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QCD and hybrid NBD on oscillating moments of multiplicity distributions in

lepton- and hadron-initiated reactions.
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Abstract

QCD predictions for moments of multiplicity distributions are compared with
experimental data on e

+
e
− collisions and their two-NBD fits. Moments of the mul-

tiplicity distribution in a two-NBD model for 1.8 TeV pp-collisions are considered.
Three-NBD model predictions and fits for pp at LHC energies are also discussed.
Analytic expressions for moments of hybrid NBD are derived and used to get insight
into jet parameters and multicomponent structure of the processes. Interpretation
of observed correlations is proposed.

Multiplicity distributions are the integral characteristics of multiparticle production
processes. They can be described either in terms of probabilities Pn(E) to create n
particles at energy E or by the moments of these distributions. It has been found that
their shapes possess some common features in all reactions studied. At comparatively
low energies below tens of GeV, these distributions are relatively narrow and have sub-
Poissonian shapes. At energies about 20 GeV for e+e−- annihilation and 30 GeV for
pp (and pp̄) interactions, they can be well fitted by the Poisson distribution2. At higher
energies, the shapes become super-Poissonian, i.e. their widths are larger than for Poisson
distribution. They increase with energy and, moreover, some shoulder-like substructures
appear.

Their origin is usually ascribed to multicomponent contents of the process. In QCD
description of e+e−-processes these could be subjets formed inside quark and gluon jets
(for the reviews see, e.g., [1, 2]). In phenomenological approaches, the multiplicity distri-
bution in a single subjet is sometimes approximated by the negative binomial distribution
(NBD) first proposed for hadronic reactions in [3]. For hadron-initiated processes, these
peculiarities are also explained by the multicomponent structure of the process. This is
either multiladder exchange in the dual parton model [4, 5], varying number of clans [6] or
multiparton interactions [7, 8]. These subprocesses are related to the matter state during
the collision (e.g., there are speculations about nonhomogeneous matter distribution in
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2This difference of thresholds can be attributed to lower energy spent in hadron collisions for new

particles creation (due to the so-called leading particle effect) compared to e
+
e
−- annihilation.
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impact parameters [9], not to speak of quark-gluon plasma [10] behaving as a liquid [11]
etc).

Such evolution of the multiplicity distributions can be quantitatively described by the
energy behaviour of their moments. These moments reveal the correlations inherent for
the matter state formed during the collision. Similarly to virial coefficients in statistical
physics they can tell us about the equation of state of this matter. To introduce them,
let us write the generating function of the multiplicity distribution as

G(E, z) =
∞
∑

n=0

Pn(E)(1 + z)n. (1)

In what follows, we will use the so-called unnormalized factorial Fq and cumulant Kq

moments defined according to the formulae

Fq =
∑

n

Pnn(n− 1)...(n− q + 1) =
dqG(E, z)

dzq
z=0, (2)

Kq =
dq lnG(E, z)

dzq
z=0. (3)

They correspondingly define the total and genuine correlations among the particles pro-
duced (for more details see [12, 2]). These cumulant moments could be considered as the
direct analogies of virial coefficients of statistical physics since both are related to genuine
(irreducible) correlations. In particular, the first moments describe the mean multiplicity
〈n〉

F1 = K1 = 〈n〉, (4)

and the second moments are related to the dispersion D of the distribution Pn:

K2 = F2 − 〈n〉2 = D2 − 〈n〉. (5)

The higher rank moments reveal other asymmetries of distributions such as skewness etc.
Since both Fq and Kq strongly increase with their rank and energy, their ratio

Hq = Kq/Fq (6)

first introduced in [13] is especially useful due to partial cancellation of these dependences.
The factorial moments Fq’s are always positive by definition (Eq. (2)) while the cumulant
moments Kq’s can change sign. Again, let us recall that the changing sign second virial
coefficient in statistical physics implies the liquid state with the Van der Waals equation
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corresponding to repulsion at small distances and attraction at large distances. Cooper
pair formation is also related to similar behaviour of correlations.

Here, we compare QCD and NBD approaches to the description of multiplicity distri-
butions. We argue that Hq values are more sensitive to minute details of the distributions
than their direct chi-square fits and reveal differences between proposed fits of e+e− and
pp (pp̄) processes. Some estimates for LHC energies will be provided.

The generating functions for quark and gluon jets satisfy definite equations in pertur-
bative QCD (see [14, 2]). It has been analytically predicted in gluodynamics [13] that
at asymptotically high energies the Hq moments are positive and decrease as q−2 but
at present energies they become negative at some values of q and reveal the negative
minimum at

qmin =
1

h1γ0
+ 0.5 +O(γ0), (7)

where h1 = b/8Nc = 11/24, b = 11Nc/3 − 2nf/3, γ2
0 = 2NcαS/π, αS is a coupling

strength, Nc, nf are the numbers of colours and flavours. At Z0 energy αS ≈ 0.12,
and this minimum is at about q ≈ 5. It moves to higher ranks with energy increase
because the coupling strength decreases. Some hints to possible oscillations of Hq vs q at
higher ranks at LEP energies were obtained in [13]. Then the approximate solution of the
gluodynamics equation for the generating function [15] agreed with this and predicted the
oscillating behaviour at higher ranks. These oscillations were confirmed by experimental
data for e+e− and hadron-initiated processes first in [16], later in [17] and most recently
in [18]. The same conclusions were obtained from exact solution of equations for quark
and gluon jets in the framework of fixed coupling QCD [19]. The physics interpretation
of these oscillations as originating from multisubjet structure of the process is related to
the (multi)fractal behaviour of factorial moments, found also in QCD [20, 21, 22]. The
asymptotic disappearance of oscillations can be ascribed to the extremely large number
of subjets at very high energies.

A recent exact numerical solution of the gluodynamics equation in a wide energy
interval [23] coincides with the qualitative features of multiplicity distributions described
above. In terms of moments they correspond to the values of Hq changing sign at each
subsequent q (with H2 < 0) at low energies (narrow shapes3), the approach of Hq to
zero at the Poisson transition point about 20 GeV for e+e− processes, and the positive
second moment H2 with oscillations of higher rank cumulants at Z0 which disappear
asymptotically. At Z0, the first minimum appears at q ≈ 5. This confirms earlier exact
QCD results [24] at Z0. It moves to higher ranks with a steadily decreasing amplitude

3Narrow distributions always have such cumulants as shown, e.g., in [2].
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when energy increases. The only free parameter is the QCD cut-off, which is however
approximately fixed by the coupling strength and does not strongly influence the results.

In parallel, the NBD-fits of multiplicity distributions were attempted [6, 25]. The
single NBD-parameterization is

Pn(E) =
Γ(n + k1)

Γ(n + 1)Γ(k1)

(

n1

k1

)n (

1 +
n1

k1

)

−n−k1

, (8)

where Γ denotes the gamma-function. This distribution has two adjustable parameters
n1(E) and k1(E) which depend on energy. Such a formula happened to describe low
energy data with negative values of k1 that corresponds to binomial fits. At the Poisson
transition point k−1 = 0. The parameter k1 becomes positive at higher energies. However
the simple fit by the formula (8) is valid till the shoulders appear. In that case, this formula
is replaced by the hybrid NBD which combines two or more expressions like (8). Each of
them has its own energy dependent parameters ni, ki. These distributions are weighted
with the energy dependent probability factors αi which sum up to 1. Correspondingly,
the number of adjustable parameters drastically increases.

A single NBD (8) has positive cumulants for k1 > 0 (Kq = Γ(q)nq
1/k

q−1

1 ) and thus the
positive Hq = Γ(q)Γ(k1 + 1)/Γ(k1 + q). For hybrid NBD, the negative Hq can exist. The
traditional procedure to calculate higher rank moments is by the iterative relations

Hq = 1−
q−1
∑

m=1

Γ(q)

Γ(m+ 1)Γ(q −m)
Hq−m

FmFq−m

Fq

. (9)

The strong compensations are inherent in Eq. (9). This calls for high accuracy of numer-
ical calculations. More important, the formula does not give any direct insight into the
physical reasons for such compensations. Therefore, it is instructive to write the analytic
formulae for moments of hybrid NBD which provide clear interpretation of negative val-
ues of cumulants. We have derived these expressions for the two-NBD parameterization
(2NBD) given by a sum of two expressions like (8) with two sets of adjustable parameters
n1, k1, n2, k2 weighted with energy dependent factors α and 1−α correspondingly. 2NBD
describes the process with two independent NBD-components of mean multiplicities ni

and widths ki created with probabilities α and 1−α. The factorial moments for any rank
q are given by the simple formula

Fq = α
Γ(k1 + q)

Γ(k1)

nq
1

kq
1

+ (1− α)
Γ(k2 + q)

Γ(k2)

nq
2

kq
2

(0 ≤ α ≤ 1). (10)
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The cumulant moments are more complicated and should be calculated separately for
each rank. The first 5 moments are

K1 = F1 = 〈n〉 = αn1 + (1− α)n2, (11)

K2 =
αn2

1

k1
+

(1− α)n2
2

k2
+ α(1− α)(n1 − n2)

2, (12)

K3 =
2αn3

1

k2
1

+
2(1− α)n3

2

k2
2

+ α(1− α)(n1 − n2)[3(n
2

1/k1 − n2

2/k2) + (1− 2α)(n1 − n2)
2], (13)

K4 =
6αn4

1

k3
1

+
6(1− α)n4

2

k3
2

+ α(1− α)[(n1 − n2)
4(1− 6α(1− α)) + 11(n2

1/k1 − n2

2/k2)−

8n1n2(n1/k1 − n2/k2)
2 + 6(1− 2α)(n1 − n2)

2(n2

1/k1 − n2

2/k2)], (14)

K5 =
24αn5

1

k4
1

+
24(1− α)n5

2

k4
2

+ 5α(1− α)[6(n1 − n2)(n
4

1/k
3

1 − n4

2/k
3

2) +

4(n3

1/k
2

1 − n3

2/k
2

2)(n
2

1/k1 − n2

2/k2) + (1− 2α)(n1 − n2)(7(n1 − n2)(n
3

1/k
2

1 − n3

2/k
2

2) +

3n1n2(n1/k1 − n2/k2)
2) + 2(1− 6α(1− α))(n1 − n2)

3(n2

1/k1 − n2

2/k2) +

0.2(1− 2α)(1− 12α(1− α))(n1 − n2)
5],(15)

For α = 0 or 1 they reduce to one-NBD formulae with one of the first two terms surviv-
ing. It is always positive for positive ki. Therefore, as expected, individually considered,
the distributions show no oscillations. For 2NBD, there is a symmetry in replacing in-
dices 1 to 2 together with α to 1 − α. Negative K2 can be obtained only if ki < 0. For
positive ki one always gets positive K2. Its value depends on the difference n1 − n2. K3

can become negative depending on the values of the last two terms. The cancellations in
the expressions (13)-(15) are not so drastic as in Eq. (9), especially for large q, because
the leading contributions to Hq are strongly decreasing with q there and not of the order
of 1 as in (9). Therefore they do not require very high precision and, moreover, clearly
display the origin of each term and its dependence on fitted parameters.

Actually, five moments determine quite well the shape of the distribution if they are
calculated with high enough accuracy. Since these shapes are qualitatively similar in
different reactions, it is especially instructive to compare their Hq moments. In Table 1
the Hq moments for e+e− annihilation at Z0 are shown. Their values according to the
solution of the gluodynamics equations [23] are in the first column. In the second and
third columns, the experimental results of L3 collaboration [18] are represented for full
phase space (FPS), correspondingly, with all measured multiplicities included and with
some very high multiplicities truncated (because of large error bars). Next follow Hq

values restored from 2NBD fits of OPAL and DELPHI results done in [26].
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Table 1.

QCD L3, untr L3, tr OPAL,2NBD DELPHI,2NBD
H2 3.9E-2 (4.42±0.11)E-2 (4.41±0.10)E-2 4.4E-2 3.1E-2
H3 7.4E-3 (7.40±0.38)E-3 (7.20±0.35)E-3 7.4E-3 2.6E-3
H4 4.0E-4 (9.69±2.56)E-4 (7.17±1.42)E-4 4.9E-4 7.4E-5
H5 -2.2E-4 -(1.30±1.59)E-4 -(3.95±0.53)E-4 -2.4E-4 -7.3E-5

The overall agreement is rather good. Quite impressive is the fact that in all cases the
fifth cumulant moment is negative. However, somewhat surprising is the difference of the
theoretical and experimental widths (H2 values). The widths are determined quite pre-
cisely both experimentally and theoretically. The only reason to which such disagreement
could be ascribed is the incomplete treatment with quarks omitted in [23]. The more
complete approach will shed more light on this problem. The even stronger disagreement
with DELPHI data is probably related to the special selection of events there. Further
analysis is needed.

The comparison of e+e− and pp (pp̄) data turns out especially interesting. While both
show qualitative similarity of the shapes of multiplicity distributions, the corresponding
Hq values are quite distinctive. In Table 2 we show Hq values for pp̄ at 1.8 TeV (Tevatron)
and interpolations to 14 TeV (LHC). The 2NBD fit at 1.8 TeV corresponds to the follow-
ing parameters: α = 0.62, n1 = 30, n2 = 61.6, k1 = k2 = 7, which are approximately
equal to average values for 2.A model considered in [6]. However, even this extreme
model underestimates high multiplicities and, therefore, Hq values in the Table should be
treated as lower bounds to experimental ones, which are unknown, unfortunately. The
extrapolated values at 14 TeV have been calculated using the parameters of 3NBD fits
and Pythia model considered in [25].

Table 2.

2NBD fit, 1.8TeV 3NBD fit, 14TeV Pythia, 14TeV
H2 0.2279 0.8754 0.4224
H3 0.0988 0.9703 0.3387
H4 0.0414 0.9737 0.2683
H5 0.0120 0.9742 0.1877

Quite impressive are much larger values of Hq in hadron-initiated reactions (Table 2)
as compared to e+e− results (Table 1). They strongly increase with energy. Moreover,
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the drastic difference is clearly displayed by Hq between 3NBD interpolations and Pythia
at 14 TeV. This demonstrates extremely high sensitivity of Hq analysis because both
approaches provide the similar two-shoulder structure of multiplicity distributions as seen
in Fig. 2 of [6]. At 14 TeV, the predictions are given for full phase space. For the rapidity
interval |η| < 0.9 the Hq values become larger than those in Table 2. Hq for the 3NBD-
model of [6] become almost indistinguishable from 1 (above 0.99). Pythia values increase
about 1.4 times. No oscillations are seen at these high energies while they are present at
energies below 1 TeV [16]. Surely, LHC experiments will give their decisive conclusion.

To conclude, we have shown that Hq moments of the multiplicity distribution are
extremely sensitive to minute details of its shape. They can resolve the differences between
various fits even if those are not clearly seen in the traditional representation. For e+e−,
slight disagreement on theoretical and experimental widths is embarassing and must be
further studied. For hadron- and nuclei-initiated reactions, Hq values are much larger than
in e+e−. RHIC and LHC data are awaited for better insight. The energy dependence of
Hq and of the relative weights of various NBD components can provide some hints on the
matter state during the collision and its energy evolution.

I am grateful to A. Giovannini and W. Metzger for correspondence. This work has been
supported in part by the RFBR grants N 02-02-16779, 03-02-16134, NSH-1936.2003.2.

References

[1] V.A. Khoze and W. Ochs, Int. J. Mod. Phys. A 12 (1997) 2949.

[2] I.M. Dremin and J.W. Gary, Phys. Rep. 349 (2001) 301.

[3] A. Giovannini, Nuovo Cim. A 15 (1973) 543.

[4] A. Capella, U. Sukhatme, C.I. Tan and J. Tran Thanh Van, Phys. Lett. B 81 (1979)
68.

[5] A.B. Kaidalov, Phys. Lett. B 116 (1982) 459.

[6] A. Giovannini and R. Ugoccioni, Phys. Rev. D 59 (1999) 094020.

[7] T. Alexopoulos et al, Phys. Lett. B 435 (1998) 453.

[8] S. Matinyan and W.D. Walker, Phys. Rev. D 59 (1999) 034022.

7



[9] C. Bourelly et al, Proc. of the VI Blois Workshop on Frontiers in Strong Interactions,
Ed. J. Tran Thanh Van, Editions Frontiers (1995), p.15.

[10] L. McLerran, Rev. Mod. Phys. 58 (1986) 1021.

[11] E. Shuryak, hep-ph/0312227.

[12] E. DeWolf, I.M. Dremin and W. Kittel, Phys. Rep. 270 (1996) 1.

[13] I.M. Dremin, Phys. Lett. B 313 (1993) 209.

[14] Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan, Basics of perturbative
QCD ed. by J. Tran Thanh Van (Gif-sur-Yvette, Editions Frontieres, 1991).

[15] I.M. Dremin and V.A. Nechitailo, Mod. Phys. Lett. A 9 (1994) 1471; JETP Lett. 58
(1993) 881.

[16] I.M. Dremin, V. Arena, G. Boca et al, Phys. Lett. B 336 (1994) 119.

[17] SLD Collaboration, K. Abe et al, Phys. Lett. B 371 (1996) 149.

[18] L3 Collaboration, P. Achard et al, Phys. Lett. B 577 (2003) 109.

[19] I.M. Dremin and R.C. Hwa, Phys. Rev. D 49 (1994) 5805; Phys. Lett. B 324 (1994)
477.

[20] W. Ochs and J. Wosiek, Phys. Lett. B 289 (1992) 159; 304 (1993) 144.

[21] Yu. L. Dokshitzer and I.M. Dremin, Nucl. Phys. B 402 (1993) 139.

[22] Ph. Brax, J.L. Meunier and R. Peschanski, Z. Phys. C 62 (1994) 649.

[23] M.A. Buican, C. Förster and W. Ochs, hep-ph/0307234.

[24] S. Lupia and W. Ochs, Phys. Lett. B 418 (1998) 214; Nucl. Phys. (Proc. Suppl.) B
64 (1998) 74.

[25] A. Giovannini and R. Ugoccioni, hep-ph/0312205.

[26] A. Giovannini, S. Lupia and R. Ugoccioni, Phys. Lett. B 374 (1996) 231.

8


