄′ satisfy the transformed
conditions (15) and (16), and where the uni-
tary transformations S(T ,U) and S̄(T ,U) with
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detwS(1l,U)
(

detw̄S̄(1l,U)
)∗

= 1 are introduced
for full generality. Insertion of (24) into (12) gives
for the correlation functions

〈ψ′
σ′
1
. . . ψ′

σ′
R
ψ̄′
σ̄′
1
. . . ψ̄′

σ̄′

R̄

〉′f = (25)

eiϑT

∑

σ1,...,σR

∑

σ̄1,...,σ̄R̄

Tσ′
1
σ1
. . . Tσ′

R
σR

〈ψσ1
. . . ψσR

ψ̄σ̄1
. . . ψ̄σ̄R̄

〉f T †

σ̄1σ̄
′
1

. . . T †

σ̄R̄σ̄′

R̄

.

In this relation the factor

eiϑT = detwS · detw̄S̄
† (26)

for ϑT 6= 0 has just the form met in (17) for the
transformations to inequivalent subsets of pairs
of bases. Thus to prevent arbitrary switching to
different equivalence classes the condition ϑT = 0
is to be imposed. That this is to be done follows
[4], on the other hand, also from the covariance
requirement for the current in Ref. [2].
In the special case [T , P−] 6= 0, [T , P̄+] = 0 the

equivalence class can be represented [4] by pairs
uS, ūcS̄c where ūc and S̄c are independent of the
gauge field so that instead of (24) we have

u′S′ = T uSS, ūcS̄c = const. (27)

Because of [T , P̄+] = 0 it is now possible to
rewrite ūc = T ūcŜT . With this and (27) we get
again the form (25), however, with

eiϑT = detwS · detw̄Ŝ
†
T . (28)

Here detwS = 1 remains to be required to pre-
vent arbitrary switching to different equivalence
classes. For the factor detw̄Ŝ

†
T with T = exp(B)

we obtain the constant result

detw̄Ŝ
†
T = exp(12TrB). (29)

It should be noted that in the continuum limit
certain compensations of terms present on the lat-
tice disappear so that one arrives just at the usual
features of continuum perturbation theory [3,4].

4. CP TRANSFORMATIONS

For CP transformations of the chiral projec-
tions we have

PCP
− (UCP) = WP̄T

+ (U)W†, (30)

P̄CP
+ (UCP) = WPT

− (U)W†, (31)

with W = Pγ4C
†, Pn′n = δ4n′ñ, U

CP
4n = U∗

4ñ and
UCP
kn = U∗

k,ñ−k̂
for k = 1, 2, 3, where ñ = (−~n, n4).

Writing P−(U) and P̄+(U) in the form

P− =
1

2
(1l− γ5G), P̄+ =

1

2
(1l + Ḡγ5) (32)

we get for PCP
− (UCP) and P̄CP

+ (UCP)

PCP
− =

1

2

(

1l− γ5Ḡ
)

, P̄CP
+ =

1

2

(

1l +Gγ5
)

. (33)

Obviously the transformed projections differ by
an interchange of G and Ḡ, in which context it is
to be noted that generally Ḡ 6= G holds [4].
With the conditions (15) and (16) satisfied by

u, ū, S, S̄ as well as by uCP, ūCP, SCP, S̄CP, the
equivalence class of pairs of bases transforms as

uCPSCP = Wū∗S̄∗Sζ , ūCPS̄CP = Wu∗S∗S̄ζ (34)

where the unitary transformations Sζ and S̄ζ are
introduced for full generality. Inserting this into
(12) we get for the correlation functions

〈ψCP
σ′
1
. . . ψCP

σ′
R
ψ̄CP
σ̄′
1
. . . ψ̄CP

σ̄′

R̄

〉CP
f = (35)

eiϑCP

∑

σ1,...,σR

∑

σ̄1,...,σ̄R̄

W†
σ̄1σ̄

′
1

. . . . . .W†
σ̄R̄σ̄′

R̄

〈ψσ̄1
. . . ψσ̄R̄

ψ̄σ1
. . . ψ̄σR

〉f Wσ′
1
σ1
. . .Wσ′

R
σR
.

Here the factor

eiϑCP = detw̄Sζ · detwS̄
†
ζ (36)

is subject to the condition that repetition of the
transformation must always lead back, which is
satisfied by restricting Sζ and S̄ζ to choices for
which ϑCP is a universal constant. Then the re-
sulting factor gets irrelevant in full correlation
functions so that one may put ϑCP = 0.

I wish to thank Michael Müller-Preussker and
his group for their kind hospitality.
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