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Abstract

We discuss locality in the domain-wall QCD through the effective
four-dimensional Dirac operator which is defined by the transfer matrix
of the five-dimensional Wilson fermion. We first derive an integral rep-
resentation for the effective operator, using the inverse five-dimensional
Wilson-Dirac operator with the anti-periodic boundary condition in
the fifth direction. Exponential bounds are obtained from it for gauge
fields with small lattice field strength.
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1 Introduction

Locality properties of Neuberger’s lattice Dirac operator [1], which is derived
from the overlap formalism [2] and satisfies the Ginsparg-Wilson relation
[3], has been examined by Hernándes, Jansen and Lüscher [4]. For a certain
class of gauge fields with small lattice field strength, exponential bounds
have been proved rigorously on the kernels of the Dirac operator and its
differentiations with respect to the gauge field. These properties assure that
the index theorem holds true on the lattice [5, 2]. The index theorem implies
the topological properties of chiral anomalies. It plays the crucial role in
the recent construction of lattice chiral gauge theories [6, 7, 8, 9, 10, 11].
Numerical studies of the locality of Neuberger’s lattice Dirac operator are
also found in [4, 12].

The purpose of this paper is to argue the locality of the low energy
effective action of the domain-wall fermion [13, 14, 15] [16, 17] [18] [19]
[20, 21, 22] [23, 24] [25]. It has been known that the partition function of the
domain-wall fermion, in the anti-periodic subtraction scheme [18], reduces
to a single determinant of an effective four-dimensional Dirac operator [26],

D
(N)
eff =

1

2a

(
1 + γ5 tanh

N

2
a5H̃

)
. (1.1)

Here N and a5 denote the lattice size and the lattice spacing of the fifth
dimension, respectively. H̃ is defined through the transfer matrix of the
five-dimensional Wilson fermion

T = e−a5H̃ =

(
1
B − 1

BC
−C† 1

B B + C† 1
BC

)
, (1.2)

where 1

C = a5 σµ
1

2

(
∇µ +∇∗

µ

)
, (1.3)

B = 1 + a5

(
−a
2
∇µ∇∗

µ − m0

a

)
. (1.4)

The limit N → ∞ is defined well as long as H̃2 > 0. The effective Dirac
operator Eq. (1.1) then reduces to Neuberger’s lattice Dirac operator using
H̃,

Deff =
1

2a

(
1 + γ5

H̃√
H̃2

)
, (1.5)

1 In this expression, the positivity of B is required for the transfer matrix to be defined
consistently. It is assured when 0 < a5

a
m0 < 1 . It is also assumed that N is even.
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and turns out to satisfy the Ginsparg-Wilson relation.
Moreover, the propagator of the light fermion field which is introduced

by Furman and Shamir [15],

q(x) = ψL(x, 1) + ψR(x,N), q̄(x) = ψ̄L(x, 1) + ψ̄R(x,N), (1.6)

can be expressed in terms of the effective Dirac operator [27]:

〈q(x)q̄(y)〉 = a5
a4

(
1

a
D

(N)
eff

−1
− δ(x, y)

)
. (1.7)

The anomalous term in the axial Ward-Takahashi identity

X(N)(x) =
2

a5

{
ψ̄L(x,

N

2
+ 1)ψR(x,

N

2
)− ψ̄R(x,

N

2
)ψL(x,

N

2
+ 1)

}
(1.8)

can also be expressed with it:

a4
〈
X(N)(x)

〉
= trγ5 2

(
1− aD

(N)
eff

)
(x, x)

−tr

(
1

a
D

(N)
eff

−1
γ5

1

cosh2 N
2 a5H̃

)
(x, x). (1.9)

In the limit N → ∞, this reduces to the chiral anomaly associated with the
exact chiral symmetry [28, 29, 30, 31, 32, 33],

a4 〈X(x)〉 = trγ5 2 (1− aDeff) (x, x). (1.10)

It would have the topological properties, if the effective Dirac operator is
local and depends smoothly on the gauge fields.

In view of this direct relation,2 it seems reasonable to argue locality
in the domain-wall fermion approach through the locality properties of the
effective Dirac operators Eq. (1.1) and Eq. (1.5). It is expected that a
similar exponential bound could be established under certain conditions,
like the result obtained by Hernández, Jansen and Lüscher [4]. In our case,

2 In Eq. (1.7) the propagator of the boundary variables turns out to be chiral invariant
in the limit N → ∞ due to the negative contact term. In this respect, it is important to
note the contribution of massive modes (including the Pauli-Villars modes), which takes
account of the chiral anomaly in Eqs. (1.8) and (1.9) and fills the gap to the Ginsparg-
Wilson fermion [27]. Following [28, 34, 35], we may also introduce an “heavy” auxiliary
field a4

∑
x
χ̄(x)χ(x) and redefine the boundary variables as q′(x) = q(x) + χ(x), q̄′(x) =

q̄(x) + χ̄(x), so that the contact term in the propagator is removed. It is also pointed out
in [36] that a certain modification of the action of the domain-wall fermion leads directly
to the propagotor of the boundary variables which satisfies the Ginsparg-Wilson relation.
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though, the hermitian Wilson-Dirac operator should be replaced with H̃.
Then the use of the Legendre polynomials [4] does not lead to the expansion
in terms of operators with finite ranges.

For our purpose, we first derive an integral representation for the effec-
tive Dirac operator. The inverse square root in Neuberger’s lattice Dirac
operator can be written by the integral:

1

2

(
1 + γ5

H√
H2

)
=

1

2
+ γ5

∫ ∞

−∞

dp

2π

1

iγ5p+
(
Dw − m0

a

)γ5. (1.11)

Corresponding to this, we can show that the effective Dirac operator admits
the following representation [27]:

aD
(N)
eff = 1− PR

{
a5D5w

}−1

NN
PL − PL

{
a5D5w

}−1

11
PR

−PR

{
a5D5w

}−1

N1
PR − PL

{
a5D5w

}−1

1N
PL,

(1.12)

where D5w is the five-dimensional Wilson-Dirac operator with the anti-

periodic boundary condition in the fifth-dimension. Its inverse may be ex-
pressed as

{
a5D5w

}−1

st
=

1

N

∑

p

eip(s−t)

iγ5 sin p+ 1− cos p+ a5
(
Dw − m0

a

) . (1.13)

The summation is taken over the discrete momenta p = 2π
N (k − 1

2) (k =
1, 2, · · · , N) and in the limit N → ∞ it reduces to the continuous integral.

From this representation, it is rather clear that the effective Dirac opera-
tor can be defined consistently if the five-dimensional Wilson-Dirac operator
with the anti-periodic boundary condition is not singular and invertible for
all N . In this respect, we should note that the lower bound on the square
of the five-dimensional Wilson-Dirac operator is related closely to that on
the square of the four-dimensional Wilson-Dirac operator [4, 37], because
the gauge field is four-dimensional. In fact, the same lower bound can be
set for the class of gauge fields with small lattice field strength.

Given the positive lower bound on the square of the five-dimensional
Wilson-Dirac operator, it is possible to formulate a series expansion in terms
of the five-dimensional Wilson-Dirac operator, using the generating function
of the Chebycheff polynomials [38]. The exponential bounds on the effective
Dirac operator and its differentiations can be established from it.

We may also discuss the Ginsparg-Wilson relation of the effective Dirac
operator through this integral representation. We will see that this reduces
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to the question concerning the property of the five-dimensional Dirac op-
erator under the chiral transformation introduced by Furman and Shamir
[15].

Another interesting aspect of the effective Dirac operator is its behavior
in case with the singular gauge configuration for which isolated eigenvalues
of the hermitian Wilson-Dirac operator collapse to zero. In [4], it has been
proved rigorously that Neuberger’s Dirac operator in terms of the hermitian
Wilson-Dirac operator remains local even with such singular gauge config-
urations. We will argue that it is also true for the effective Dirac operator
Eq. (1.5).

The approach to the chiral symmetry limit from a finite N is the most
important issue for the practical implementation of exact chiral symmetry
using the domain-wall fermion [39, 40] [19, 22, 24] [41, 42, 43]. In this re-
spect, our result of the locality and exact chiral symmetry of the effective
four-dimensional action is restricted for the class of gauge fields with small
lattice field strength. It is a nonperturbative result and it gives a sufficient
condition for that the exact chiral symmetry based on the Ginsparg-Wilson
relation can be implemented using the domain-wall fermion. But it does
not assure that it would work practically in the numerical simulations using
the standard Wilson’s gauge action. Our result, however, presents an ex-
plicit method to connect the locality and chiral symmetry properties of the
domain-wall fermion to the spectrum of the four-dimensional Wilson-Dirac
operator. We hope that such a method would be useful in order to study
the above practical issue.

This paper is organized as follows. In section 2, we briefly review the
domain-wall fermion in order to fix our notation. In section 3, we describe
how to derive the integral representation for the effective Dirac operator. We
also discuss how the Ginsparg-Wilson relation for the effective Dirac opera-
tor follows in this integral representation. In section 4, we discuss the pos-
itivity of the five-dimensional Wilson-Dirac operator with the anti-periodic
boundary condition. With this result, we consider exponential bounds for
the effective Dirac operator and its differentiations in section 5. We also
discuss the locality in the case with the singular gauge configurations. In
section 6, we summarize our result and give some discussions concerning the
issue of the approach to the chiral symmetry limit.
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2 Domain-wall fermion in the anti-periodic sub-

traction scheme

In this section, we review the domain-wall fermion [13, 14, 15] and fix our no-
tation. The domain-wall fermion is defined by the five-dimensional Wilson-
Dirac fermion with the Dirichlet boundary condition.

SDW =
N∑

t=1

a4
∑

x

ψ̄(x, t)D5wψ(x, t), (2.1)

D5w = γµ
1

2

(
∇µ +∇∗

µ

)
δst + PLMst + PRM

†
st. (2.2)

We assume the lattice size of the fifth dimension N is even. For N = 6, the
mass matrix reads

Mst =
1

a5




B −1 0 0 0 0
0 B −1 0 0 0
0 0 B −1 0 0
0 0 0 B −1 0
0 0 0 0 B −1
0 0 0 0 0 B



, (2.3)

where B is defined by

B = 1 + a5

(
−a
2
∇µ∇∗

µ − m0

a

)
. (2.4)

The chiral transformation is introduced as vector-like one so that the sym-
metry breaking is minimized [15]:

δψ(x, t) = −ψ(x, t) t ≤ N

2
, (2.5)

δψ(x, t) = +ψ(x, t) t ≥ N

2
+ 1. (2.6)

Accordingly, the anomalous term is given by

X(N)(x) =
2

a5

{
ψ̄L(x,

N

2
+ 1)ψR(x,

N

2
)− ψ̄R(x,

N

2
)ψL(x,

N

2
+ 1)

}
(2.7)

The partition function of the domain-wall fermion may be defined with
the subtraction of the Pauli-Villars fields, which is subject to the anti-
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periodic boundary condition in the fifth dimension. 3

ZDW =
detD5w

detD5w

, (2.9)

where

D5w = γµ
1

2

(
∇µ +∇∗

µ

)
δst + PLM st + PRM

†
st, (2.10)

M st =
1

a5




B −1 0 0 0 0
0 B −1 0 0 0
0 0 B −1 0 0
0 0 0 B −1 0
0 0 0 0 B −1
1 0 0 0 0 B



, (N = 6) (2.11)

For later convenience, we perform a chirally asymmetric parity transfor-
mation in the fifth dimension:

ψ(x, t) = (PR + PLP )ts ψ
′(x, s), (2.12)

ψ̄(x, t) = ψ̄′(x, s) (PRP + PL)st , (2.13)

where

Pst =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0




(N = 6). (2.14)

Accordingly, the five-dimensional Dirac operators are transformed as follows:

D′
5w = (PRP + PL)D5w (PR + PLP ) (2.15)

= γµ
1

2

(
∇µ +∇∗

µ

)
Pst +MH

st , (2.16)

D
′

5w = (PRP + PL) D̄5w (PR + PLP ) (2.17)

= γµ
1

2

(
∇µ +∇∗

µ

)
Pst +M

H
st , (2.18)

3For this subtraction to work consistently, we should require the positivity of D5w:

D
†

5wD5w > 0. (2.8)

We will see later that this requirement also assures the locality and the Ginsparg-Wilson
relation of the effective Dirac operator.
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where, for N = 6,

MH
st = MstP = PM †

st

=
1

a5




0 0 0 0 −1 B
0 0 0 −1 B 0
0 0 −1 B 0 0
0 −1 B 0 0 0
−1 B 0 0 0 0
B 0 0 0 0 0



.

(2.19)

M st =
1

a5




0 0 0 0 −1 B
0 0 0 −1 B 0
0 0 −1 B 0 0
0 −1 B 0 0 0
−1 B 0 0 0 0
B 0 0 0 0 1



.

(2.20)

In this basis, the chiral transformation adopted by Shamir and Furman
[15] can be expressed as follows:

δψ′
s(x) = (Γ5)st ψ

′
t(x), (2.21)

where Γ5 is given (for N = 6) by

(Γ5)st =




−γ5 0 0 0 0 0
0 −γ5 0 0 0 0
0 0 −γ5 0 0 0
0 0 0 γ5 0 0
0 0 0 0 γ5 0
0 0 0 0 0 γ5




(N = 6). (2.22)

With this definition of the chiral transformation, D′
5w and D

′
5w satisfy the

following identities, respectively,

{
Γ5D

′
5w +D′

5wΓ5

}
st

=
2

a5
γ5δsN

2

δtN
2

, (2.23)

{
Γ5D

′

5w +D
′

5wΓ5

}

st
=

2

a5
γ5δsN

2

δtN
2

+
2

a5
γ5δsNδtN . (2.24)

8



The chiral symmetry breaking occurs at t = N
2 in the five-dimensional Dirac

operator for the domain-wall fermion. On the other hand, it occurs both at
t = N

2 and at t = N for the Pauli-Villars field, because of the anti-periodic
boundary condition.

3 Effective four-dimensional Dirac operator

3.1 An integral representation of the effective four-dimensional

Dirac operator

The functional determinant of the domain-wall fermion, in the anti-periodic
subtraction scheme, reduces to a single determinant of a four-dimensional
Dirac operator,

detD5w

detD5w

= det aD
(N)
eff . (3.1)

In this section, we reproduce this result and derive an integral representation
for the effective four-dimensional Dirac operator.

We may write the partition function as follows:

detD5w

detD5w

=
detD′

5w

detD
′

5w

= det

(
D′

5w

{
D

′

5w

}−1
)
. (3.2)

Then, we note a simple relation between two five-dimensional Wilson-Dirac
operators:

D′
5w = D

′
5w − 1

a5
δsNδNt. (3.3)

This relation implies that

D′
5w

{
D

′

5w

}−1
= δst −

1

a5
δsN

{
D

′

5w

}−1

1t
. (3.4)

Since this matrix is lower triangle in the lattice indices of the fifth dimension,
we can easily see that its determinant reduces to a single four-dimensional
determinant:

det

(
D′

5w

{
D

′
5w

}−1
)

= det

(
1− 1

a5

{
D

′
5w

}−1

NN

)
. (3.5)

From this result, we may set

aD
(N)
eff = 1− 1

a5

{
D

′
5w

}−1

NN
(3.6)

= 1− 1

a5

(
PR

{
D5w

}−1

NN
PL + PL

{
D5w

}−1

11
PR

+PR

{
D5w

}−1

N1
PR + PL

{
D5w

}−1

1N
PL

)
. (3.7)
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Thus the effective four-dimensional Dirac operator can be expressed in terms
of the inverse of the five-dimensional Wilson-Dirac operator with the anti-

periodic boundary condition. Since the gauge field is four-dimensional, the
inverse of this five-dimensional Wilson-Dirac operator may be expressed as
follows:

{
a5D5w

}−1

st
=

1

N

∑

p

eip(s−t)
{
iγ5 sin p+ 1− cos p+ a5

(
Dw − m0

a

)}−1
,

(3.8)
where the summation is taken over the discrete momenta p = 2π

N (k − 1
2)

(k = 1, 2, · · · , N) and Dw is the four-dimensional Wilson-Dirac operator

Dw =
∑

µ

{
γµ

1

2

(
∇µ +∇∗

µ

)
− a

2
∇µ∇∗

µ

}
. (3.9)

Then the effective Dirac operator may be expressed as follows:

aD
(N)
eff = 1− PR

1

N

∑

p

1

iγ5 sin p+ 1− cos p+ a5
(
Dw − m0

a

)PL

−PL
1

N

∑

p

1

iγ5 sin p+ 1− cos p+ a5
(
Dw − m0

a

)PR

+PR
1

N

∑

p

e−ip

iγ5 sin p+ 1− cos p+ a5
(
Dw − m0

a

)PR

+PL
1

N

∑

p

e+ip

iγ5 sin p+ 1− cos p+ a5
(
Dw − m0

a

)PL.

(3.10)

In the limit N → ∞, the summation over the discrete momentum reduces
to the continuous integral:

1

N

∑

p= 2π

N
(k− 1

2
)

=⇒
∫ π

−π

dp

2π
. (3.11)

Note that, since we do not use the transfer matrix in this derivation, this
expression could hold true even if B is not positive definite and the transfer
matrix is not defined consistently. m0 can be chosen as any value within
m0 ∈ [0, 2] (when a5 = a), as long as the five-dimensional Wilson-Dirac
operator with the anti-periodic boundary condition in the fifth dimension is
not singular and invertible.
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3.2 The Ginsparg-Wilson relation

Next we discuss the Ginsparg-Wilson relation for the effective Dirac operator
in the integral representation. As we have seen in the previous subsection,
the effective Dirac operator, Deff , is defined by

aDeff = 1− 1

a5

{
D

′

5w

}−1

NN
(N = ∞). (3.12)

If it would satisfies the Ginsparg-Wilson relation

γ5Deff +Deffγ5 = 2aDeffγ5Deff , (3.13)

then the following identity must hold true in the limit of N → ∞:

γ5
{
D̄′

5w

}−1

NN
+
{
D̄′

5w

}−1

NN
γ5 =

2

a5

{
D̄′

5w

}−1

NN
γ5
{
D̄′

5w

}−1

NN
(N = ∞).

(3.14)
We may compare this identity with Eq. (2.24) which express the chiral

property of D̄′
5w under the chiral transformation introduced by Furman and

Shamir Eq. (2.21). The latter we may write
{
Γ5

{
D

′
5w

}−1
+
{
D

′
5w

}−1
Γ5

}

st

=
2

a5

{
D

′
5w

}−1

sN

2

γ5

{
D

′
5w

}−1

N

2
t

+
2

a5

{
D

′
5w

}−1

sN
γ5

{
D

′
5w

}−1

Nt
.

(3.15)

Setting s = t = N , we obtain

γ5

{
D

′

5w

}−1

NN
+
{
D

′

5w

}−1

NN
γ5 =

2

a5

{
D

′

5w

}−1

N N

2

γ5

{
D

′

5w

}−1

N

2
N

+
2

a5

{
D

′
5w

}−1

NN
γ5

{
D

′
5w

}−1

NN
.

(3.16)

Then we can see that Eq. (3.14) is equivalent to the following condition in
the limit of N → ∞:

{
D

′
5w

}−1

N N

2

= 0 (N → ∞). (3.17)

As we will see below, this condition is fulfilled as long as the five-
dimensional Wilson-Dirac operator with the anti-periodic boundary condi-
tion is not singular and invertible. Then we obtain Eq. (3.14) and Eq. (3.13),
the Ginsparg-Wilson relation for the effective Dirac operator.
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4 Positivity of the square of the five-dimensional

Wilson-Dirac operator with anti-periodic bound-

ary condition

From Eqs. (3.10) and its N → ∞ limit, we see that for the effective four-
dimensional Dirac operator to be defined consistently, it is required that
the five-dimensional Wilson-Dirac operator with the anti-periodic boundary
condition should be non-singular and invertible. In this section, we examine
the positivity of the five-dimensional Wilson-Dirac operator square.

To examine this requirement, we evaluate the square of the five-dimensional
Wilson-Dirac operator. Setting a5 = a for simplicity, we have

{iγ5 sin p+ 1− cos p+ (aDw −m0)}† {iγ5 sin p+ 1− cos p+ (aDw −m0)}

= 4 sin2 (p/2)

(
1−m0 −

a2

2
∇µ∇∗

µ

)
+ (aDw −m0)

† (aDw −m0) . (4.1)

For m0 = 1, the first term is positive semi-definite and then the positivity of

a2D
†

5wD5w is entirely determined by the positivity of the four-dimensional
Wilson-Dirac operator square, (aDw−1)†(aDw−1). According to the result
of [4], if the plaquette variables U(p) are uniformly bounded as

‖ 1− U(p) ‖< ǫ, (4.2)

we obtain

‖ {iγ5 sin p+ 1− cos p+ (aDw − 1)}† {iγ5 sin p+ 1− cos p+ (aDw − 1)} ‖

=‖ 4 sin2 (p/2)

(
−a

2

2
∇µ∇∗

µ

)
+ (aDw − 1)† (aDw − 1) ‖

≥ 1− 30ǫ. (4.3)

For the generic value of m0 ∈ [0, 2], we also obtain [44, 45, 37]

‖ {iγ5 sin p+ 1− cos p+ (aDw −m0)}† {iγ5 sin p+ 1− cos p+ (aDw −m0)} ‖

≥
{
(1− 30ǫ)

1

2 − |1−m0|
}2

if 1− 30ǫ > |1−m0|2. (4.4)

Recently, it has been shown by Neuberger [37] that the constant 30 in the
above bounds can be improved to 6(2 +

√
2).

From these considerations, we may assume the positive lower and upper
bounds of the square of the five-dimensional Wilson-Dirac operator with the
anti-periodic boundary condition as

0 < α̃ ≤
{
4 sin2 (p/2)B + (aDw −m0)

† (aDw −m0)
}

≤ β̃, (4.5)
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under the following condition,

‖ 1− U(p) ‖< ǫ, ǫ <
1

6(2 +
√
2)

(
1− |1−m0|2

)
. (4.6)

5 Expansion with Chebycheff polynomials and an

exponential bound

Given the bounds on the square of the five-dimensional Wilson- Dirac oper-
ator with the anti-periodic boundary condition, we will derive in this section
exponential bounds on the effective four-dimensional Dirac operator and its
differentiations with respect to the gauge field. We will also obtain an expo-
nential bound on the inverse of the five-dimensional Wilson-Dirac operator
which is needed to prove Eq. (3.17) and the Ginsparg-Wilson relation.

5.1 Locality bounds

From Eqs. (3.10) and its N → ∞ limit, we see that the locality property of
the effective Dirac operator of the domain-wall fermion is determined by the
locality properties of the following operators in the integral representation:

I(N) =
1

N

∑

p

{
1, e+ip, e−ip

} 1

iγ5 sin p+ 1− cos p+ (aDw −m0)
(5.1)

and

I =

∫ π

−π

dp

2π

{
1, e+ip, e−ip

} 1

iγ5 sin p+ 1− cos p+ (aDw −m0)
. (5.2)

The integrand can be written as

1

iγ5 sin p+ 1− cos p+ (aDw −m0)

{
1, e+ip, e−ip

}

=
1

4 sin2 (p/2)B + (aDw −m0)
† (aDw −m0)

×
(
1− PRe

ip − PLe
−ip + (aDw −m0)

†
){

1, e+ip, e−ip
}
.

(5.3)

From this expression it is clear that the operators in the numerator are
local and bounded. Then we may omit these operators in the following
considerations.
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We can obtain an expansion of the integrand using the generating func-
tion of the Chebycheff polynomials [38]

1

1− 2tz + t2
=

∞∑

k=0

tkUk(z), ‖Uk(z)‖ ≤ Uk(1) = k. (5.4)

Following [4], we set

t = e−θ̃, cosh θ =
β̃ + α̃

β̃ − α̃
, (5.5)

and

z =
β̃ + α̃− 2

{
4 sin2 (p/2)B + (aDw −m0)

† (aDw −m0)
}

β̃ − α̃
. (5.6)

Then we obtain

1

4 sin2 (p/2)B + (aDw −m0)
† (aDw −m0)

=
4t

β̃ − α̃

∑

k=0

tkUk(z), (5.7)

This defines an expansion in terms of the square of the Wilson-Dirac
operator and B with only nearest-neighbor and next-to-nearest-neighbor
couplings. In order to contribute to the kernel of the operator Eq. (5.7)
between two lattice sites x and y of the lattice distance d(x, y) = |x − y|,
the order of the polynomials Uk(x) in the expansion must be greater than
d(x,y)
2a :

k ≥ d(x, y)

2a
(5.8)

Then for the given distance d(x, y), the series expansion Eq. (5.7) can be
arranged as follows:

4t

β̃ − α̃
exp

{
− θ̃

2a
d(x, y)

}
.
∑

k=0

tkUk+d/2a(z). (5.9)

Noting the bound on the polynomials, ‖Uk(z)‖ ≤ k, we obtain
∥∥∥∥∥

1

4 sin2 (p/2)B + (aDw −m0)
† (aDw −m0)

(x, y)

∥∥∥∥∥

≤ 4t

β̃ − α̃
exp

{
− θ̃

2a
d(x, y)

}
.
∑

k=0

tk‖Uk+d/2a(z)‖

14



≤ 4t

β̃ − α̃

(
1

1− t

d(x, y)

2a
+

t

(1− t)2

)
exp

{
− θ̃

2a
d(x, y)

}
.

(5.10)

Since the summation over the momentum in I(N) (the integration in I) is
normalized to unity, the above bounds implies the exponential bound for
the integrals, I(N) and I.

As for the differentiations of the effective Dirac operator, we can also
derive the exponential bounds, following [4]. We consider the differentia-
tions of the Chebycheff expansion, Eq. (5.7). We first introduce an integral
representation for the Chebycheff polynomials:

Uk(z) =

∮
dω

2π
ω−k−1 1

ω2 − 2ωz + 1
, (5.11)

where the integration is defined along a circle in the complex plane centered
at the origin. The radius r of the circle should be strictly less than 1 to
avoid the singularities of the integrand. The denominator of the integrand
can be factorized according to

ω2 − 2ωz + 1 = (ω − u†)(ω − u), u = z + i(1− r)1/2. (5.12)

Since, u†u = 1, it is clear that

‖
(
ω2 − 2ωz + 1

)−1 ‖≤ (1− r)−2 . (5.13)

If we denote the differentiation of z with respect to the gauge fields as
ż, then we obtain

‖ U̇k(z) ‖≤ 2 ‖ ż ‖ r−k (1− r)−4 . (5.14)

We may now adjust the radius r so that the factor r−k (1− r)−4 is mini-
mized. We obtain

‖ U̇k(z) ‖≤ constant ‖ ż ‖ (1 + k)4. (5.15)

With these bounds, we can see that the differentiated series Eq. (5.7) is
also exponentially convergent with the same exponent as the original series.
By similar estimations, we can see that this is also true for higher-order
differentiations (each differentiation give rise to an additional factor of (1 +
k)2 in the bound on the Chebycheff polynomials).

15



5.2 Exponential bounds in the fifth-direction and

the Ginsparg-Wilson relation

We next consider the exponential bound on the inverse of the five-dimensional
Wilson-Dirac operator which is necessary to prove Eq. (3.17) and the Ginsparg-
Wilson relation. From the above derivation of the exponential bounds for
the summation and integral Eqs. (5.1) and (5.2), we can see that the same
bound holds true for the inverse of the five-dimensional Wilson-Dirac oper-
ator, D5w, itself:

{
aD5w

}−1

st
=

1

N

∑

p

e+ip(s−t)

iγ5 sin p+ 1− cos p+ (aDw −m0)
(5.16)

In fact, we can obtain

∥∥∥∥
{
a2D

†
5wD5w

}−1
(x, s; y, t)

∥∥∥∥ ≤ C exp

{
− θ̃

2a
d5(x, s; y, t)

}
, (5.17)

where d5(x, s; y, t) = |x− y|+min(|s − t|, N − |s− t|) and

C =
4t

β̃ − α̃

(
1

1− t

d5(x, s; y, t)

2a
+

t

(1− t)2

)
. (5.18)

From this bound, it follows immediately that

lim
N→∞

{
D

′
5w

}−1

N N

2

= 0. (5.19)

This completes the proof of the Ginsparg-Wilson relation under the condi-
tion on the plaquette variables Eq. (4.6). Note again that this proof does
not refer to the transfer matrix and it applies for any value of m0 ∈ [0, 2] .

5.3 Singular case

In this subsection, we examine locality of the effective Dirac operator Eq. (1.5)
with the singular gauge configuration for which isolated eigenvalues of the
hermitian Wilson-Dirac operator collapse to zero:

Hφ0(x) = λφ0(x), λ ≃ 0, (5.20)

where
H = γ5(Dw − m0

a
). (5.21)
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We will argue that the effective Dirac operator remains local even with such
singular gauge configurations.

For this purpose, however, the integral representation and the Cheby-
cheff expansion in terms of the five-dimensional Wilson-Dirac operator, con-
sidered so far, does not seem to be useful. When the isolated near-zero
mode occurs in the four-dimensional hermitian Wilson-Dirac operator, it is
associated with many modes with small fifth momenta in the spectrum of
the five-dimensional Wilson-Dirac operator (with the anti-periodic bound-
ary condition). This means that the continuum spectrum would collapse
to zero in the five-dimensional Wilson-Dirac operator in the limit N → ∞.
Then the separation of the effect of the near-zero mode does not seem easy
in this representation (cf. [4]). Therefore, in this section, we use the formula
for the effective action in terms of the transfer matrix and H̃.

In [4], it has been proved rigorously that the contribution of the near-
zero-mode to Neuberger’s Dirac operator,

H√
H2

∣∣∣∣
near−zero

, (5.22)

remains local. This result can be understood from the localization properties
of the eigenvectors of the near-zero modes. In fact, it is well localized with
exponentially decaying tails [4, 39].

Since H̃ is related to H by the formula

e−a5H̃ + e+a5H̃ − 2 = a25H
1

B
H, (5.23)

the exact zero mode of H̃ is the exact zero mode of H [2, 39, 41, 34].
Therefore, the contribution of the zero mode of H̃ to the effective Dirac
operator is identical to the contribution of the zero mode ofH to Neuberger’s
Dirac operator,

H̃√
H̃2

∣∣∣∣∣
zero

=
H√
H2

∣∣∣∣
zero

= lim
λ→0

sign(λ)φ0(x)φ
†
0(y), (5.24)

and it remains local, according to the result of [4]. It is expected that
this localization properties persist also for the contribution of the near-zero
modes of H̃.

It is desirable to make the above argument rigorous. We will leave this
issue for future study.

17



6 Discussion

We have argued locality in the domain-wall fermion approach through its
effective four-dimensional Dirac operator. As expected, all the properties
proved rigorously for Neuberger’s Dirac operator holds true for the effective
Dirac operator. In particular, we have shown explicitly that the locality
properties of the domain-wall fermion depends crucially on the spectrum
of the four-dimensional Wilson-Dirac operator, which is closely related to
that of the five-dimensional Wilson-Dirac operator (with the anti-periodic
boundary condition). Then we can see that the bound for the plaquette
variables leads to the locality bound for the effective Dirac operator. We
have also shown that the effective Dirac operator satisfies the Ginsparg-
Wilson relation with the same bound for plaquette variables.

The approach to the chiral symmetry limit from a finite N is the most
important issue for the practical implementation of exact chiral symmetry
using the domain-wall fermion [19, 22, 24] [41, 42, 43]. In order to examine
the effect of the finite N , the explicit breaking term in the axial Ward-
Takahashi identity has been measured, among other physical quantities.
This breaking term can be written by the correlation function between the
middle and the boundary of the fifth dimension [27]:

{
a5D

′
5w

}−1
N

2
,N

=
1

2 cosh N
2 a5H̃

×
(
1

a
D

(N)
eff

−1
)
(x, y). (6.1)

From the point of view of the effective four-dimensional action, this effect
may be examined through the breaking term in the Ginsparg-Wilson rela-
tion.4 As we have seen in the section 5.2, it is given by the similar corre-
lation function defined through the five-dimensional Wilson-Dirac operator
with the anti-periodic boundary condition:

{
a5D

′

5w

}−1

N

2
,N

=
1

2 cosh N
2 a5H̃

=
1

N

∑

p

(e−ip)
N

2

iγ5 sin p+ 1− cos p+ a5
(
Dw − m0

a

) . (6.2)

It is the smallest eigenvalue of square of the four-dimensional Wilson-Dirac
operator which determines the behavior of the breaking term in the limit
N → ∞. When the isolated near-zero mode occurs in the four-dimensional

4 Numerical study of the Ginsparg-Wilson relation of the effective Dirac operator is
found in [36].
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hermitian Wilson-Dirac operator, it is associated with many modes with
small fifth momenta in the spectrum of the five-dimensional Wilson-Dirac
operator (with the anti-periodic boundary condition). This means that the
continuum spectrum tends to collapse to zero and the lower bound for this
continuum spectrum determines the rate of the exponential decay in the
limit N → ∞. Therefore, it would be important to examine the behavior of
the near-zero modes as done in [4], also in the context of the domain-wall
fermion, as suggested in [22]. It is also desirable to clarify the nature of
the distribution of small eigenvalues of the four-dimensional Wilson-Dirac
operator with a negative mass, for the gauge field configurations used in the
current simulations [40].
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