
ar
X

iv
:h

ep
-l

at
/9

91
00

45
v3

 1
6

Ju
l 2

00
0

A Lanczos approach to the inverse square

root of a large and sparse matrix

Artan Boriçi

Paul Scherrer Institute

CH-5232 Villigen PSI

Artan.Borici@psi.ch

Abstract

I construct a Lanczos process on a large and sparse matrix and use the results of

this iteration to compute the inverse square root of the same matrix. The algorithm

is a stable version of an earlier proposal by the author. It can be used for problems

related to the matrix sign and polar decomposition. The application here comes

from the theory of chiral fermions on the lattice.

1 Introduction

The computation of the inverse square root of a matrix is a special problem in scientific

computing. It is related to the matrix sign and polar decomposition [1].

One may define the matrix sign by:

sign(A) = A(A2)−
1

2 (1)

where A is a complex matrix with no pure imaginary eigenvalues.

In polar coordinates, a complex number z = x+ i y, is represented by

z = |z| ei φ, φ = arctan
y

x
(2)

1

http://arxiv.org/abs/hep-lat/9910045v3

In analogy, the polar decomposition of a matrix A is defined by:

A = V (A†A)
1

2 , V −1 = V † (3)

where V is the polar part and the second factor corresponds to the absolute value of A.

The mathematical literature invloving the matrix sign function traces back to 1971

when it was used to solve the Lyapunov and algebraic Riccati equations [1].

In computational physics one may face a similar problem when dealing with Monte

Carlo simulations of fermion systems, the so-called sign problem [2]. In this case the

integration measure is proportional to the determinant of a matrix and the polar decom-

position may be helpful to monitor the sign of the determinant.

The example brought in this paper comes from the recent progress in formulating

Quantum Chromodynamics (QCD) on a lattice with exact chiral symmetry [3].

In continuum, the massless Dirac propagator Dcont is chirally symmetric, i.e.

γ5Dcont +Dcontγ5 = 0 (4)

On a regular lattice with spacing a the symmetry is suppressed according to the

Ginsparg-Wilson relation: [4]:

γ5D +Dγ5 = aDγ5D (5)

where D is the lattice Dirac operator.

An explicit example of a Dirac operator obeying this relation is the so-called overlap

operator [5]:

aD = 1−A(A†A)−1/2, A =M − aDW (6)

where M is a shift parameter in the range (0, 2), which I have fixed at one.

DW is the Wilson operator,

DW =
4∑

µ=1

γµ∇µ −
a

2

4∑
µ=1

∆µ (7)

2

which is a nearest-neighbors discretization of the continuum Dirac operator (it violates

the Ginsparg-Wilson relation). ∇µ and ∆µ are first and second order covariant differences

given by:

(∇µψ)i =
1
2a
(Uµ,iψi+µ̂ − U †

µ,i−µ̂ψi−µ̂)

(∆µψ)i =
1
a2
(Uµ,iψi+µ̂ + U †

µ,i−µ̂ψi−µ̂ − 2ψi)

where ψi is a fermion field at the lattice site i and Uµ,i an SU(3) lattice gauge filed

associated with the oriented link (i, i + µ̂). These are unitary 3 by 3 complex matrices

with determinant one. A set of such matrices forms a lattice gauge “configuration”.

γµ, µ = 1, . . . , 5 are 4× 4 Dirac matrices which anticommute with each-other.

Therefore, if there are N lattice points in four dimensions, the matrix A is of order

12N . A restive symmetry of the matrix A that comes from the continuum is the so called

γ5 − symmetry which is the Hermiticity of the γ5A operator.

By definition, computation of D involves the inverse square root of a matrix. This is

a non-trivial task for large matrices. Therefore several algorithms have been proposed by

lattice QCD physicists [6, 7, 8, 9, 10].

All these methods rely on matrix-vector multiplications with the sparse Wilson matrix

DW , being therefore feasible for large simulations.

In fact, methods that approximate the inverse square root by Legendre [6] and Cheby-

shev polynomials [7] need to know apriori the extreme eigenvalues of A†A to be effective.

This requires computational resources of at least one Conjugate Gradients (CG) inversion.

In [8] the inverse square root is approximated by a rational approximation, which

allows an efficient computation via a multi-shift CG iteration. Storage here may be an

obstacle which is remedied by a second CG step [11].

The Pade approximation used by [9] needs the knowledge of the smallest eigenvalue

of A†A. Therefore the method becomes effective only in connection with the D inversion

[12].

The method presented earlier by the author [10] relies on taking exactly the inverse

square root from the Ritz values. These are the roots of the Lanczos polynomial approx-

3

imating the inverse of A†A.

In that work the Lanczos polynomial was constructed by applying the Hermitian

operator γ5A. The latter is indefinite, thereby responsible for observed oscillations in the

residual vector norm [10].

Here I use a Lanczos polynomial on the positive definite matrix A†A. In this case the

residual vector norm decreases monotonically and leads to a stable method. This is a

crucial property that allows a reliable stopping criterion that I will present here.

The paper is selfcontained: in the next section I will briefly present the Lanczos

algorithm and set the notations. In section 3, I use the algorithm to solve linear systems,

and in section 4, the computation of the inverse square root is given. The method is

tested in section 5 and conclusions are drawn in the end.

2 The Lanczos Algorithm

The Lanczos iteration is known to approximate the spectrum of the underlying matrix in

an optimal way and, in particular, it can be used to solve linear systems [13].

Let Qn = [q1, . . . , qn] be the set of orthonormal vectors, such that

A†AQn = QnTn + βnqn+1(e
(n)
n)T , q1 = ρ1b, ρ1 = 1/||b||2 (8)

where Tn is a tridiagonal and symmetric matrix, b is an arbitrary vector, and βn a real

and positive constant. e
(n)
m denotes the unit vector with n elements in the direction m.

By writing down the above decomposition in terms of the vectors qi, i = 1, . . . , n and

the matrix elements of Tn, I arrive at a three term recurrence that allows to compute these

4

vectors in increasing order, starting from the vector q1. This is the LanczosAlgorithm:

β0 = 0, ρ1 = 1/||b||2, q0 = o, q1 = ρ1b

for i = 1, . . .

v = A†Aqi

αi = q†i v

v := v − qiαi − qi−1βi−1

βi = ||v||2

ifβi < tol, n = i, end for

qi+1 = v/βi

(9)

where tol is a tolerance which serves as a stopping condition.

The Lanczos Algorithm constructs a basis for the Krylov subspace [13]:

span{b, A†Ab, . . . , (A†A)n−1b} (10)

If the Algorithm stops after n steps, one says that the associated Krylov subspace is

invariant.

In the floating point arithmetic, there is a danger that once the Lanczos Algorithm

(polynomial) has approximated well some part of the spectrum, the iteration reproduces

vectors which are rich in that direction [13]. As a consequence, the orthogonality of the

Lanczos vectors is spoiled with an immediate impact on the history of the iteration: if

the algorithm would stop after n steps in exact arithmetic, in the presence of round off

errors the loss of orthogonality would keep the algorithm going on.

3 The Lanczos Algorithm for solving A†Ax = b

Here I will use this algorithm to solve linear systems, where the loss of orthogonality will

not play a role in the sense that I will use a different stopping condition.

I ask the solution in the form

x = Qnyn (11)

5

By projecting the original system on to the Krylov subspace I get:

Q†
nA

†Ax = Q†
nb (12)

By construction, I have

b = Qne
(n)
1 /ρ1, (13)

Substituting x = Qnyn and using (8), my task is now to solve the system

Tnyn = e
(n)
1 /ρ1 (14)

Therefore the solution is given by

x = QnT
−1
n e

(n)
1 /ρ1 (15)

This way using the Lanczos iteration one reduces the size of the matrix to be inverted.

Moreover, since Tn is tridiagonal, one can compute yn by short recurences.

If I define:

ri = b− A†Axi, qi = ρiri, x̃i = ρixi (16)

where i = 1, . . . , it is easy to show that

ρi+1βi + ρiαi + ρi−1βi−1 = 0

qi + x̃i+1βi + x̃iαi + x̃i−1βi−1 = 0
(17)

Therefore the solution can be updated recursively and I have the following Algorithm1

6

for solving the system A†Ax = b:

β0 = 0, ρ1 = 1/||b||2, q0 = o, q1 = ρ1b

for i = 1, . . .

v = A†Aqi

αi = q†i v

v := v − qiαi − qi−1βi−1

βi = ||v||2

qi+1 = v/βi

x̃i+1 = − qi+x̃iαi+x̃i−1βi−1

βi

ρi+1 = −ρiαi+ρi−1βi−1

βi

ri+1 := qi+1/ρi+1

xi+1 := yi+1/ρi+1

if 1
|ρi+1|

< tol, n = i, end for

(18)

4 The Lanczos Algorithm for solving (A†A)1/2x = b

Now I would like to compute x = (A†A)−1/2b and still use the Lanczos Algorithm. In

order to do so I make the following observations:

Let (A†A)−1/2 be expressed by a matrix-valued function, for example the integral

formula [1]:

(A†A)−1/2 =
2

π

∫ ∞

0

dt(t2 + A†A)−1 (19)

From the previous section, I use the Lanczos Algorithm to compute

(A†A)−1b = QnT
−1
n e

(n)
1 /ρ1 (20)

It is easy to show that the Lanczos Algorithm is shift-invariant. i.e. if the matrix

A†A is shifted by a constant say, t2, the Lanczos vectors remain invariant. Moreover, the

corresponding Lanczos matrix is shifted by the same amount.

This property allows one to solve the system (t2 + A†A)x = b by using the same

Lanczos iteration as before. Since the matrix (t2 +A†A) is better conditioned than A†A,

7

it can be concluded that once the original system is solved, the shifted one is solved too.

Therefore I have:

(t2 + A†A)−1b = Qn(t
2 + Tn)

−1e
(n)
1 /ρ1 (21)

Using the above integral formula and putting everything together, I get:

x = (A†A)−1/2b = QnT
−1/2
n e

(n)
1 /ρ1 (22)

There are some remarks to be made here:

a) As before, by applying the Lanczos iteration on A†A, the problem of computing

(A†A)−1/2b reduces to the problem of computing yn = T
−1/2
n e

(n)
1 /ρ1 which is typically a

much smaller problem than the original one. But since T
1/2
n is full, yn cannot be computed

by short recurences. It can be computed for example by using the full decomposition of

Tn in its eigenvalues and eigenvectors; in fact this is the method I have employed too, for

its compactness and the small overhead for moderate n.

b) The method is not optimal, as it would have been, if one would have applied it

directly for the matrix (A†A)1/2. By using A†A the condition is squared, and one looses

a factor of two compared to the theoretical case!

c) From the derivation above, it can be concluded that the system (A†A)1/2x = b is

solved at the same time as the system A†Ax = b.

d) To implement the result (22), I first construct the Lanczos matrix and then compute

yn = T−1/2
n e

(n)
1 /ρ1 (23)

To compute x = Qnyn, I repeat the Lanczos iteration. I save the scalar products, though

it is not necessary.

8

Therefore I have the following Algorithm2 for solving the system (A†A)1/2x = b:

β0 = 0, ρ1 = 1/||b||2, q0 = o, q1 = ρ1b

for i = 1, . . .

v = A†Aqi

αi = q†i v

v := v − qiαi − qi−1βi−1

βi = ||v||2

qi+1 = v/βi

ρi+1 = −ρiαi+ρi−1βi−1

βi

if 1
|ρi+1|

< tol, n = i, end for

Set (Tn)i,i = αi, (Tn)i+1,i = (Tn)i,i+1 = βi, otherwise (Tn)i,j = 0

yn = T
−1/2
n e

(n)
1 /ρ1 = UnΛ

−1/2
n UT

n e
(n)
1 /ρ1

q0 = o, q1 = ρ1b, x0 = o

for i = 1, . . . , n

xi = xi−1 + qiy
(i)
n

v = A†Aqi

v := v − qiαi − qi−1βi−1

qi+1 = v/βi

(24)

where by o I denote a vector with zero entries and Un,Λn the matrices of the eigenvectors

and eigenvalues of Tn. Note that there are only four large vectors necessary to store:

qi−1, qi, v, xi.

9

5 Testing the method

I propose a simple test: I solve the system A†Ax = b by applying twice the Algorithm2,

i.e. I solve the linear systems

(A†A)1/2z = b, (A†A)1/2x = z (25)

in the above order. For each approximation xi, I compute the residual vector

ri = b− A†Axi (26)

The method is tested for a SU(3) configuration at β = 6.0 on a 8316 lattice, corre-

sponding to an order 98304 complex matrix A.

In Fig.1 I show the norm of the residual vector decreasing monotonically. The stag-

nation of ||ri||2 for small values of tol may come from the accumulation of round off error

in the 64-bit precision arithmetic used here.

This example shows that the tolerance line is above the residual norm line, which

confirms the expectation that tol is a good stopping condition of the Algorithm2.

6 Conclusions

I have presented a Lanczos method to compute the inverse square root of a large and

sparse positive definite matrix.

The method is characterized by a residual vector norm that decreases monotonically

and a consistent stopping condition. This stability should be compared with a similar

method presented earlier by the author [10], where the underlying Hermitian but indefinite

matrix γ5A led to appreciable instabilities in the norm of the residual vector.

In terms of complexity this algorithm requires less operations for the same accuracy

than its indefinite matrix counterpart. This property is guaranteed by the monotonicity

of the residual vector norm. Nontheless, the bulk of the work remains the same.

With the improvement in store the method is complete.

10

It shares with methods presented in [8, 9] the same underlying Lanczos polynomial.

As it is wellknown [13] CG and Lanczos methods for solving a linear system produce

the same results in exact arithmetic. In fact, CG derives from the Lanczos algorithm

by solving the coupled two-term recurences of CG for a single three-term recurence of

Lanczos. However, the coupled two-term recurences of CG accumulate less round off.

This makes CG preferable for ill-conditioned problems.

There are two main differences between the method presented here and those in [8, 9]:

a) Since CG and Lanczos are equivalent, they produce the same Lanczos matrix.

Therefore, any function of A†A translates for both algorithms into a function of Tn (given

the basis of Lanczos vectors). The latter function translates into a function of the Ritz

values, the eigenvalues of Tn. That is, whenever the methods of papers [8, 9] try to

approximate the inverse square root of A†A, the underlying CG algorithm shifts this

function to the Ritz values. It is clear now that if I take the inverse square root from the

Ritz values exactly, I don’t have any approximation error. This is done in Algorithm2.

b) Algorithm2 sets no limits in the amount of memory required, whereas the multi-

shift CG needs to store as many vectors as the number of shifts. For high accuracy

approximations the multi-shift CG is not practical. However, one may lift this limit in

expense of a second CG iteration (two-step CG) [11]. Therefore Algorithm2 and the

two-step CG have the same iteration workload, with Algorithm2 computing exactly the

inverse square root.

Additionally, Algorithm2 requires the calculation of Ritz eigenpairs of Tn, which makes

for an overhead proportional to ∼ n2 when using the QR algorithm for the eigenvalues

and the inverse iteration for the eigenvectors [13]. Since the complexity of the Lanczos

algorithm is ∼ nN , the relative overhead is proportional to ∼ n/N . For moderate gauge

couplings and lattice sizes this is a small percentage.

I conclude that the algorithms of [8, 9] may be used in situations where a high accuracy

is not required and/or A is well-conditioned.

Experience with overlap fermions shows that high accuracy is often essential [7, 10].

In such situations the Algorithm2 is best suited.

11

References

[1] For a starting point and a thorough review of the problem see N. J. Higham, Proceed-

ings of ”Pure and Applied Linear Algebra: The New Generation”, Pensacola, March

1993.

[2] For example in simulating finite density QCD: P. Hasenfratz and F. Karsch, Phys.

Lett. B 125B (1983) 308 and the Hubbard model: D. J. Scalapino and R. L. Sugar,

Phys. Rev. Lett. 46 (1981) 519

[3] For a recent review see H. Neuberger, hep-lat/9909042

[4] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25 (1982) 2649.

[5] H. Neuberger, Phys. Lett. B 417 (1998) 141, Phys. Rev. D 57 (1998) 5417.

[6] B. Bunk, Nucl.Phys.Proc.Suppl. B63 (1998) 952.

[7] P. Hernandez, K. Jansen, and M. Lüscher, Nucl.Phys. B552 (1999) 363

[8] H. Neuberger, Phys. Rev. Lett. 81 (1998) 4060.

[9] R. G. Edwards, U. M. Heller and R. Narayanan, Nucl.Phys. B540 (1999) 457-471.

[10] A. Boriçi, Phys.Lett. B453 (1999) 46-53.

[11] H. Neuberger, Int.J.Mod.Phys. C10 (1999) 1051

[12] R. G. Edwards, U. M. Heller and R. Narayanan, Phys.Rev. D59 (1999) 094510

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins Uni-

versity Press, Baltimore, 1989. This is meant as a general reference with original

references included therein.

12

http://arxiv.org/abs/hep-lat/9909042

0 200 400 600 800 1000 1200 1400
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Ax multiplications

Tolerance level prescribed in the Algorithm2

Test of the Lanczos Algorithm for the Inverse Square Root: (A+A)−1/2 b

Norm of the residual ||b − A+A x||
2

Figure 1: The dots show the norm of the residual vector, whereas the line shows the

tolerance level set by tol in the Algorithm2.

13

