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Abstract

In pure gauge SU(3) near β ≃ 6, weak and strong coupling expansions break down and the MC

method seems to be the only practical alternative. We discuss the possibility of using a modified

version of perturbation theory which relies on a large field cutoff and has been successfully applied

to the double-well potential (Y. M., PRL 88 141601). Generically, in the case of scalar field theory,

the weak coupling expansion is unable to reproduce the exponential suppression of the large field

configurations. This problem can be solved by introducing a large field cutoff φmax. The value of

φmax can be chosen to reduce the discrepancy with the original problem. This optimization can be

approximately performed using the strong coupling expansion and bridges the gap between the two

expansions. We report recent attempts to extend this procedure for SU(3) gauge theory on the

lattice. We compare gauge invariant and gauge dependent (in the Landau gauge) criteria to sort

the configurations into “large-field” and “small-field” configurations. We discuss the convergence

of lattice perturbation theory and the way it can be modified in order to obtain results similar to

the scalar case.

∗Talk presented by Yannick Meurice (yannick-meurice@uiowa.edu) at the Workshop on QCD in Extreme

Environments, Argonne National Laboratory, 29th June to 3rd July, 2004.
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I. INTRODUCTION

A common challenge for quantum field theorists consists in finding accurate methods

in regimes where existing expansions break down. In the RG language, this amounts to

find acceptable interpolations for the RG flows in intermediate regions between fixed points.

In the case of scalar field theory, the weak coupling expansion is unable to reproduce the

exponential suppression of the large field configurations operating at strong coupling. This

problem can be cured by introducing a large field cutoff φmax which eliminates Dyson’s

instability. One is then considering a slightly different problem, however a judicious choice

of φmax can be used to reduce or eliminate the discrepancy with the original problem (i.

e., the problem with no field cutoff). This optimization procedure can be approximately

performed using the strong coupling expansion and naturally bridges the gap between the

weak and strong coupling expansions.

The Workshop on QCD in Extreme Environments was held right after the Lattice 2004

conference. The talk of K. Wilson about the early days of lattice gauge theory was a very

inspirational moment of Lattice 2004. He stressed the importance of, in his own words,

“butchering field theory” in the development of the RG ideas and recommended that we

keep doing it. In the following, we will be butchering field theory in the space of field

configurations. We are interested in the effects of a large field cutoff on observables (we

expect the effect to be small if the field cutoff is large enough and the observable is not a

product of too many fields) and on the coeffients of the perturbative series for the observables

(we expect the effect to be drastic for the large order behavior). For scalar fields, there are

many ways to accomplish this task. The configurations can be ranked according to the

largest absolute value of the field or according to the average over the sites of even powers of

the field. The larger the power is, the more emphasis is put on the configurations with the

largest field values. As one may suspect, there exists correlations among the results obtained

with different cutoff procedures. For gauge theory, we can define the concept of small or

large field configurations in the Landau gauge and in a gauge invariant way. This was one

of the questions that we discussed at Lattice 2004 and an account can be found in Ref. [1].

Instead of duplicating, we will rather give an elementary discussion of our motivations and

existing results in the scalar case and explain how we expect to extend them in the gauge

case. Recent progress are briefly discussed at the end.

2



II. BASIC IDEAS IN THE SCALAR CASE

The best way to understand why the perturbative series of λφ4 problems in various

dimensions generically have a zero radius radius of convergence is to consider the integral

∫ +∞

−∞
dφe−

1
2
φ2−λφ4 6=

∞
∑

0

(−λ)l

l!

∫ +∞

−∞
dφe−

1
2
φ2

φ4l (1)

The peak of the integrand of the r.h.s. moves too fast when the order increases. More

precisely, e−(1/2)φ2
φ4k is maximum at φk such that φ2

k = 4k. The truncation of e−λφ4
at order

k is accurate provided that λφ4 << k. A good accuracy in the region where the integrand

is maximum requires λφ4
k << k, which implies λ << 1

16k
. Note also that the exponential

function converges uniformly over a finite interval but not over (−∞,+∞) and consequently

one cannot interchange the sum and the integral.

On the other hand, if we introduce a field cutoff, the peak moves outside of the integration

range and we get a converging expansion

∫ +φmax

−φmax

dφe−
1
2
φ2−λφ4

=
∞
∑

0

(−λ)l

l!

∫ +φmax

−φmax

dφe−
1
2
φ2

φ4l (2)

In general we expect that for a finite lattice, the partition function Z calculated with a field

cutoff is convergent and ln(Z) has a finite radius of convergence. The problem with the field

cut differs from the original problem but the difference can be made exponentially small.

The method works well in nontrivial examples. This has been checked [2] for the hierarchical

model and in the continuum for quantum mechanical problems (the anharmonic oscillator

and the double-well potential).

III. SIGNIFICANT DIGITS VERSUS COUPLING

In this section, we describe graphical representations of the accuracy reached at different

orders in perturbation theory. We typically want to know the number of (correct) significant

digits that can be obtained at a given order for a given coupling.
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Three situations are represented in Fig. 1. For ex, the accuracy always increases when we

increase the order. In the case of 1/(1+x), this is the case only if |x| < 1 and the lines have

a focus point at x = 1. On the other hand, for the integral discussed in the previous section,

the lines move left as they rotate and one sees an envolope that delimitates a “ forbidden

region” for the accuracy of perturbation theory. At fixed and not too large coupling, the

accuracy first increases and then decreases with the order. The “rule of thumb” consists

in stopping when the accuracy is optimal, in other words, when we reached the envelope

discussed above. Note also that the lines flatten near 14 on the left of the graph. This

simply reflects that we have only 14 digits of accuracy in our numerical calculation of the

integral.
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FIG. 1: Number of (correct) significant digits obtained by perturbation theory at order 1, 2, ...,

10 for ex (upper left) and 1
1+x (upper right), and orders 1, 2, ..., 20 for the integral discussed in

section 2 (lower). As the order increases, the lines “rotate” clockwise.
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When a field cut is introduced, the series apparently become convergent and we can make

a significant, but localized in coupling, incursion in the forbidden region of perturbation

theory. This is illustrated for three different field cuts in Fig. 2 in the case of the ground

state of the anharmonic oscillator.
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FIG. 2: Number of significant digits at order 1, 2, 3...., 15 , obtained with regular perturbation

theory (black) and with φmax = 3 (green), 2.5 (blue) and 2 (red), as a function of λ, for the ground

state of the anharmonic oscillator.

In an ideal world, we would pick a field cut large enough to reduce the errors (due to the

field cut) to an acceptable level. We would then calculate enough terms in order to reach an

accuracy consistent with this level. In practice, we are usually limited to calculations up to a

certain order. The field cut can then be chosen in order to minimize the error at that order.

From Fig. 2, one can see that it is possible to pick a cut that makes the accuracy optimal

in the neighborhood of some given value of the coupling λ. When the numerical answer is

known, it is easy to adjust the field cut in order to optimize the accuracy. When the answer

is not known, one can use an approximation. In Ref. [3], we showed that for the integral

Eq. (1), the strong coupling expansion can be used to determine approximately the optimal

field cut. This way strong and weak coupling expansions can be combined coherently.

Up to now, we have defined the field cut locally in configuration space (at each lattice

site). It is however possible to proceed differently and to use the average of even powers of

the fields to sort the configurations. There exist correlations among these indicators [1].

5



IV. LATTICE PERTURBATION THEORY

We now report our attempts to extend the modification of perturbation theory discussed

above in the scalar case to LGT. Perturbation theory for LGT has been developed almost

20 years ago [4]. Exact calculations up to 3 loops [5] and numerical calculations for 8 [6]

and 10 loops [7] are available. It proceeds in 3 steps.

1. With the convention β = 2N/g2, we set U = eigA at every link.

2. We extend the range of integration OF A to RN2−1 (anything else would be unpratical!)

3. We then expand in powers of g

In step 2, we added the integration “tails”. This presumably makes the series nonconvergent

(asymptotic) as one can observe in the case of large argument expansions of Bessel functions.

In step 3, one needs to expand the Haar measure in power of g. As the original Haar measure

is compact and provides a natural field cut, we would like to see what happens when the

integral get decompactified in step 2. For this purpose, we consider the simple example of a

one link SU(2) integral. We use the parametrization of SU(2)

U = exp(
i

2
~τ .~ω) = cos(ω/2) + i~τ .ω̂ sin(ω/2) (3)

with ω̂ covering the 2-sphere and 0 ≤ ω ≤ 2π. With this parametrization we cover the

SU(2) manifold exactly once. Alternatively, we could extend the range to 4π, but then we

need to identify opposite points on the sphere if we want to avoid a double coverage. In

these coordinates, the invariant Haar measure reads

dU =
dω

2π
sin2(ω/2)

d2ω̂

4π
=

d3ω

32π2

(

sin(ω/2)

ω/2

)2

=
d3ω

32π2
e−

ω2

12
− ω4

1440
... (4)

After we switched to the R3 measure d3ω, we obtain the Haar correction e−Log[(
sin(ω/2)

ω/2
)2]. Note

that Log[( sin(ω/2)
ω/2

)2] has a radius of convergence 2π, but all the coefficients are negative. So

when we expand in the exponential, the large negative contributions in the region ω > 2π

effectively cutoff these contributions. This is illustrated in Fig. 3. However, in perturbation

theory we have ~ω ≡ g ~A and we need to expand the exponential in powers of g. The measure

then “periodicizes” and we obtain a multiple coverage of the manifold as shown in Fig. 4.

The logarithm of the Haar measure is also used in the context of gluon equations of state

[8].
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FIG. 3: The red curve is the Haar density sin2(ω/2) with ω ≤ 2π. The blue/green curves represent

the approximations (ω/2)2e−
ω2
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− ω4

1440
−.... As the order increases, the curve gets more green.

2 4 6 8 10
omega

-0.25

0

0.25

0.5

0.75

1

1.25

H
a
a
r

d
e
n
s
i
t
y

SU2 expanded expon.

FIG. 4: Same as Fig. 3 but with (ω/2)2e−
ω2

12
− ω4

1440
−... replaced by its expansion (ω/2)2(1− ω2

12 − . . .).

The radius of convergence is infinite and the tails are restored.

.

V. COMPARISON WITH THE DOUBLE-WELL POTENTIAL

The ground state of the double-well potential

V (y) = (1/2)y2 − gy3 + (g2/2)y4 (5)
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can be expanded in powers of g2. Except for the zeroth order contribution, all the coeffients

of the series are negative and their magnitude grow factorially with the order. The Borel

transform has poles on the positive real axis. The difference between the beginning of the

perturbative series and the numerical values is bounded by the instanton effect

δE0 =
1

g
√
π
exp(− 1

6g2
) . (6)

Qualitatively similar features are expected for the perturbative expansion of P in pure gauge

SU(N) defined as

P (β) ≡ (1/Np)

〈

∑

p

(1− (1/N)ReTr(Up))

〉

, (7)

with

Np ≡ LDD(D − 1)/2 . (8)

The comparison between the numerical values and successive orders are shown in Fig. 5.

The accuracy of successive orders in perturbation theory are shown in Fig. 6. Note that
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FIG. 5: E0 − (1/2) for the double well potential (left). The blue/green lines represent the first

orders of perturbation theory. As the order increases, the curve gets more green. The dots represent

the numerical values. A similar graph (except for the colors) for P in SU(3) is shown on the right.

unlike the scalar case, the weak coupling (large β) is now displayed on the right of the figure.

Appropriate field cuts can restore the instanton effects in the perturbative series [2]. This is

illustrated in Fig. 7 where the modified series allows us to go above the instanton envelope.
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FIG. 6: Significant digits for succesive orders in perturbation theory corresponding to the cases

displayed in Fig. 5. For the double-well (left), the significant digits are bounded by the instanton

effect δE0 = 1
g
√
π
exp(− 1

6g2 ) (red curve).
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FIG. 7: Significant digits of E0−(1/2) for the double well potential. The blue/green lines represent

the first orders of perturbation theory as in Fig. 6. The purple lines represent the accuracy for a

perturbative series calculated with a cut.

We expect to be able to achieve similar results for SU(3). In particular, we expect to be

able to use the strong coupling expansion to obtain an optimal choice of field cut, since the

validity of this expansion seems to extend close to the scaling window. Fig. 8 indicates that

the radius of convergence of the strong coupling expansion is between 4 and 6 for β. This

series was calculated using the expansion of the free energy of Ref. [9].
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FIG. 8: Logarithm of the absolute value of the coefficients of the strong coupling expansion of P .

The two linear fits done with different subsets of points, correspond to a radius of convergence of

4.45 and 5.71 repectively

VI. WORK IN PROGRESS AND RECENT DEVELOPMENTS

At the time of the workshop, we presented results related to the questions discussed

below. Since our understanding has evolved in the meantime, we will give a brief summary

and refer to recent preprints for more details.

A. Field cuts in LGT

We have attempted to follow the same procedure as for the scalar models, for gauge

models using the Landau gauge where 1 − (1/N)ReTrUlink should play a role analogous

to φ2 in scalar models. We found correlations between the lattice average of this quantity

and the average action. However, we found no correlations between the average and the

maximum value. These results are explained in more detail in the Proceedings of Lattice

2004 [1]. The lack of correlation is due to the imperfect way the Landau gauge condidtion

is implemented numerically. This is being remedied [10].
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B. Gluodynamics at negative g2

We considered Wilson’s SU(N) lattice gauge theory (without fermions) at negative values

of β = 2N/g2 and for N=2 or 3. We showed that in the limit β → −∞, the path integral is

dominated by configurations where links variables are set to a nontrivial element of the center

on selected non intersecting lines. For N = 2, these configurations can be characterized by

a unique gauge invariant set of variables, while for N = 3 a multiplicity growing with the

volume as the number of configurations of an Ising model is observed. In general, there is a

discontinuity in the average plaquette when g2 changes its sign which prevents us from having

a convergent series in g2 for this quantity. For N = 2, a change of variables relates the gauge

invariant observables at positive and negative values of β. For N = 3, we derived an identity

relating the observables at β with those at β rotated by ±2π/3 in the complex plane and

showed numerical evidence for a Ising like first order phase transition near β = −22. So far

we see no obvious connections to the known singularities [11]. These results are discussed in

more detail in a recent preprint [12]. For another approach of problems at negative coupling

see Ref. [13].

C. A possible third order phase transition in 4D gluodynamics

We revisited the question of the convergence of lattice perturbation theory for a pure

SU(3) lattice gauge theory in 4 dimensions. Using the most recent calculation of the weak

coupling expansion of the plaquette average, we showed that the extrapolated ratio and

the extrapolated slope suggest a nonanalytical power behavior at β = 6/g2 ≃ 5.7 with an

exponent γ ≃ −1.1 in agreement with an existing analysis [14]. We found indications for a

possible singularity in the third derivative of the free energy on 64 and 84 lattices. As the

lattice size increases, the statistical errors become large and a significantly larger number

of independent configurations is needed in order to draw definite conclusions. This will be

discussed in a forthcoming preprint [10].

D. A proposal for a “perfect” field cut in Lattice gauge perturbation theory

We considered the effects of a field cutoff on the weak coupling series of a one plaquette

SU(2) lattice gauge theory. It possible to pick a the (perfect) field cutoff in such a way that
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the series converges toward the correct answer. We are considering the implementation of

the method with a Langevin equation and its extension for four dimensional lattice gauge

theory. This will be discussed in a forthcoming preprint [10].
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