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We study the strongly coupled 2-flavor lattice Schwinger model and the SU(2)-color QCD2. The strong coupling
limit, even with its inherent nonuniversality, makes accurate predictions of the spectrum of the continuum models
and provides an intuitive picture of the gauge theory vacuum. The massive excitations of the gauge model are
computable in terms of spin-spin correlators of the quantum Heisenberg antiferromagnetic spin-1/2 chain.

1. Introduction

It is by now well known that, for lattice gauge
theories, features of the strong coupling limit have
analogs in quantum spin systems. In many cases,
the problem of finding the vacuum of the strongly
coupled lattice gauge theory is equivalent to find-
ing the ground state of a generalized quantum
antiferromagnet [1].
Strong coupling limits of gauge theories are

highly non-universal: there are many choices of
strong coupling theory which produce identical
continuum physics. In spite of this difficulty,
there exist strong coupling computations which
claim some degree of success [2]. In this contri-
bution we review the results of the ground state
and of the spectrum of the strongly coupled 2-
flavor lattice Schwinger model and of SU(2)-color
QCD2.
We find that in order to determine the strong

coupling vacuum, one has to solve for the ground
state of the Heisenberg antiferromagnetic spin
chain, and that relevant quantities in the strong
coupling expansion can be expressed in terms of
spin-spin correlators of the quantum antiferro-
magnet.

2. The 2-flavor Schwinger model

The Hamiltonian and gauge constraint of the
continuum 2-flavor Schwinger model are

H =

∫

dx[
e2

2
E2(x)+ψ†

a(x)α (i∂x + eA(x))ψa(x)] (1)
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∂xE(x) + ψ†
a(x)ψa(x) ∼ 0 (2)

with the flavor index a taking the values 1, 2;
there is summation over repeated indices. A lat-
tice Hamiltonian reducing to (1) in the naive con-
tinuum limit is H = H0 + ǫHh with

H0 =

N
∑

x=1

E2
x (3)

Hh = −i(R− L) (4)

and ǫ = t/e2a2. In Eq.(4) the right R and left L
hopping operators (L = R†) are

R =
N
∑

x=1

Rx =
N
∑

x=1

2
∑

a=1

R(a)
x =

N
∑

x=1

2
∑

a=1

ψ†
a,x+1e

iAψa,x .

The lattice Gauss law constraint is given by

Ex − Ex−1 + ψ†
1,xψ1,x + ψ†

2,xψ2,x − 1 ∼ 0 , (5)

where the properly defined charge density reads
ρ(x) = ψ†

1,xψ1,x + ψ†
2,xψ2,x − 1 and vanishes on

every site occupied by only one particle.
In a strong coupling perturbative expansionH0

is the unperturbed Hamiltonian and Hh the per-
turbation; the ground state ofH0 is highly degen-
erate since each state with one particle per site
has zero energy [2]. There are 2N states of this
type. First order perturbations to the vacuum
energy vanish. The leading term in the vacuum
energy is of order ǫ2

E
(2)
0 =< H†

h

Π

E
(0)
0 −H0

Hh > , (6)
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where the expectation values are defined on the
degenerate subspace and Π is a projection op-
erator orthogonal to the set of states with one
particle per site. Since the charge density on
the ground states of H0 vanishes, one has that
[H0, Hh] = Hh holds on any linear combination
of the degenerate ground states. Consequently,
from Eq.(6), one finds

E
(2)
0 = −2 < RL > . (7)

Introducing the Schwinger spin operators ~Sx =
ψ†
a,x

~σab

2 ψb,x and taking into account that the

Heisenberg Hamiltonian is HJ =
∑N

x=1(
~Sx ·

~Sx+1 −
1
4 ), on the degenerate subspace one has

< HJ >=<
N
∑

x=1

(−
1

2
LxRx) > , (8)

so that

E
(2)
0 = 4 < HJ > . (9)

Finding the correct ground state amounts to the
diagonalization of the Heisenberg spin Hamilto-
nian which is exactly diagonalizable in one di-
mension [3]. On a given site, the presence of a
flavor 1 particle can be represented, in the spin
model, by the presence of a spin up, a flavor 2 par-
ticle by the presence of a spin down. The number
of the HJ eigenstates is 2N . Among these, the
spin singlet with lowest energy is the non degen-
erate ground state |g.s. >. Translational invari-
ance of |g.s. > amounts to the invariance of the
gauge theory under the discrete chiral symmetry.
The eigenvalue of the Heisenberg Hamiltonian on
this state in the thermodynamic limit is given by
HJ |g.s. >= (−N ln 2)|g.s. >: due to Eq.(9) the
second order correction to the vacuum energy is

E
(2)
g.s. = −4N ln 2.
There are two different types of excitations

which can be created from |g.s. >. Those that
involve only spin flipping and those that involve
fermion transport besides spin flipping. The exci-
tations of the first type have lower energy since no
electric flux is created, those of the second type
have a higher energy. The lowest energy ones oc-
cur when the fermion is transported a minimal
distance, since the energy is proportional to the

coupling times the length of the electric flux that
is created. Only the first type of excitations can
be described in terms of the Heisenberg model
excited states.
In Ref[2] we showed that it is possible to iden-

tify the low lying excitations of the Schwinger
model with those of the Heisenberg model and
that the mass gaps of any other excitation can be
expressed as functions of v.e.v.’s of powers of HJ

and spin-spin correlation functions. We refer to
[2] for a detailed analysis of the spectrum and of
the chiral symmetry breaking pattern.

3. The 2-color QCD2

The Hamiltonian and gauge constraint of the
continuum SU(2) color QCD2 are

H =

∫

dx[
e2

2
Ea(x)2 − iψ†

j (x)α∂xψj(x)

−
g

2
Aa(x)ψ†

j (x)ασ
a
jkψk(x)]

∂xE
a(x) + ǫabcEb(x)Ac(x) +

1

2
ψj(x)

†σa
jkψk(x) ∼ 0

with a, b, c = 1, 2, 3, j, k = 1, 2; there is summa-
tion over repeated indices. The lattice Hamilto-
nian is H = H0 + ǫHh with

H0 =

N
∑

x=1

3
∑

a=1

(Ea
x)

2 , Hh = −i(R− L) (10)

and ǫ = t/g2a2. In Eq.(10) the right R and left
L hopping operators (L = R†) are

R =
N
∑

x=1

Rx =
N
∑

x=1

2
∑

j,k=1

ψ†
j,x+1(e

i
~σ·

~Ax

2 )jkψk,x (11)

The lattice Gauss law constraint reads

Ea
x − e−i

~σ·
~Ax−1

2 Ea
x−1e

i
~σ·

~Ax−1

2 + ψ†
j,x

σa
jk

2
ψk,x ∼ 0 ,

and the charge density is given by ρx = ψ†
1,xψ1,x+

ψ†
2,xψ2,x − 1.
The ground state of H0 is highly degenerate

and the degeneracy equals 2N since each site is ei-
ther empty or occupied by two particles in a color
singlet. First order perturbations to the vacuum
energy vanish and the leading term of the vacuum
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energy is of order ǫ2 and it is given by Eq.(6) with
H0 and Hh obtained from Eqs.(10,10) and Π is
the projection operator orthogonal to the degen-
eracy subspace.
If one denotes by C2 the quadratic Casimir

in the fundamental representation of SU(2), the
equation [H0, Hh] = C2Hh holds on any linear
combination of the degenerate ground states. Fol-
lowing the same steps of section 2 and taking into
account that the Schwinger spin operator is now

given by ~Sx = Ψ†
x
~σ
2Ψx where Ψ =

(

ψ1

ψ†
2

)

, one

gets

E
(2)
0 =

4

C2
〈HJ 〉 =

16

3
〈HJ〉 (12)

since C2 = 3/4.
There are again two types of excitations created

from the ground state: those involving only spin
flipping (baryons) and those involving fermion
transport besides spin flipping (mesons). Of
course, the ones which do not involve charge
transport have lower energy than the others.
As we shall see shortly, the meson masses are
computable in terms of spin-spin correlators of
the Heisenberg Hamiltonian while baryons are
the massless spinons of the spin-1/2 Heisenberg
Hamiltonian.
The lowest lying massive excitations are a

pseudoscalar and a scalar meson created by the
Fourier transform of the conserved gauge invari-
ant currents at zero momentum

∑

x j1(x) = R+L
and

∑

x j5(x) = R− L, respectively; namely,

|P 〉 = (R + L)|g.s.〉 , |S〉 = (R − L)|g.s.〉 .(13)

At the zero-th order they are degenerate, but the
degeneracy is removed at the second order in the
strong coupling expansion. The mass of these ex-
citations is obtained by computing their energies
and by subtracting the ground state energy. Up
to the second order in ǫ, the mass of the state |P 〉
is given by [4]

mP = g2a
2 (34 − ǫ2

20〈
∑

N

x=1

~Sx·~Sx+2−
1
4
〉+16〈HJ 〉

3N+3〈HJ 〉
)

= g2a
2 (34 + ǫ254.10) , (14)

whereas the one of the scalar meson |S〉 is

mS = g2a
2 (34 − ǫ2

32〈
∑

N

x=1

~Sx·~Sx+2−
1
4
〉−128〈HJ〉

2〈HJ 〉
)

= g2a
2 (34 + ǫ262.43) . (15)

4. Concluding remarks

We have shown how, in the strong coupling
limit, all the massive low lying excitations of some
gauge models can be computed in terms of spin-
spin correlators of the Heisenberg model and that
the massless excitations correspond to the spinons
of the quantum antiferromagnet. As evidenced in
[5], the explicit evaluation of the pertinent spin-
spin correlators is far from being trivial and thus
evaluating the spectrum in higher orders of strong
coupling perturbative expansion may be quite in-
volved. It is comforting to observe that, already
at the second order in the strong coupling expan-
sion, one gets results in satisfactory agreement
with the continuum theory [2]. For the SU(2)-
color QCD2, setting t = 1, one gets mP = 1.093,
which is 37% higher than the result obtained in [6]
in the continuum for Nc = 2 and is consistent
with the lattice numerical calculations of ref.[7].
For mS one gets mS = 1.133, this mass has not
been computed in the continuum.
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