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Abstract. Basic features of color superconductivity are reviewed, focusing on the regime
of “moderate densities”, which is not accessible by perturbation theory. We discuss the
standard picture of two- and three flavor color superconductors and study the color-flavor
unlocking phase transition within an NJL-type model.

1. Introduction

The structure of the QCD phase diagram is one of the most exciting topics
in the field of strong interactions (For reviews see, e.g. [1, 2, 3, 4, 5]). For a
long time the discussion was restricted to two phases: the hadronic phase
and the quark-gluon plasma (QGP). The former contains “our” world,
where quarks and gluons are confined to color-neutral hadrons and chiral
symmetry is spontaneously broken due to the presence of a non-vanishing
quark condensate φ = 〈ψ̄ψ〉. In the QGP quarks and gluons are deconfined
and chiral symmetry is (almost) restored, φ ≃ 0.

Although color-superconducting phases were discussed already in the
’70s [6, 7, 8] and ’80s [9], until quite recently not much attention was payed
to this possibility. This changed dramatically after it was discovered that
due to non-perturbative effects, the gaps which are related to these phases
could be of the order of ∆ ∼ 100 MeV [10, 11], much larger than expected
from the early perturbative estimates. Since in standard weak-coupling BCS
theory the critical temperature is given by Tc ≃ 0.57∆(T = 0) [12], this
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also implies a sizable extension of the color-superconducting phases into
the temperature direction [13]. It was concluded that color-superconducting
phases could be relevant for neutron stars [14, 15] and – in very optimistic
cases – even for heavy-ion collisions [16].

Rather soon after the beginning of this new era, it was noticed that there
is probably more than one color superconducting phase in the QCD phase
diagram. At large chemical potential, where up, down, and strange quarks
can condense, matter is expected to be in the so-called color-flavor locked
phase [17], whereas at intermediate densities, just above the deconfinement
phase transition, we might have a two-flavor color superconductor (2SC).
Other phases have been suggested more recently, like crystalline phases in
a small window between the 2SC phase and the CFL phase [18, 19] or
a CFL phase accompanied by a kaon condensate (CFL + K) [20, 21]. In
addition, those color or flavor degrees of freedom which do not participate
in the “standard” condensates could pair in different, usually more fragile,
channels, thus forming additional phases [22, 23, 24].

In this talk we review some of the basic features of color superconduc-
tivity, mainly focusing on the “standard” phases for two and three flavors
and the transition from the 2SC to the CFL phase. Very recently (after
the Stara Lesna workshop) it has been argued that in neutron stars there
might be no 2SC phase at all, because of the rather different Fermi surfaces
of u- and d- quarks in charge neutral matter [25]. We will briefly comment
on this possibility in the end of this article.

2. Diquark condensates

According to Cooper’s theorem any arbitrarily weak interaction leads to an
instability at the Fermi surface which is cured by the formation of Cooper
pairs. At very large densities, where asymptotic freedom allows to perform
the analysis in terms of a single gluon exchange it can easily be shown that
there are indeed attractive channels and hence QCD matter must be a color
superconductor at these densities. However, because of the large number of
possible channels related to the quantum numbers of spin, flavor and color,
we can almost be sure that also in the nonperturbative regime just above
the deconfinement phase transition some of them will be attractive.

In general, a diquark condensate may be written as 〈ψTOψ〉, where ψ is
a quark field and O an operator, acting in color, flavor and Dirac space. It
can also contain derivatives, but we will not consider this possibility here.
A priori, the only restriction to O is provided by the Pauli principle, which
requires that O must be totally antisymmetric. This still leaves many possi-
bilities, and thus the interaction must decide about the actual condensation
pattern.
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As already mentioned, at very large chemical potentials, µ ≫ ΛQCD,
αs(µ) is small and the problem can be (and has been) attacked from
first principles [13, 16, 26, 27, 28]. To estimate the range of validity of
these calculations we assume (quite optimistically) that the perturbative
regime begins at µ ≈ 1.5 GeV. For two massless flavors this corresponds
to a baryon density ρB = 2/(3π2)µ3 ≈ 30 fm−3, which is about 175 times
nuclear saturation density. It turns out that the situation is even worse: In a
numerical study Rajagopal and Shuster [29] found that (gauge dependent)
higher-order terms can only be neglected if µ≫ 105 GeV!

Hence, asymptotic studies, although interesting by themselves, cannot
be trusted down to densities which are present, e.g., in the interior of
neutron stars. In this regime one has to rely on effective interactions,
like instanton interactions [30], or (local or nonlocal) 4-point interactions
(“NJL-type models”) whose structure is also abstracted from the instan-
ton vertex [10] or purely phenomenological. This is quite analogous to the
Landau-Migdal interaction used to describe nuclear matter. However, we
should be aware of the fact that there are presently no data to constrain
the parameters in the deconfined phase itself. They are therefore usually
fixed in vacuum, which is clearly a source of big uncertainties.

Nevertheless, there are good reasons to believe, that a dominant role
might be played by the Lorentz-invariant scalar (J = 0+) condensate,

sAA′ = 〈ψTCγ5 τAλA′ψ〉 , (1)

which corresponds to the most attractive channel, both for interactions
with the quantum numbers of a single gluon exchange as well as for instan-
ton induced interactions. Here C is the matrix of charge conjugation, and
τA and λA′ are the antisymmetric generators of flavor-SU(Nf ) and color-
SU(Nc), respectively. Throughout this article, we will restrict ourselves to
the physical number of colors, Nc = 3. Then the λA′ denote the three
antisymmetric Gell-Mann matrices, λ2, λ5 and λ7, i.e., sAA′ is a color anti-
triplet. Concerning the number of flavors we begin with Nf = 2 in the next
section and we will dicuss Nf = 3 later on.

3. Two flavors

For two flavors (Nf = 2), the flavor index in Eq. (1) is restricted to A = 2,
describing the pairing of an up quark with a down quark. In the limit of
massless up and down quarks s2A′ is invariant under chiral SU(2)L×SU(2)R
transformations. The three condensates s22, s25, and s27, form a vector in
color space, which always can be rotated into the A′ = 2-direction. Hence
the two-flavor superconducting state (2SC) state can be characterized by

s22 6= 0 and sAA′ = 0 if (A,A′) 6= (2, 2) . (2)
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Since only the first two colors (“red” and “green”) participate in the s22,
while the third one (“blue”) does not, color SU(3) is spontaneously broken
down to SU(2). As a result five of the eight gluons acquire a mass [31].

Like in ordinary BCS theory the pairing produces a gap in the spectrum
of the corresponding quasiparticles, which in the case of massless quarks is
characterized by the dispersion laws

E∓(~p) =
√

(p∓ µ)2 + |∆|2 , (3)

where p = |~p|. The gap ∆ is proportional to s22 and is determined by a gap
equation. For local 4-point intercations the latter takes the form

∆ = const .∆

∫

d3p

(2π)3
(
1

E−

tanh
E−

2T
+

1

E+

tanh
E+

2T
) , (4)

where const. contains a coupling constant in the scalar diquark channel and
degeneracy factors. The result is typically of the order of 100 MeV [10, 11].

Until this point we have neglected all other possible condensates, which
might compete or coexist with s22. Because of the empirical fact that
the (approximate) chiral SU(2) symmetry of the QCD Lagrangian is not
respected by the QCD vacuum, it is natural to ask whether the quark
(-antiquark) condensate

φ = 〈ψ̄ ψ〉 , (5)

persists also in the ground state of QCD matter at finite baryon density.
This question has been addressed first by Berges and Rajagopal [32] within
a phenomenological NJL-type model. For massless quarks at T = 0 they
found a first-order phase transition from the vacuum state with φ 6= 0 and
s22 = 0 to a high-density phase with s22 6= 0 and φ = 0. This is different if
there is a small quark mass m which explicitly breaks chiral symmetry. In
this case φ cannot exactly vanish above the phase transition and coexists
with the diquark condensate. In fact, just above the phase transition the
gaps related to the two condensates can be of similar magnitude [32].

However, this is not yet the whole story: At finite density the existence
of Lorentz non-invariant expectation values becomes possible. The most
obvious example is of course the density itself,

ρ = 〈ψ̄ γ0 ψ〉 , (6)

which transforms like the time component of a 4-vector. Together with
s22 and φ this means that color-SU(3), chiral symmetry and Lorentz in-
variance are broken in the system. Therefore a fully selfconsistent descrip-
tion requires to take into account further condensates which are no longer
prohibited by one or more of the above symmetries.
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It turns out that in general three more condensates should be consid-
ered: First, after color-SU(3) is broken, there is no need for the scalar and
vector densities to be the same for “red” and “blue” quarks. Hence, in
addition to Eqs. (5) and (6) there could be condensates of the form

φ8 = 〈ψ̄ λ8 ψ〉 =
2√
3
(φr − φb) (7)

and

ρ8 = 〈ψ̄ γ0 λ8 ψ〉 =
2√
3
(ρr − ρb) . (8)

Note that all green quantities are equal to the red ones. Since the scalar den-
sities are closely related to the constituent quark masses, a non-vanishing
φ8 would mean that the constituent masses of red and blue quarks,Mr and
Mb, can differ from each other.

Finally, there could be another diquark condensate of the form [9, 33, 37]

s′22 = 〈ψT Cγ0γ5 τ2 λ2 ψ〉 , (9)

which breaks all three symmetries, i.e., Lorentz invariance, color-SU(3), and
chiral symmetry, at the same time. It is related to a second gap parameter
∆′.

The simultaneous treatment of these six condensates leads to a set of
six coupled gap equations which we have analyzed in Ref. [34] within an
NJL-type model. The dispersion laws for the paired quarks now take the
form

E∓(p) =

√

(
√

~p2 +M2
eff ∓ µeff )2 + |∆eff |2 , (10)

where Meff , µeff and ∆eff are functions of the six condensates [34]. It is
interesting, that under certain circumstances ∆eff can vanish, even if the
gap parameters ∆ and ∆′ both are non-zero. However, there are indications
that these effectively gapless modes might be always unstable [34].

Some numerical results of our analysis at T = 0 are displayed in Fig. 1.
On the r.h.s. we show the constituent mass Mr of the red quark and the
diquark gap ∆ as functions of µ. The bahavior is quite similar to the results
of Ref. [32], with a phase transition into a color-superconducting phase at
µ ≃ 400 MeV. On the r.h.s. the second diquark gap ∆′ and the difference
between red and blue constituent quark masses, Mr −Mb are shown. We
see that – at least for our model interaction – these quantities are relatively
small, which a posteriori justifies their usual negligence.

On the l.h.s. of Fig. 2 the number densities of red and blue quarks are
displayed as functions of µ. As one can see, the density of the paired quarks
is about 10 - 20% larger than the density of the unpaired quarks in the
regime which is shown. One might therefore ask, how matter should arrange
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Figure 1. Various quantities as functions of the quark chemical potential µ [34]. Left:
Mr (solid), ∆ (dashed). Right: Mr −Mb (solid), −∆′ (dashed).

itself to be color neutral. A possible scenario could be that several domains
emerge in which the symmetry is broken into different directions, such that
the total number of red, green and blue quarks is equal. Alternatively we
could construct a uniform phase with equal densities of all three colors. In
this case the chemical potential has to be larger for the unpaired quarks
than for the paired ones. In order to compare these two possibilities the
energy per quark as function of the total quark number density is shown
on the r.h.s. of Fig. 2. The dashed line corresponds to quark matter with
equal densities of paired and unpaired quarks, the solid line corresponds
to quark matter with equal chemical potentials. Obviously the latter is
energetically favored, but the difference is small and the situation might
change, if surface effects are included.

So far we have assumed that one color (the “blue” quarks) does not par-
ticipate in a condensate. However, because of Cooper’s theorem we should
expect that they will also condense if there is attraction in an appropriate
channel. Since only quarks of a single color are involved, the pairing must
take place in a channel which is symmetric in color. Assuming s-wave
condensation in an isospin-singlet channel, a possible candidate is spin-
1 [10]. This interesting possibility has recently been analyzed in Ref. [23]
and will be discussed in more detail in Jǐŕı Hošek’s contribution [35].

4. Three flavors

For two flavors the flavor index in Eq. (1) was restricted to A = 2. This
is different for Nf = 3, where the flavor operators τA denote the three
antisymmetric Gell-Mann matrices, i.e., A = 2, 5, 7, describing ud-, us-,
and ds-pairing, respectively. The two-flavor condensation pattern, Eq. (2)
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Figure 2. Left: Number densities of red quarks (solid) and blue quarks (dashed) as
functions of the quark chemical potential µ. Right: Energy per quark as function of the
total quark number density for a color superconducting system with equal densities of
gapped and ungapped colors (dashed) and with unequal densities as given in the left
panel (solid).

is still possible, but now there are several other combinations which cannot
be transformed into s22 via color or flavor rotations.

In the case of three degenerate light flavors, dense matter is expected to
form a so-called color-flavor locked (CFL) state [17], characterized by the
situation

s22 = s55 = s77 6= 0 and sAA′ = 0 if A 6= A′ . (11)

In this state color SU(3) as well as the chiral SU(3)L × SU(3)R and the
U(1)-symmetry related to baryon-number conservation are broken down
to a common SU(3)color+V subgroup where color and flavor rotations are
locked. As a consequence all gluons receive a mass and there is a gap in the
disperison laws of all nine (3 flavors, 3 colors) quark quasiparticle states.

The situations discussed so far are idealizations of the real world, where
the strange quark mass Ms is neither infinite, such that strange quarks
can be completely neglected, as in the previous section, nor degenerate
with the masses of the up and down quarks. For sufficiently large quark
chemical potentials µ ≫ Ms, the s quark mass becomes of course almost
negligible against µ and matter is expected to be in the CFL phase. It
is not clear, however, whether this CFL phase is directly connected to
the hadronic phase [36] at low densities, or whether an intermediate 2SC
phase exists, where only up and down quarks are paired. It is obvious
that the answer to this question depends on the strange quark mass. This
has first been analyzed by Alford, Berges and Rajagopal [37] who have
studied the color-flavor unlocking phase transition in a model calculation
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with different values of Ms. Assuming that the region below µ ≃ 400 MeV
belongs to the hadronic phase, these authors came to the conclusion that a
2SC-phase exists if Ms ∼

> 250 MeV. Here Ms is the constituent mass of the
strange quark, which could be considerably larger than the current quark
mass ms ∼ 100 to 150 MeV in the Lagrangian. Similar to the nonstrange
constituent quark masses, dicussed in the previous section, it is in general
T - and µ-dependent and can depend on the presence of quark-antiquark and
diquark condensates. In particular, it can be discontinous along a first-order
phase transition line. This means, not only the phase structure depends on
the effective quark mass, but also the quark mass depends on the phase.

Recently, we have studied these interdependencies [38, 39] within an
NJL-type model defined by the Lagrangian

Leff = ψ̄(i∂/− m̂)ψ + Lqq̄ + Lqq . (12)

The mass matrix m̂ has the form m̂ = diag(mu,mu,ms) in flavor space,
where we have assumed isospin symmetry, mu = md. To study the inter-
play between the color-superconducting diquark condensates sAA′ and the
quark-antiquark condensates φu and φs we consider an NJL-type interac-
tion with a quark-quark part

Lqq = H
∑

A=2,5,7

∑

A′=2,5,7

(ψ̄ iγ5τAλA′ Cψ̄T )(ψTC iγ5τAλA′ ψ) . (13)

and a quark-antiquark part

Lqq̄ = G
8

∑

a=0

[

(ψ̄τaψ)
2 + (ψ̄iγ5τaψ)

2
]

− K
[

detf
(

ψ̄(1 + γ5)ψ
)

+ detf
(

ψ̄(1− γ5)ψ
)]

. (14)

As before τa, a = 1, ..., 8, denote Gell-Mann matrices acting in flavor space,

while τ0 =
√

2

3
11f is proportional to the unit matrix. Eq. (14) corresponds

to a typical 3-flavor NJL-model Lagrangian. It consists of a U(3)L×U(3)R-
symmetric 4-point interaction and a ’t Hooft-type 6-point interaction which
breaks the the UA(1) symmetry. The latter has been neglected in Ref [38].

Starting from this Lagrangian it is tedious, but straight forward to
calculate the mean-field thermodynamic potential Ω at temperature T and
quark chemical potential µ (for details see Ref. [38]) and to determine the
selfconsistent solutions for the expectation values φu = φd, φs, s22, and
s55 = s77 by minimizing Ω with respect to these expectation values. In this
context it is convenient to introduce the constituent quark masses

Mu = mu − 4Gφu + 2Kφu φs , Ms = ms − 4Gφs + 2Kφ2u , (15)
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Figure 3. Gap parameters at T = 0 as functions of the quark chemical potential µ.
Left: Constituent masses of up and down quarks (dashed), and of strange quarks (solid).
Right: Diquark gaps ∆2 (dashed) and ∆5 (solid).

and the diquark gaps

∆2 = −2Hs22 and ∆5 = −2Hs55 . (16)

To determine the values of the various condensates we first have to
specify the parameters of the interaction. We take the parameter values of
Ref. [40] which were obtained by fitting vacuum masses and decay constants
of pseudoscalar mesons. The coupling constant H which cannot be fixed in
this way was chosen to yield “typical” values for ∆2 in the 2SC phase [39].

Our results for the constituent quark masses (left) and the diquark gaps
(right) at T = 0 as functions of µ are displayed in Fig. 3. Obviously, one
can distinguish three phases. At low µ, the diquark gaps vanish and the
constituent quark masses stay at their vacuum values. Hence, in a very
schematic sense, this phase can be identified with the “hadronic phase”
(although there are of course no hadrons in our model).

At a critical µ = µ1 a first-order phase transition to the 2SC phase
takes place: The diquark gap ∆2 has now a non-vanishing value, whereas
∆5 remains zero. At the same time the mass of the light quarks drops
from the vacuum value to about 50 MeV and the baryon number density
jumps from zero to about 2.5 nuclear matter density. At µ = µ2 the system
undergoes a second first-order phase transition, this time from the 2SC
phase into the CFL phase, which is characterized by ∆5 6= 0 (and ∆2 6= 0).

We now extend our analysis to. T 6= 0. The resulting phase diagram
in the µ-T plane is shown in Fig. 4. We can distinguish four different
regimes: At low T we find (with increasing µ) the “hadronic phase”, the
2SC phase, and the CFL phase. Similar to T = 0 these three phases are well
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Figure 4. Phase diagram in the µ− T plane.

separated by first-order phase transitions. The high temperature regime is
governed by the QGP phase, which is characterized by vanishing diquark
condensates and small values of φu and (for large enough µ) φs. There we
find smooth crossovers with respect to φu and φs instead of the first-order
phase transitions. The transition from the 2SC phase to the QGP phase is
of second order and the critical temperature is in almost perfect agreement
with the well-known BCS relation Tc = 0.57∆2(T = 0).

It has been argued [37] that the color-flavor-unlocking transition has to
be first order because pairing between light and strange quarks can only
occur if the gap is of the same order as the mismatch between the Fermi
surfaces. Moreover, the phase transition corresponds to a finite temperature
chiral restoration phase transition in a three-flavor theory, and therefore the
universality arguments of Ref. [41] should apply [3]. At low T our results
are in agreement with these predictions. However, above a critical point we
find a second order unlocking transition. In fact, the above arguments are
not as stringent as they seem to be on a first sight: First the Fermi surfaces
are smeared out due to thermal effects and secondly the 2SC phase is not
a three-flavor chirally restored phase, but only SU(2)× SU(2) symmetric.

5. Discussion: charge neutral matter

In this article we discussed general features of two- and three-flavor color
superconductors. For simplicity, we restricted our studies to a common
chemical potential for all flavors. However, for many applications, e.g., to
the decription of quark cores of neutron stars, one has to consider color
and charge neutral matter in β-equilibrium. Very recently, it was argued
by Alford and Rajagopal that these constraints could completely rule out
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the existence of a 2SC phase in compact stars [25]. This could give rise to
a much larger window for crystalline phases than expected earlier [42].

To this end, we consider a system of massless u and d quarks together
with electrons, but – in a first step – with no strange quarks. Since the
density of electrons is small (see, e.g., [43]), to achieve charge neutrality
the density of d-quarks must be almost twice as large as the density of
u-quarks, and hence µd ≈ 21/3µu. This means that, e.g., for µu = 400 MeV,
the Fermi momenta of u and d differ by about 100 MeV, making ud BCS-
pairing very difficult. Alford and Rajagopal approached the problem from
the opposite side, performing an expansion in terms of the strange quark
mass. They found that, whenever the 2SC phase is more favorite than no
pairing at all, the CFL phase is even more favorite. However, this analysis
did not include selfconsistently calculated quark masses, and should be
redone including these effects. Work in this direction is in progress.
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