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Abstract Self-energy corrections involving logarithms of the
parameter Zα can often be derived within a simplified ap-
proach, avoiding calculational difficulties typical of the prob-
lematic non-logarithmic corrections (as customary in bound-
state quantum electrodynamics, we denote by Z the nuclear
charge number, and by α the fine-structure constant). For some
logarithmic corrections, it is sufficient to consider internal prop-
erties of the electron characterized by form factors. We provide
a detailed derivation of related self-energy “potentials” that
give rise to the logarithmic corrections; these potentials are lo-
cal in coordinate space. We focus on the double-logarithmic
two-loop coefficient B62 for P states and states with higher an-
gular momenta in hydrogenlike systems. We complement the
discussion by a systematic derivation of B62 based on nonrela-
tivistic quantum electrodynamics (NRQED). In particular, we
find that an additional double logarithm generated by the loop-
after-loop diagram cancels when the entire gauge-invariant set
of two-loop self-energy diagrams is considered. This double log-
arithm is not contained in the effective-potential approach.
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1 Introduction

Lamb-shift measurements and related theoretical calculations for bound atomic systems with in-
creasing accuracy have historically provided accurate tests of quantum electrodynamics (QED),
and the measurements have recently been improved in accuracy beyond previous limits [1–3].
In order to account for a theoretical description, corrections of various physical origin (one-loop
self-energy and vacuum polarization, two-loop, and higher order radiative, recoil, radiative-recoil,
nuclear-size corrections) have to be evaluated [4].

Here, we focus on logarithmic self-energy corrections which are evaluated within the Zα-
expansion [5]. Within the analytic treatment, self-energy radiative corrections can be taken into
account by means of a nonanalytic expansions in powers of the fine-structure constant α, the
product of Zα and the logarithm ln[(Zα)−2] (Z is the nuclear charge number). The expansion
in powers of α corresponds to the loop-expansion in the framework of the usual perturbative
treatment for QED. The higher order terms in powers of Zα and ln[(Zα)−2] are related to
atomic-physics effects; they are referred to as the ”binding corrections”.

The purpose of this investigation is twofold: first, to illustrate how Lamb-shift “potentials” that
give rise to the logarithmic corrections can be derived within the context of bound-state QED,
and second, to provide a rigorous and detailed derivation of the B62 double-logarithmic two-
loop self-energy coefficient for P states and states with higher angular momenta. The P-state
coefficient B62 has already appeared in the literature [6]; however the derivation has been rather
sketchy.

2 Modified Dirac Hamiltonian, One–Loop Corrections and A41

It has been observed by many authors (e.g. [7–9]) that a rather important class of self-energy
radiative effects for bound states can be described by a modified Dirac Hamiltonian (~ = c =
ǫ0 = 1),

H
(m)
D = α [p− eF1(∆)A] + β m+ eF1(∆)φ

+F2(∆)
e

2m
(iγ ·E − β σ ·B) , (1)

which approximately describes an electron subject to an external scalar potential φ ≡ φ(r) and
an external vector potential A ≡ A(r) (the vector potential vanishes for a point nucleus that
gives rise to a static Coulomb potential; we may neglect the nuclear magnetic field and the
hyperfine structure). We have

e φ(r) = eA0(r) = −
Zα

r
(2)

in coordinate space, which corresponds to φ(q2) = −4πZα/q2 in momentum space. In this
article, following the commonly accepted convention, the function φ(r) and its Fourier transform
φ(q2) are denoted by the same symbol φ. We avoid possible ambiguities by denoting with r and
r the arguments in coordinate space and with q or p those in momentum space. The argument
∆ ≡ (∂/∂r)2 of the electron form factor F1 in Eq. (1) is to be interpreted as a Laplacian operator
acting on all quantities to the right, but not on the wave function of the bound electron ψ(r).

Equation (1) entails a replacement of the binding Coulomb potential as

e φ(r) → eF1(∆)φ(r)
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and leads to a correction to the Coulomb potential ∆VC(r) according to

∆VC(r) = [F1(∆)− 1]

(

−
Zα

r

)

(3)

in coordinate space, and

∆VC(q
2) = [F1(−q2))− 1]

(

−
4π Zα

q2

)

(4)

in momentum space. In first-order perturbation theory, this gives rise to the following pertur-
bative correction which we write down in coordinate and momentum space,

∆E1 = 〈ψ |∆VC(r)|ψ〉 = 〈ψ | [F1(∆)− 1] e φ |ψ〉

=

∫

d3r ψ+(r)

[

[F1(∆)− 1]

(

−Zα

r

)]

ψ(r)

=

∫

d3p

(2π)3

∫

d3p′

(2π)3
ψ+(p′)

[

[F1(−q2)− 1]

(

−4πZα

q2

)]

ψ(p) , (5)

with q = p′ −p. An expansion of the electron form factor F1 in terms of its argument gives rise
to higher-order terms in the Zα-expansion, because the atomic momentum is of the order of Zα
in natural units. Therefore, within the Zα-expansion, it is admissible to expand both the bound-
state Dirac wavefunctions ψ in powers of Zα (the leading-order term is then the Schrödinger
wavefunction), as well as the electron form factor in Eq. (5) in powers of its argument.

The one-loop (1L) self-energy correction for S states within the Zα-expansion reads

∆E
(1L)
SE =

(α

π

)

(Zα)4
m

n3
(

A41 ln[(Zα)−2] +A40 +R
)

, (6)

where the remainder R is of the order of O(Zα), m is the electron mass and n is the principal
quantum number.

As indicated in Eq. (5), the form factor F1(∆) in momentum space assumes arguments according
to the replacement ∆ → −q2 ≡ −(p′−p)2 in momentum space. With the convention q2 = qµqµ =
(q0)2−q2, the evaluation of the radiative corrections to the binding Coulomb field is mediated by
space-like virtual photons (q0 = 0), and the momentum transfer can be written as: q2 = −q2 ≡ t
(this is consistent with the conventions employed in [10,11]).

The form factor F1(t) can be expanded in powers of α, which corresponds to the loop expansion.
According to Eqs. (1.2) and (1.20) of [10], we have up to two-loop order:

F1(t) = 1 +
(α

π

)

F
(2)
1 (t) +

(α

π

)2
F

(4)
1 (t) +O(α3) (7)

with

F
(2)
1 (t) = B(t) ln

λ

m
+ F

(2)
1 (t) , (8)

F
(4)
1 (t) =

1

2
B2(t) ln2

λ

m
+ ln

λ

m
B(t)F

(2)
1 (t) + F

(4)
1 (t) , (9)

where the F are infrared finite (i.e. finite in the limit λ→ 0), and the definition of the function
B(t) [see Eq. (1.18a) of [10]] reads as follows,

B(t) = −

[

1 +
t− 2m2

t(1− 4m2/t)1/2
ln

(1− 4m2/t)1/2 − 1

(1− 4m2/t)1/2 + 1

]

= −
t

3m2
+O(t2) . (10)

3



In Eq. (8), λ denotes the fictitious photon mass. How should the problem of the infrared diver-
gence of the form factors be interpreted in the context of bound-state QED? The free electron
can emit an infinite number of infrared photons, because it may undergo transitions between
free states with infinitesimal energy differences. However, this is not the case for a bound elec-
tron which has a discrete bound-state spectrum; energy levels are separated from each other by
intervals of the order of (Zα)2m (the energy level differences are determined by Schrödinger
theory). This leads to an infrared cutoff in bound-state QED of the order of λ ≈ (Zα)2m.
Therefore, we may replace λ → (Zα)2m for the determination of leading logarithms of the
Lamb shift. At some risk to over-simplification, one may therefore argue that the infrared catas-
trophe is avoided in a natural way for bound states. For the description of bound states, we have
ln(λ/m) ≈ − ln[(Zα)−2] within logarithmic accuracy, i.e. neglecting non-logarithmic contribu-
tions which are given e.g. by A40 coefficients [see Eq. (6)].

The focus of the current article is on double-logarithmic corrections which are present from the
first term on the right-hand side of Eq. (9). Note that single-logarithmic two-loop corrections are
not being considered in this article. Corrections of this latter type are generated, for example,
by the second term on the right-hand side of Eq. (9).

At this point, it may be helpful to point out that the cutoff of the infrared divergence of QED
at the “bound-state photon mass” λ → (Zα)2m is consistent with the matching procedure
that involves an explicit infrared cutoff ǫ which can be interpreted as an infrared cutoff for the
bremsstrahlung spectrum [7,9,12]. The procedure is described in some detail in Eqs. (32) – (34)
of [9]. This matching procedure offers an alternative interpretation for the infrared catastrophe:
the infrared divergence crucially relies on transitions between asymptotically free electron states.
Any infinitesimally small additional interaction of the electrons within that interferes with the
emission of bremsstrahlung will avoid the infrared catastrophe and provide an infrared cutoff
whose order-of-magnitude is determined by the energy scale of the additional external field.

In combining the result (8) with the expansion of B(t) in powers of t, we reproduce the well-
known expression

F
(2)
1 (t) = −

t

3m2

[

ln
λ

m
+

1

8

]

+O(t2) . (11)

Together with the definition of the modified Coulomb potential in Eq. (4) and the bound-state
“infrared-cutoff prescription” λ→ (Zα)2m, this leads to the following one-loop (1L) self-energy
potential

∆V
(1L)
C (q2) =

α

π

[

−
−q2

3m2
(− ln[(Zα)−2])

] (

−
4πZα

q2

)

=
4α

3m2
(Zα) ln[(Zα)−2] , (12)

in momentum space; this translates into a potential

∆V
(1L)
C (r) =

4α

3π
(Zα) ln[(Zα)−2]

δ(3)(r)

m2
(13)

in coordinate space. This potential can also be found as Eq. (2) of [13], given there without
derivation. The first-order one-loop perturbation, evaluated according to Eq. (5), reads

∆E
(1L)
1 = 〈ψ |∆V

(1L)
C (r)|ψ〉 =

4α

3π
(Zα)4

m

n3
ln[(Zα)−2] δl0 . (14)

This correction is nonvanishing only for S states (l = 0), and it reproduces the leading logarithmic
A41 coefficient as given in Eq. (6). It may be interesting to point out that since |ψ(r = 0)|2 =
(Zα)3 (m3

r/π) δl0, where mr is the reduced mass of the system, the correction (14) also has the

4



correct reduced-mass dependence (this is of relevance for systems like positronium and pionium).
In the limit of a large nuclear mass, we have of course m = mr.

Note that the potential (13) is local in coordinate space. In contrast, the nonrelativistic (NR)
one-loop self-energy operator (as well as its relativistic counterpart which assumes a slightly
more complicated form) may be expressed in the length-gauge form as [cf. Eq. (29) of [14])],

Σ
(1L)
NR (r, r′) = −

2α

3π

∫ ǫ

0
dω ω3 r′

〈

r′
∣

∣

∣

∣

1

H − E + ω

∣

∣

∣

∣

r

〉

r , (15)

where ǫ is the upper cutoff for the photon energy originally introduced in [12]. The self-energy
operator (15) involves two spatial coordinates. The locality of the potential (13) expresses the
fact that the high-energy virtual photons which mediate the form-factor corrections in Eq. (1)
act on a relativistic length scale given by the Compton wavelength of the electron which is
smaller by one order of Zα than the atomic length scale given by the Bohr radius.

3 Effective Local Potential for

Two–Loop Corrections and B62

In combining the result (9) with the expansion of B(t) in powers of t [see Eq. (10)] and the
modified Coulomb potential in Eq. (4), and using the bound-state “infrared-cutoff prescription”
λ→ (Zα)2m, we obtain the following two-loop (2L) self-energy potential

∆V
(2L)
C (q2) =

(α

π

)2 1

2

(

q2

3m2

)2

ln2[(Zα)−2]

(

−
4π Zα

q2

)

=
(α

π

)2 1

18
ln2[(Zα)−2]

4π Zα

m4

(

−q2
)

. (16)

This correction has previously appeared as Eq. (3) of [6], without a detailed derivation. After
Fourier transformation, we have

∆V
(2L)
C (r) =

2

9

(α

π

)2
ln2[(Zα)−2]

π∆δ(3)(r)

m4
, (17)

which is a highly singular potential in coordinate space. Its expectation value on S states diverges,
giving rise to a further logarithm, and we will not discuss here the associated problems, which
have recently attracted remarkable attention [15–22].

The first-order perturbation, evaluated according to Eq. (5), reads

∆E
(2L)
1 =

(α

π

)2 2

9

πZα

m4
ln2

[

(Zα)−2
]

∆
[

|φn,l=1,m(r)|
2
]∣

∣

∣

r=0
. (18)

In Eq. (18), the Laplacian operator acts on a Schrödinger P wavefunction. The following analytic
result

∆
[

|φn,l=1,m(r)|
2
]∣

∣

∣

r=0
=

2

3π

[

(Zα)5m5
] n2 − 1

n5
, (19)

where n is the principal quantum number, has previously appeared in the literature (e.g. [6,8]).
Within the current investigation, we would like to present a complete derivation of the analytic
expression for this matrix element in the Appendix A. Finally, we rewrite the energy correction
in the form

∆E
(2L)
1 =

(α

π

)2 (Zα)6m

n3
ln2

[

(Zα)−2
] 4

27

n2 − 1

n2
. (20)
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This double-logarithmic correction originates solely from the two-loop F1 form factor of the
electron. This corresponds to the diagrams in Fig. 1 (a) and (b). To complete the gauge-invariant
set, the loop-after-loop diagram in Fig. 1 (c) should also be taken into consideration.

The diagram in Fig. 1 (c) gives rise to a “second-order perturbation” involving to one-loop self
energies as first-order perturbations (the “irreducible part” of the diagram), supplemented by
a further term involving the derivative of the bound electron’s Green function (the “reducible
part”). The correction is known to read (see e.g. [23])

〈

ψ

∣

∣

∣

∣

∣

∣

Σ
(1L)
R (E)





∑

ψ′ 6=ψ

|ψ′〉 〈ψ
′
|

E − Eψ′



 Σ
(1L)
R (E)

∣

∣

∣

∣

∣

∣

ψ

〉

+
〈

ψ
∣

∣

∣Σ
(1L)
R (E)

∣

∣

∣ψ
〉

〈

ψ

∣

∣

∣

∣

d

dE
Σ(1L)(E)

∣

∣

∣

∣

ψ

〉

, (21)

where Σ
(1L)
R (E) is the renormalized relativistic one-loop self-energy operator, and E is the energy

of the electron in the state |ψ〉. Within the effective-potential approach, the one-loop potential
(13) describes the two one-loop self-energy insertions in the first term of (21). The potential (13)
involves a Dirac delta-function in coordinate space that vanishes on P states, and consequently
it can be argued that no further double-logarithmic corrections originate from this term (but see
the discussion in Secs. 4 and 5).

The second term in (21), which involves the derivative of the self-energy operator with respect
to its argument [see also Eq. (2.6) of [12] or Eq. (2) of [6]] and constitutes the reducible part of
the diagram in Fig. 1 (c), does not give rise to any further double logarithm, either. The first

factor
〈

ψ
∣

∣

∣Σ
(1L)
R (E)

∣

∣

∣ψ
〉

does not create any logarithm for P states in the order of α (Zα)4. The

second factor, which contains the derivative of the self-energy operator, is not separately gauge
invariant, and consequently, there exists no “effective potential” which could be inserted for
this term. This is in itself a rather unsatisfactory situation for the effective-potential approach.
However, it is possible to analyze the logarithm which is generated by the nonrelativistic photon
integration region in this term. Consider the nonrelativistic “velocity-gauge” form of (15) and
differentiate with respect to the energy,

〈

ψ

∣

∣

∣

∣

d

dE
Σ(1L)(E)

∣

∣

∣

∣

ψ

〉

NR

= −
2α

3π

∫ ǫ

0
dω ω

〈

φ

∣

∣

∣

∣

∣

p

m

(

1

H − E + ω

)2
p

m

∣

∣

∣

∣

∣

φ

〉

, (22)

where φ is the nonrelativistic (Schrödinger) wavefunction, There is only a single logarithm
ln[ǫ/(Zα)2m] generated in the integration region ω ∈ [(Zα)2m, ǫ] which may be extracted by
replacing 1/(H − E + ω) → 1/ω. The logarithmic term is proportional to the matrix element
〈φ|(p2/m2)|φ〉, which is finite on P states. Consequently, no further double logarithms arise from
the second term of (21).

The two-loop effect for P states is usually characterized by the following semi-analytic expansion
in powers of Zα [cf. Eq. (6)],

∆E
(2L)
SE =

(α

π

)2
(Zα)4

m

n3
(

B40 + (Zα)2 [B62 ln
2(Zα)−2

+B61 ln(Zα)
−2 +B60] +R

)

, (23)

where the remainder R is order O(Zα)3. Using Eq. (20), one can immediately read off the
two-loop double logarithmic spin-independent coefficient

B62(n, l = 1) =
4

27

n2 − 1

n2
. (24)

We confirm the result obtained for this correction in Ref. [6].
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(a)

(b)

()

Figure 1: The crossed (a), rainbow (b) and the loop-after-loop diagram
(c) which contribute to the two-loop self-energy for a bound electron.
The propagator of the bound electron is denoted by a double line.

4 Double Logarithms and the Loop–After–Loop Diagram

In the previous section, we have seen that within the effective-potential approach, no double
logarithm originates in the order (Zα)6 from the loop-after-loop diagram in Fig. 1 (c). This is
because, within this approach, we insert the delta-like local potential (13) for the two one-loop
self-energies in the first term of (21).

However, if we consider the diagram in Fig. 1 (c) within the Coulomb gauge and formulate
the contribution due to low-energy virtual photons, then we obtain for the irreducible part the
expression

∆ELAL = −

〈

φn,1,m

∣

∣

∣

∣

Σ
(1L)
NR

(

1

H − E

)′

Σ
(1L)
NR

∣

∣

∣

∣

φn,1,m

〉

, (25)

where the nonrelativistic self-energy operator is given by Eq. (15), and φn,1,m is the Schrödinger
P wavefunction [see also Eq. (40)], the prime denotes the reduced Green function, and E is

the energy of the nP state (“LAL” = loop-after-loop). The double-logarithmic term ∆E2log
LAL

originating from (25) reads

∆E2log
LAL = −

4

9

(α

π

)2
ln2

[

ǫ

(Zα)2m

]

×

〈

φn,1,m

∣

∣

∣

∣

p

m
(H − E)

p

m

(

1

H − E

)′
p

m
(H − E)

p

m

∣

∣

∣

∣

φn,1,m

〉

. (26)

In order to obtain this result, the denominator of the Green functionH−E+ω has been expanded
in powers of H−E within the integration region ω ∈ [(Zα)2m, ǫ]. Using the commutator relation

ABA =
1

2
([A, [B,A]] +A2B +BA2) , (27)
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with A = p/m and B = H −E, the matrix element can be rewritten in a much simpler fashion,
and the double-logarithmic term becomes

∆E2log
LAL = −

1

9

(α

π

)2
ln2

[

ǫ

(Zα)2m

]

1

m4

〈

φn,1,m
∣

∣p2 (H − E)p2
∣

∣φn,1,m
〉

. (28)

We have

〈

φn,1,m
∣

∣p2 (H − E)p2
∣

∣φn,1,m
〉

=
(Zα)6m5

n3

(

4

5
−

8

15n2

)

, (29)

Note that for S states, the above matrix element is divergent, and a regularization of the matrix
element gives rise to an additional (triple) logarithm B63. With the natural ultraviolet cutoff
ǫ ≈ m for nonrelativistic QED, we obtain from (28) and (29) the following double-logarithmic
contribution,

∆E2log
LAL(n, l = 1) = −

(α

π

)2 (Zα)6m

n3
ln2[(Zα)−2]

(

4

45
−

8

135n2

)

. (30)

Note that the presence of an additional double-logarithmic term originating from the loop-after-
loop diagram in Fig. 1 (c) in the Coulomb gauge does not imply that the result given in (24) for
the total value of B62 is necessarily incomplete, but it means that additional double logarithms
have to expected if, e.g., this diagram is treated numerically, and numerical and analytic results
are compared. For S states, an additional contribution to the triple logarithm B63 originating
from the loop-after-loop diagram was found in [15,18,19], but the result originally obtained in [6]
for the total value of B63 was confirmed in [17, 22]. In the following section, we will derive the
result (24) by an independent calculation which includes the entire gauge-invariant set of the
diagrams in Fig. 1 in a rigorous way.

8



5 Derivation Based on NRQED

We start from the expression [see Eq. (16) of [22]],

∆ENRQED = −

(

2α

3πm2

)
∫ ǫ1

0
dω1 ω1

∫ ǫ1

0
dω2 ω2

{〈

pi
1

H − E + ω1
pj

1

H − E + ω1 + ω2
pi

1

H − E + ω2
pj
〉

+
1

2

〈

pi
1

H − E + ω1
pj

1

H − E + ω1 + ω2
pj

1

H − E + ω2
pi
〉

+
1

2

〈

pi
1

H − E + ω2
pj

1

H − E + ω1 + ω2
pj

1

H − E + ω1
pi
〉

+

〈

pi
1

H −E + ω1
pi

(

1

H − E

)′

pj
1

H −E + ω2
pi
〉

−
1

2

〈

pi
1

H − E + ω1
pi
〉

〈

pj
(

1

H − E + ω2

)2

pi

〉

−
1

2

〈

pi
1

H − E + ω2
pi
〉

〈

pj
(

1

H − E + ω1

)2

pi

〉

−m

〈

pi
1

H −E + ω1

1

H − E + ω2
pi
〉

−
m

ω1 + ω2

〈

pi
1

H − E + ω2
pi
〉

−
m

ω1 + ω2

〈

pi
1

H − E + ω1
pi
〉}

. (31)

All of the matrix elements are evaluated on the reference state |φ〉, which can be taken as the
Schrödinger wave function.

Within the ǫ-method [9, 12, 24], we extract those divergent contributions from (31) that in-
volve double logarithms α2 (Zα)6 ln2[ǫ/(Zα)2m] (we may put ǫ = ǫ1 = ǫ2 for simplicity).
These logarithms correspond to the ultraviolet divergence of NRQED and are generated by
the contributions of two infrared photons (ω1 < ǫ, ω2 < ǫ). The divergences in ǫ necessarily
cancel at the end of the calculation due to contributions proportional to ln(m/ǫ) ln[ǫ/(Zα)2m]
which are generated by intermediate integration regions (ω1 > ǫ, ω2 < ǫ), and by terms propor-
tional to ln2(m/ǫ) originating from high-energy virtual photons (ω1 > ǫ, ω2 > ǫ). The latter
terms correspond to the infrared divergent terms proportional to ln2(λ/m) of the electron
form factors. For a discussion of the related cancellations in the context of the ǫ method,
we refer to [12] and the Appendix of [9]. For the double logarithms, the dependence on ǫ
cancels between the low-energy, the intermediate and the high-energy regions according to
ln2[ǫ/(Zα)2m] + 2 ln(m/ǫ) ln[ǫ/(Zα)2m] + ln2(m/ǫ) = ln[(Zα)−2].

There are nine terms in curly brackets on the right-hand side of Eq. (31) which we would like to
denote by T1 – T9. These fall quite naturally into six groups, giving rise to six double logarithms
L1 – L6 according to the following correspondence:

• T1 → L1,

• T2 + T3 → L2,

• T4 → L3,
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• T5 + T6 → L4,

• T7 → L5,

• T8 + T9 → L6.

After an integration in the logarithmic region ω1 ∈ [(Zα)2m, ǫ1] and ω2 ∈ [(Zα)2m, ǫ2], the
logarithmic contributions can be expressed by matrix elements, evaluated on the reference state,
according to the following formulas (again, we put for simplicity ǫ = ǫ1 = ǫ2):

L1 =
(α

π

)2
ln2

[

ǫ

(Zα)2

]

4〈pi (H − E) pi p2〉

9m4
, (32)

L2 =
(α

π

)2
ln2

[

ǫ

(Zα)2

]

2 〈pi pj (H − E) pj pi〉 − 4〈pi (H − E) pi p2〉

9m4
, (33)

L3 =
(α

π

)2
ln2

[

ǫ

(Zα)2

]

−〈p2 (H − E)p2〉

9m4
, (34)

L4 ∝ 〈pi (H − E) pi〉 = 0 , (35)

L5 =
(α

π

)2
ln2

[

ǫ

(Zα)2

]

4〈pi (H − E)2 pi〉

9m3
, (36)

L6 =
(α

π

)2
ln2

[

ǫ

(Zα)2

]

−4〈pi (H − E)2 pi〉

9m3
. (37)

All of these matrix elements are finite when evaluated on P states and on states with higher
angular momenta. In deriving these results, use is made of the integrals I1 – I3 listed in Ap-
pendix B. In particular, I1 is used in deriving L1, I2 is used in deriving L2, and L6 can be
derived using I3. The double logarithm L3 corresponds to Eq. (28). Summing all contributions
L1 – L6, we obtain

L =
6

∑

i=1

Li

=
(α

π

)2
ln2

[

ǫ

(Zα)2

]

2 〈pi pj (H − E) pj pi〉 − 〈p2 (H − E)p2〉

9m4

=
(α

π

)2
ln2

[

ǫ

(Zα)2

]

2π 〈∆δ(3)(r)〉

9m4
(38)

in agreement with formulas (17) and (18). Here, use is made of the equality

〈pi pj (H − E) pj pi〉 = π (Zα) 〈∆δ(3)(r)〉+
1

2
〈p2 (H − E)p2〉 , (39)

which is valid for P states and states with higher angular momenta and can be derived using
the commutator relation (27). We thereby confirm that the additional double logarithm L3

generated by the loop-after-loop diagram Fig. 1 (c) is cancelled by an additional contribution
from L2 according to Eqs. (33) and (39).

As a byproduct of the current investigation, we obtain the rigorous result that B62 vanishes
for states with higher angular momenta l ≥ 2. This is because the expectation value of the
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effective potential (17), when evaluated on hydrogenic D, F, G,. . . states, vanishes: states with
higher angular momenta behave as rl for small r, where l is the angular momentum. We thereby
confirm a statement made in [6] [following Eq. (5) ibid.] where it was pointed out that a formula
analogous to (18) holds for all states with l 6= 1 [see the text following Eq. (5) ibid.].

6 Results and Conclusions

The results of the current investigation can be summarized as follows: In Sec. 2, we attempt
to clarify the derivation and physical origin of effective potentials [6] used for the approximate
description of self-energy corrections in leading logarithmic accuracy, and to provide a more de-
tailed derivation of known double-logarithmic corrections to the Lamb shift. In Sec. 3, restrict-
ing the discussion to P states and states with higher angular momenta, we rederive, within the
effective-potential approach, known results [6] for the leading spin-independent double logarithm
for P states as given by the B62 coefficient [see Eq. (24)]. In Sec. 4, we show that nonvanishing
double logarithms have to be expected from the loop-after-loop diagram if this non-gauge in-
variant term is treated separately (e.g., within a numerical evaluation). By contrast, within the
effective-potential approach, the double logarithm for this diagram vanishes (see the entry in
column 2, row 4 of Table 1 of [6]). In Sec. 5, we show that a rigorous derivation of B62 based on
the entire gauge-invariant set of diagrams in Fig. 1 confirms the result (24) for the total value of
B62. In particular, the additional double logarithm originating from the loop-after-loop diagram
cancels when the contributions of all diagrams are added, and B62 vanishes for all states with
angular momenta l > 1.

A reliable understanding of the problematic two-loop corrections is important for the determi-
nation of fundamental constants from precision spectroscopy [25]. We would also like to stress
that analytic calculations, even in the low–Z region, could be supplemented by accurate numer-
ical evaluations in the near future. Recently, a complete evaluation of the two-loop self-energy
effect for high–Z has been reported [26]. A comparison of the numerical to the analytic results
represents a crucial test for both methods [27]. In order to provide for a reliable comparison of
numerical vs. analytic results, it is helpful to thoroughly analyze and understand the logarithmic
terms from each one of the diagrams in Fig. 1. As outlined in Sec. 5 of [9], the most accurate
theoretical predictions for the energy levels can be obtained using a combination of analytic and
numerical results.

Acknowledgments

The authors acknowlegde many insightful discussions with K. Pachucki. This work has been
supported by the Deutscher Akademischer Austauschdienst (DAAD).

A Appendix A: Analytic Evaluation of a Matrix Element

In this appendix, we discuss the derivation of the expression (19)

∆
[

|φn,l=1,m(r)|
2
]∣

∣

∣

r=0

for hydrogenic P states. In Eq. (18), the Laplacian operator acts on nonrelativistic, Schrödinger
wavefunctions, which are given by

φn,l=1,m(r) = Rn1(r)Y1m(θ, φ) , (40)
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where Rn1(r) is the radial component, Y1m(θ, φ) is the spherical harmonics with the polar-
coordinates r, θ and φ and with quantum numbers (n, l = 1,m). Since the quantum number
l = 1 than the magnetic quantum number can be m = 0 and m = 1,−1. For the sake of
simplicity we consider the m = 0 case,

Y1m=0(θ, φ) =

(

3

4π

)1/2

cos θ. (41)

The Laplacian in (18) can be written in polar-coordinates as

∆ ≡ ∆r +∆θ,φ ≡

(

1

r2
∂

∂r
r2

∂

∂r

)

+
1

r2

(

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

)

, (42)

where ∆r corresponds to the radial component and ∆θ,φ stands for the angular-dependent part
of the Laplacian operator. One easily obtains

∆
[

|φn,l=1,m=0(r)|
2
]

= ∆rR
2
n1

3

4π
cos2 θ +R2

n1

3

4π

2

r2
(1− 3 cos2 θ). (43)

The final result (19) should be independent of the angle θ, i.e. independent of the spatial direction
in which the origin is approached, and independent of the magnetic quantum number. Therefore,
we may postulate that the θ-dependent terms in (43) mutually cancel. Alternatively, we observe
that since (19) should be independent of the angle θ, so that so that we may set θ = π/2.
Reading off the θ-independent part of (43), the following result can be obtained:

∆
[

|φn,1,0(r)|
2
]∣

∣

∣

r→0
=

3

4π

(

2

r2
R2
n1

)∣

∣

∣

∣

r→0

. (44)

The radial component of the Schrödinger wavefunction for hydrogenlike P states (Rn1) is defined
by the associated Laguerre polynomials (L3

n+1) which read

Rn1(r) = −

(

(n − 2)!

(n+ 1)!3 (2n)!

)1/2 ( 2

naB

)5/2

r exp

(

−r

naB

)

L3
n+1

(

2r

naB

)

,

L3
n+1(ρ) =

∂3

∂ρ3

n+1
∑

j=0

(−1)j
(

n+ 1

j

)

(n+ 1)!

j!
ρj , (45)

where the Bohr radius is aB = 1/(Zαm). Using this relation, it is straightforward to obtain

∆
[

|φn,1,0(r)|
2
]∣

∣

∣

r→0
=

2

3π

[

(Zα)5m5
] n2 − 1

n5
, (46)

which is equivalent to Eq. (19).

B Appendix B: Double–Logarithmic Integrals

In this Appendix, we provide the results for certain integrals which may be used in order to
extract the double-logarithmic contributions of order (Zα)6 ln2[ǫ/(Zα)2] from the NRQED two-
loop self-energy (31). We have two photon energies ω1 and ω2 and denote arbitrary matrix
elements of the various occurrences of the operator H − E, scaled by (Zα)2, by the symbols

12



A1, A2 and A3, respectively. The symbol ∼ in this Appendix is meant to indicate that only the
double-logarithmic terms of order (Zα)6 are selected. We have,

I1 =

∫ ǫ1

0
dω1 ω1

∫ ǫ2

0
dω2 ω2

(Zα)2

ω1 +A1 (Zα)2
1

ω1 + ω2 +A2 (Zα)2
(Zα)2

ω2 +A3 (Zα)2

∼ −
1

2
(Zα)6 ln

ǫ1
(Zα)2

ln
ǫ2

(Zα)2
(A1 +A3) , (47)

I2 =

∫ ǫ1

0
dω1 ω1

∫ ǫ2

0
dω2 ω2

(Zα)2

ω1 +A1 (Zα)2
1

ω1 + ω2 +A2 (Zα)2
(Zα)2

ω2 +A3 (Zα)2

∼
1

2
(Zα)6 ln

ǫ1
(Zα)2

ln
ǫ2

(Zα)2
(A1 +A3 −A2) , (48)

I3 =

∫ ǫ1

0
dω1 ω1

∫ ǫ2

0
dω2 ω2

1

ω1 + ω2

(Zα)2

ω2 +A (Zα)2

∼ −
1

2
(Zα)6 ln

ǫ1
(Zα)2

ln
ǫ2

(Zα)2
A2 . (49)
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