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In compact QED

2+1

quantum monopole uctuations induce con�nement by expelling electric ux in a dual

Meissner e�ect. Guided by Landau-Ginzburg theory, one might guess that the inverse London penetration depth

�

�1

|the only physical mass scale|equals the photon propagator mass pole M



. I show this is not true. Indeed,

in the Villain approximation the monopole part of the partition function factorizes from the photon part, whose

dynamical variables are Dirac strings. Since Dirac strings are gauge-variant structures, I conclude that M



is

physically irrelevant: it is not a blood relative of � or any other quantity in the gauge-invariant sector. This result

is con�rmed by numerical simulations in the full theory, where M



is not sensitive to monopole prohibition but

essentially vanishes if Dirac strings are prohibited.

1. The Issue

In the semiclassical superconducting model of

the QCD vacuum [1], in which electric ux is re-

stricted to Abrikosov tubes of width �, the in-

verse London penetration depth �

�1

is the mass

of an e�ective gauge potential A

e�

�

. Recent cal-

culations of � [2] and, independently, of gluon A

�

propagator mass poles M in LGT(lattice gauge

theory) [3] present the question: How, if at all,

is A

e�

�

related to A

�

and � to M? In this talk I

demonstrate in cQED

2+1

(compact QED in 2+ 1

dimensions), a QCD-like LGT, that the physi-

cally relevant quantities A

e�

�

and � are unrelated

to A

�

and M , which are unphysical.

2. Monopoles and Dirac Strings

In noncompact QED, the photon is an un-

bounded real �eld a

�

2 (�1;1) and the action

2

S

0

=

�

4

P

�;�

f

2

��

where f

��

� @

�

a

�

� @

�

a

�

is

gauge-invariant under �a

�

= �@

�

!

x

. Since S

0

is

gaussian, the nonperturbative photon mass M



vanishes because Maxwell equation @

�

�

f

��

= 0 in

Landau gauge implies 2a

�

= 0.

Nothing is wrong with noncompact QED ex-

cept that S

0

does not have natural nonabelian

extensions. The U (1) LGT corresponding to lat-

tice QCD is cQED. Links U

�

� e

�i�

�

in cQED

�
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I will ignore topological gauge transformations.

depend only on the photon A

�

part of

�

�

� A

�

+ 2�n

�

� � � A

�

< � : (1)

A

�

is the lattice photon whose nonperturbative

propagator mass M



is of concern. cQED

2+1

has

local gauge invariance, chiral symmetry breaking,

and area-law electron con�nement induced by

quantum monopole percolation [1]. cQED pho-

tons are uncharged but they su�er con�nement

since, heuristically, the \adjoint" Wilson loop

obeys h

Q

l2 loop

sin �

l

i / Re h

Q

l2 loop

e

i�

l

i where

cross terms are suppressed by gauge invariance.

Therefore electron con�nement implies photon

con�nement and cQED photons, like QCD glu-

ons, are con�ned.

The cQED action is S

c

� �

P

�<�

�

1� cosF

��

�

where the plaquette angle is

F

��

� @

�

A

�

� @

�

A

�

: (2)

S

c

is invariant under local gauge transformation

��

�

� �@

�

!

x

; (3)

�A

�

�

�

A

�

� @

�

!

x

�

Mod[��; �)�A

�

: (4)

While plaquette exp(iF

��

) is gauge-invariant, a

gauge transformation inducing unequal shifts of

n

�

on the four links of F

��

shifts F

��

by a 2�

multiple. F

��

decomposes into a gauge-invariant

physical part �

��

2 [��; �) and a gauge-variant

integral kink N

��

2 Z such that

F

��

� (� + 2�N )

��

; (5)

�F

��

= 2��N

��

= @

�

(�� � �A)

�

� (�$ �): (6)
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The key feature of S

c

is cosF

��

= cos�

��

,

required by gauge invariance as N

��

is locally

gauge-variant. While any single N

��

can be

gauged away, spatial combinations of them form

gauge-invariant structures which inuence �

��

.

To see how this works, decompose according to

the Hodge-DeRham theorem

�

��

= �

���

@

�

�

�+ @

�

�

�

� @

�

�

�

; (7)

N

��

= �

���

@

�

�

m+ @

�

l

�

� @

�

l

�

(8)

where �; �

�

2 (�1;1) and m; l

�

2 Z. � and

m are invariant under (3), �

�

transforms like �

�

,

and l

�

like (A��)

�

=2�. �

��

(and similarlyN

��

)

has 3 independent polarizations while � and �

�

are 4 functions because �

��

is invariant under

��

�

= �@

�

!

x

.

In vector notation Eq. (5) becomes

~

B =

~

H + 2�~� (9)

where the total

~

B and physical

~

H mag-

netic(actually electromagnetic) �elds are

~

B � r�

~

A;

~

H � r�+r� ~�: (10)

It will be advantageous to recast Dirac string �eld

~� = rm+r�

~

l (11)

in terms of its divergence and curl

q � r � ~� = 2m; (12)

~� � r� ~� = r(r �

~

l) �2

~

l: (13)

Since r �

~

B = 0 by (10), r �

~

H = �2�q,

that is, q causes dislocations in the physical �eld

~

H. For example, let s(t) be the step func-

tion. A monopole at the origin attached to

a string along the positive

^

t-axis corresponds

to �

�

= �

�;0

�

x;0

�

y;0

s(t), q

x

= �

x;0

�

y;0

�

t;0

and

~� = (�

0

x;0

�

y;0

ŷ � �

x;0

�

0

y;0

x̂)s(t). By tautology, q is

the magnetic monopole density, gauge invariant

since m is gauge invariant. In contrast ~�, a contin-

uous current wrapping around ~�, is gauge-variant.

In general, kinks occur either in monopoles,

Dirac strings connecting a monopole anti-

monopole pair, or Dirac string loops. Loops

can either be homologically trivial or toroidally

wind around the periodic boundaries.

3

Monopole

charge density q is gauge-invariant but the num-

ber of string loops and the length and shape of

all strings vary with gauge. Segments of string ~�

are characterized by ~� = r� ~�, continuous ows

winding around ~�.

3. Di�erence Between

~

A

e�

and

~

A

Upon adopting a condition such as r �

~

l = 0

and ignoring Laplacian zero modes, Eqs. (5)-(13)

constitute 1-to-1 variables changes

fNg ! fm;

~

lg ! fq; ~�g ! f�; ~�g (14)

where, if 2�

x;y

= ��

x;y

, @

�

�

�

��

= 0, and

2�

��

x;y

= ��

�;�

�

x;y

, then

� = 2�

Z

y

�

x;y

q

y

; �

�

=

~

A

�

� 2�

Z

y

�

��

x;y

~�

�y

: (15)

In Villain's periodic gaussian approximation

4

S

c

! S

V

c

where following (5) and (7)

Z

c

�

Z

A

e

�S

V

c

�

X

fNg

Z

A

e

�

�

4

P

x

(F [A]�2�N)

2

(16)

=

X

fq;

~

lg

Z

A

e

�

�

4

P

x

F

2

[A�2�l]+2(r�)

2

(17)

= Z

m

[0]� Z

Al

[0]; (18)

Z

m

[�] �

X

fqg

e

P

x

�

x

q

x

�2�

2

�

P

x;y

q

x

�(x�y)q

y

; (19)

Z

Al

[0] =

Z

�

e

�

�

4

P

x

F

2

[�]

; �

�

2 (�1;1): (20)

The sum over fNg in (16) maintains gauge in-

variance under (6). (18) follows from

X

x

�

���

F

��

@

�

�

� = �

X

x

� �

���

@

�

F

��

= 0; (21)

(19) from (15), and (20), which says ~� is a mass-

less noncompact photon, from calculus identity

3

While my numerical gauge con�gurations have many

string loops, I have found no homologicallynontrivial ones.

4

I will employ shorthand such as

F

��

[�] � @

�

�

�

� (� $ �), F �G �

P

�;�

F

��

G

��

and

P

fNg

�

Q

�;�

P

1

N

��

=�1

�(�N

��

;N

��

).

2



P

1

l=�1

R

�

A=��

h(A � 2�l) =

R

1

�=�1

h(�).

Eq. (18) also relies on the quadratic character of

the Villain approximation; keeping O(�

4

) terms

in the cos�

��

's of S

c

would destroy factorization.

Let us make contact with A

e�

�

. Following

Polyakov [1] the dilute gas expansion and occu-

pation number resummation over q 2 f0;�1g of

Z

m

in (19) yields

Z

m

[�] /

Z

�

e

�

1

4�

2

�

P

x

(r(���))

2

�2�

�2

cos�

(22)

where �

2

= 2�

2

�e

�2�

2

��(0)

. Dummy scalar � is

semiclassically identi�ed with � in (7) via (15)

because

P

x

�

x

q

x

=

P

x;y

r� � r ��

x;y

q

y

. Com-

paring (19) to (22) implies for � ! 0

X

y

r ��

x;y

hq

y

i

m

=

1

Z

m

�Z

m

�r�

=

hr�i

�

2�

2

�

(23)

where h i

S

refers to the expectation associated

with partition function Z

S

. Hence with

~

V � r�

~�,

hr �

~

Hi

Alm

= �2�hqi

m

= 0; (24)

h

~

H

y

~

H

x

i

Alm

= h

~

V

y

~

V

x

i

Al

+

4�

2

Z

m

�

2

Z

m

�r�

y

�r�

x

: (25)

If �=� << 1, (24) and (25) are reproduced by an

M



= �

�1

free photon

~

A

e�

with

~

H

e�

� r�

~

A

e�

,

that is,

r �

~

H

e�

= 0; h

~

H

e�

y

~

H

e�

x

i

e�

� h

~

H

y

~

H

x

i

Alm

: (26)

The second relation in (26) relies on masslessness

of ~� in (25), shown in (20), and cos �!��

2

=2 in

(22).

~

A

e�

is the massive Landau-Ginzburg pho-

ton and � the London penetration depth.

The

~

A propagator is generated by Z

Al

[J ], de-

�ned by adding J �A to the action in (17), which

does not a�ect factorization result (18). Thus the

~

A mass M



has nothing to do with monopoles

q and, hence, nothing to do with

~

A

e�

or �. In

contrast to the mass of ~�, M



may be nonzero

since J � A breaks the pure ~�-dependent form of

Z

Al

[0]. Manipulations like those leading to (19)

yield Z

Al

[J ] =

Z

A

X

f~�g

e

P

x

(J+���)�A�

�

4

F

2

��

2

�

P

y

�����

: (27)

Figure 1. �M



in �ve QED

2+1

variations.

Summing f~�g is equivalent to summing Dirac

string con�gurations. In Landau gauge r � ~� = 0

and Z

Al

is the partition function of a Coulombic

~� loop gas. Interestingly ~� is a mixed state in the

gas since for M



to be nonzero

Z

y;y

0

�

��

x;y

�

��

0;y

0

h�

y;�

�

y

0

;�

i

~�

(28)

must have a negative norm massless mode to can-

cel the � pole and an independent M



mode.

In conclusion the

~

A propagator decouples from

monopoles q in the Villain approximation and, ac-

cordingly,M



is independent of the London pen-

etration depth. Numerical experiments described

in Section 4 support this result in full cQED.

4. Numerical Experiments

Figure 1 shows that Landau gauge M



in

cQED(\A") is relatively insensitive to monopole

prohibition(\B") but dramatically reduced by

kink prohibition(\C" and \E"). Kinks are pro-

hibited either by inserting a delta function in the

link measure(\C") or by replacing cosF

��

in S

c

with � F

2

��

(\E"). The action for E is not invari-

3



ant under kink-creating gauge transformations,

which are also prohibited. Restoring the possibil-

ity of such gauge transformations during Landau

gauge�xing(\D") does not a�ect M



much. This

indicates that the kinks responsible for M



in A

are from the pre-gauge�xing con�gurations and

not speci�cally created during Landau gauge�x-

ing. (I suspect gauge�xing gives smaller string

loops than those responsible for the bulk of M



.)

At � = 1:8 the kink number density for cases A-E

are �

A

= :41(:01), �

C

� 0, �

D

= :23(:004), and

�

E

� 10

�5

. Since the � = 1:8 monopole num-

ber density is 8:0(1:1)10

�3

, forbidding monopoles

doesn't change the kink density and �

B

= �

A

.

� �M



in the Figure, a dimensionless number

in D = 2 + 1, is the log of the ratio of successive

~p = 0 photon propagator timeslices. The cen-

tral value of A is from 500 S

c

-based con�gura-

tions on 17

2

� 19 lattices. The �rst con�guration

is thermalized by 500 forty-hit, 40%-acceptance

Metropolis sweeps and 5000 checkerboard gauge-

�xing sweeps. Con�gurations thereafter are sep-

arated by 5 forty-hit Metropolis sweeps and 5000

checkerboard gauge�xing sweeps. Errors are jack-

knife sigmas based on 10 450-con�guration sub-

averages. Con�gurations 1� 50 are omitted from

the �rst subaverage, 51�100 from the second, � � �.

The numerical photon operator and gauge condi-

tion are S

�

� sinA

�

and @

�

�

S

�

= 0. S

�

corre-

sponds to the gluon operator used in QCD simu-

lations [3]. Since sinA

�

= sin(� �A

�

), S

�

leaves

A

�

ambiguous in reections about ��=2.

B, Landau gauge cQED with monopoles q pro-

hibited, refers to con�gurations generated ac-

cording to S

c

with the insertion of delta func-

tion

Q

fxg

�

q;0

into the link measure. This is

implemented starting with the �

�

= 0 con�g-

uration and linkwise forbidding updates which

create monopoles. Landau gauge�xing, which

cannot change q, proceeds normally. C refers

to S

c

con�gurations with the insertion of kink-

forbidding delta function

Q

fNg

�

N;0

into the mea-

sure. This insertion a�ects Landau gauge�xing by

forbidding kink-creating gauge transformations.

Due to this restriction, a good Landau gauge is

not achieved but the photon propagator signal is

strong. The tiny residual mass is due to O(�

4

��

)

terms in S

c

which ruin factorization (18).

D and E are based on the action S

E

=

�

4

P

x

F

2

where (2) de�nes F

��

. Unlike S

c

, S

E

is invariant

only under gauge transformations which preserve

N

��

. E refers to S

E

con�gurations put as close

as possible to Landau gauge with kink-changing

gauge transformations forbidden. D refers to S

E

con�gurations �xed to Landau gauge by the full

set of cQED gauge transformations. From the S

E

standpoint D, corrupted by action-changing kink

creation and annihilation, is gauge inequivalent

to E. The di�erence between M



in D and E,

gauge equivalent from the S

c

viewpoint, indicates

how much kinks generated by the Landau gauge-

�xing algorithm contribute to M



.
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