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c Dipartimento di Fisica, Università di Lecce, Via Arnesano, 73100 Lecce, Italy
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We describe an exact Feynman-Kac type formula to represent the dynamics of fermionic lattice systems. In

this approach the real time or Euclidean time dynamics is expressed in terms of the stochastic evolution of a

collection of Poisson processes. From this formula we derive a family of algorithms for Monte Carlo simulations,

parametrized by the jump rates of the Poisson processes.

Quantum Monte Carlo methods are powerful
techniques for the numerical evaluation of the
properties of quantum lattice systems. In the case
of fermion systems [1–4] there are special features
connected with the anticommutativity of the vari-
ables involved. In a recent paper [5] progress
has been made by providing an exact probabilis-
tic representation for the dynamics of a Hubbard
model. Here we illustrate the basic formula while
for details we refer to [5].
Let us consider the Hubbard Hamiltonian

H = −

|Λ|
∑

i=1

|Λ|
∑

j=i+1

∑

σ=↑↓

ηij(c
†
iσcjσ + c

†
jσciσ)

+

|Λ|
∑

i=1

γi c
†
i↑ci↑ c

†
i↓ci↓, (1)

where Λ ⊂ Zd is a finite d-dimensional lattice
with cardinality |Λ|, {1, . . . , |Λ|} some total or-
dering of the lattice points, and ciσ the usual an-
ticommuting destruction operators at site i and
spin index σ. In this paper, we are interested in
evaluating the matrix elements 〈n′|e−Ht|n〉 where
n = (n1↑, n1↓, . . . , n|Λ|↑, n|Λ|↓) are the occupation
numbers taking the values 0 or 1. The total num-
ber of fermions per spin component is a conserved
quantity, therefore we consider only configura-

tions n and n
′ such that

∑|Λ|
i=1 n

′
iσ =

∑|Λ|
i=1 niσ

for σ =↑↓. In the following we shall use the mod
2 addition n⊕ n′ = (n+ n′) mod 2.
Let Γ = {(i, j), 1 ≤ i < j ≤ |Λ| : ηij 6= 0}

and |Γ| its cardinality. For simplicity, we will as-
sume that ηij = η if (i, j) ∈ Γ and γi = γ. By
introducing

λijσ(n) ≡ 〈n⊕ 1iσ ⊕ 1jσ |c
†
iσcjσ + c

†
jσciσ|n〉

= (−1)niσ+···+nj−1σ [njσ(niσ ⊕ 1)

−niσ(njσ ⊕ 1)] , (2)

where 1iσ = (0, . . . , 0, 1iσ, 0, . . . , 0), and

V (n) ≡ 〈n|H |n〉 = γ

|Λ|
∑

i=1

ni↑ni↓, (3)

the following representation holds

〈n′|e−Ht|n〉 = E
(

δn′,n⊕NtMt
)

(4)

Mt = exp

{

∑

(i,j)∈Γ

∑

σ=↑↓

∫

[0,t)

log
[

ηρ−1

× λijσ(n⊕N
s)] dNs

ijσ

−

∫ t

0

V (n⊕N
s)ds+ 2|Γ|ρt

}

. (5)

Here, {N t
ijσ}, (i, j) ∈ Γ, is a family of 2|Γ| in-

dependent Poisson processes with parameter ρ
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and N
t = (N t

1↑, N
t
1↓, . . . , N

t
|Λ|↑, N

t
|Λ|↓) are 2|Λ|

stochastic processes defined as

N t
kσ =

∑

(i,j)∈Γ: i=k or j=k

N t
ijσ . (6)

We remind that a Poisson process N t with pa-
rameter ρ is a jump process characterized by the
following probabilities:

P
(

N t+s −N t = k
)

=
(ρs)k

k!
e−ρs. (7)

Its trajectories are piecewise-constant increasing
integer-valued functions continuous from the left.
The stochastic integral

∫

dN t is just an ordinary
Stieltjes integral
∫

[0,t)

f(s,Ns)dNs =
∑

k: sk<t

f(sk, N
sk),

where sk are random jump times having proba-
bility density p(s) = ρe−ρs. Finally, the symbol
E(. . .) is the expectation of the stochastic func-
tional within braces. We emphasize that a similar
representation holds for the real time matrix ele-
ments 〈n′|e−iHt|n〉.

Summarizing, we associate to each ηij 6= 0 a
link connecting the sites i and j and assign to it a
pair of Poisson processes N t

ijσ with σ =↑↓. Then,
we assign to each site i and spin component σ

a stochastic process N t
iσ which is the sum of all

the processes associated with the links incoming
at that site and having the same spin component.
A jump in the link process N t

ijσ implies a jump in
both the site processes N t

iσ and N t
jσ. Equations

(4) and (5) are immediately generalizable to non
identical parameters ηij and γi. In this case, it
may be convenient to use Poisson processes N t

ijσ

with different parameters ρijσ .
In order to construct an efficient algorithm for

evaluating (4-5), we start by observing that the
functions λijσ(n ⊕N

s) vanish when the occupa-
tion numbers niσ ⊕Ns

iσ and njσ ⊕Ns
jσ are equal.

We say that for a given value of σ the link ij is
active at time s if λijσ(n⊕N

s) 6= 0. We shall see
in a moment that only active links are relevant.
Let us consider how the stochastic integral in (5)
builds up along a trajectory defined by consider-
ing the time ordered succession of jumps in the

family {N t
ijσ}. The contribution to the stochastic

integral in the exponent of (5) at the first jump
time of a link, for definiteness suppose that the
link i1j1 with spin component σ1 jumps first at
time s1, is

log
[

ηρ−1λi1j1σ1
(n⊕N

s1)
]

θ(t− s1),

where N
s1 = 0 due the assumed left continuity.

Therefore, if the link i1j1σ1 was active at time
0 we obtain a finite contribution to the stochas-
tic integral otherwise we obtain −∞. If s1 ≥ t

we have no contribution to the stochastic inte-
gral from this trajectory. If s1 < t a second jump
of a link, suppose i2j2 with spin component σ2,
can take place at time s2 > s1 and we obtain a
contribution

log
[

ηρ−1λi2j2σ2
(n⊕N

s2)
]

θ(t− s2).

The analysis can be repeated by considering an
arbitrary number of jumps. Of course, when the
stochastic integral is −∞, which is the case when
some λ = 0, there is no contribution to the expec-
tation. The other integral in (5) is an ordinary
integral of a piecewise constant bounded function.
We now describe the algorithm. The only tra-

jectories to be considered are those associated to
jumps of the active links. This guarantees con-
servation of the total number of fermions per
spin component. The active links can be de-
termined after each jump by inspecting the oc-
cupation numbers of the sites in the set Γ ac-
cording to the rule that the link ij is active for
the spin component σ if niσ + njσ = 1. We
start by determining the active links in the ini-
tial configuration n assigned at time 0 and make
an extraction with uniform distribution to de-
cide which of them jumps first. We then extract
the jump time s1 according to the probability
density pA1

(s) = A1ρ exp(−A1ρs) where A1 is
the number of active links before the first jump
takes place. The contribution to Mt at the time
of the first jump is therefore, up to the factor
exp (−2|Γ|ρt),

ηρ−1λi1j1σ1
(n⊕N

s1)e−V (n⊕N
s1)s1

×e−(2|Γ|−A1)ρs1θ(t− s1)

+e−V (n⊕N
t)te−(2|Γ|−A1)ρt θ(s1 − t),
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where exp[−(2|Γ|−A1)ρs] is the probability that
the 2|Γ| − A1 non active links do not jump in
the time interval s. The contribution of a given
trajectory is obtained by multiplying the factors
corresponding to the different jumps until the last
jump takes place later than t. For a given trajec-
tory we thus have

Mt =
∏

k≥1

[

ηρ−1λikjkσk
(n⊕N

sk)

×e[Akρ−V (n⊕N
sk )](sk−sk−1) θ(t− sk)

+e[Akρ−V (n⊕N
t)](t−sk−1) θ(sk − t)

]

. (8)

Here, Ak = A(n ⊕ N
sk) is the number of ac-

tive links in the interval (sk−1, sk] and s0 =
0. Note that the exponentially increasing factor
exp (2|Γ|ρt) in (5) cancels out in the final expres-
sion of Mt. The analogous expression of Mt for
real times is simply obtained by replacing η → iη

and γ → iγ. The algorithm can be improved by
the usual methods of reconfiguration and impor-
tance sampling.
In principle, the algorithms parametrized by ρ

are all equivalent as (4-5) holds for any choice
of the Poisson rates. However, since we estimate
the expectation values with a finite number of
trajectories, this may introduce a systematic er-
ror. It can be shown that the best performance
is obtained for the natural choice ρ ∼ η indepen-
dently of the interaction strength. In this case
our algorithm coincides with the Green function
Monte Carlo method in the limit when the latter
becomes exact as discussed in [5].
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