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We suggest a tetracritical fixed point to naturally occur in strongly interacting theories. As a
fundamental example we analyze the temperature–quark chemical potential phase diagram of QCD
with fermions in the adjoint representation of the gauge group (i.e. adjoint QCD). Here we show
that such a non trivial multicritical point exists and is due to the interplay between the spontaneous
breaking of a global U(1) symmetry and the center group symmetry associated to confinement. Our
results demonstrate that taking confinement into account is essential for understanding the critical
behavior as well as the full structure of the phase diagram of adjoint QCD. This is in contrast to
ordinary QCD where the center group symmetry associated to confinement is explicitly broken when
the quarks are part of the theory.

I. INTRODUCTION

Phase diagrams for strongly interacting theories are a
topic of past and current interest [1], and the relation
between deconfinement and chiral symmetry restoration
poses a continuous challenge. In ordinary QCD these
problems have been intensively addressed via computer
simulations [2]. By investigating such a relation in dif-
ferent strongly interacting theories one gains insight on
the ordinary QCD dynamics as well. We recall, that the
order parameter for deconfinement is the Polyakov loop
[3], while the one for chiral symmetry restoration is the
quark condensate. The representation of the matter with
respect to the gauge group is known to play a relevant
role in the deconfining dynamics. Much attention in the
literature has been given to ordinary QCD with two or
three flavors. The presence of quarks in the fundamental
representation breaks the center group symmetry explic-
itly, and for massless quarks only the chiral phase tran-
sition remains well defined. The latter is then expected
to drive the critical behavior [4]. At nonzero and large
quark masses the issue of which transition, i.e. decon-
fining or chiral symmetry restoring, dominates, becomes
a non perturbative problem which only lattice computa-
tions can currently solve.

The situation becomes clearer, at least in principle, for
fermions in the adjoint representation of the gauge group.
Here one has two well defined and independent order pa-
rameters, since the center group symmetry remains intact
in the presence of the fermions. Lattice data seems to
confirm the independence of the forces driving indepen-
dently the chiral and deconfining phase transition both
for two and three colors [5, 6].

However, when two or more orders compete the result-
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ing phase diagram is expected to have a very interesting
and rich structure due to the possibility of multicritical
behavior. This arises at the intersection of critical lines
characterized by different order parameters. Our interest
is in the case of two order parameters. If the transition at
the multicritical point is continuous, then either bicritical
or tetracritical behavior can occur. Bicritical behavior
occurs if a first-order line originating from the multicrit-
ical point separates two different ordered phases, each
separated from the disordered phase by a line of contin-
uous transitions beginning from the multicritical point.
Tetracritical behavior on the other hand occurs if there
exists a mixed phase in which both types of ordering
coexist, and which is bounded by two critical lines meet-
ing at the multicritical point. It is also possible that the
phase transition at the multicritical point is of first order.
This case is similar to the bicritical one, with the distinc-
tion that the two lines separating the disordered phase
from the ordered ones, start from the multicritical point
as first order lines and then turn to second order lines at
tricritical points. A typical condensed matter example of
multicritical behavior is the phase diagram of anisotropic
antiferromagnets in a uniform magnetic field parallel to
the anisotropy axis [7]. Further examples include 4He [8]
and high-Tc superconductors [9]. Also, it has been sug-
gested that a multricritical behavior might emerge in the
phase diagram of hadronic matter at finite baryon chem-
ical potential [10]. For two colors a tetracritical behavior
induced by a possible competition between a diquark and
a quark-antiquark phase has been investigated in [11].

In this paper we show that strongly interacting gauge
theories with fermions in the adjoint representation may
very naturally display a tetracritical behavior. Interest-
ingly, the two competing orders we will consider are con-
finement and chiral symmetry. The critical behavior aris-
ing from two competing orders has a long history. Inves-
tigations in anisotropic magnetic systems were carried
out at the mean field level in [8], and subsequently in [7]
to first order in ǫ = 4 −D, where D is the dimension of
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spacetime. More recently the analysis has been carried
up to order O(ǫ5) in the ǫ-expansion [12].
In this work we propose that a non trivial multicritical

point exists in the temperature–quark chemical potential
phase diagram of QCD with fermions in the adjoint rep-
resentation of the gauge group (i.e. adjoint QCD). The
two competing orders are chiral symmetry and confine-
ment. Our results suggest that taking confinement into
account is essential for understanding the critical behav-
ior as well as the full structure of the phase diagram of
adjoint QCD. This is in contrast to ordinary QCD where
the center group symmetry associated to confinement is
explicitly broken when the quarks are part of the theory.
In section II we briefly review the basic classification

of the multicritical points [7, 8, 12] relevant for our dis-
cussion. In section III we study Yang-Mills theories with
fermions in the adjoint representation of the gauge group
at temperature. Here we discuss the critical behavior
in the hypothetical case in which chiral symmetry and
confinement compete for order. The early lattice work
[6] seems to exclude the presence of multicritical points.
Nevertheless, we find instructive to discuss this regime.
We then introduce, in section IV, a nonzero quark

chemical potential for one Dirac flavor in the adjoint
representation of two colors. Then we proceed to show
that a multicritical point is quite likely to occur in the
temperature–chemical potential phase diagram. The two
orders correspond to the Z2 symmetry (i.e. O(1)) and
the U(1) ∼ O(2), respectively. Z2 is the center group
symmetry associated with confinement, while O(2) is the
baryon number which spontaneously breaks due to the
formation of diquark condensates. Some analogous theo-
ries have been investigated directly via lattice simulations
[13], and within the chiral perturbation theory approach
[14, 15]. We show that the interplay between the two or-
der parameters substantially affects the phase diagram.
The multicritical point is predicted to be in the O(3)

Heisenberg universality class, according to the classifica-
tion in [7], if the fixed point analysis is performed at one
loop in the ǫ = 4 − D expansion [7]. If higher orders
are considered the fixed point is predicted to be a bicon-
ical tetracritical point [12]. We finally suggest possible
applications of our results to QCD with fermions in the
fundamental representation of the gauge group.

II. CLASSIFICATION OF MULTICRITICAL

POINTS

In this paper we will argue that certain strongly inter-
acting theories naturally lead to phase transitions, in the
temperature–quark chemical potential plane, possessing
multicritical points. The novelty is in the fact that this
multicritical behavior is a result of the interplay of de-
confinement and global symmetry breaking.
One of the most remarkable features of continuous

phase transitions is their universal character. There is,
indeed, a rich variety of systems which exhibit the same

identical critical behavior. When possible, it is conve-
nient to introduce order parameters to describe the phase
transition. In our case we will have two order parame-
ters: one associated to deconfinement and the other to a
global symmetry. Note, that even though we start from
a fermionic theory, near the critical point of interest the
relevant effective degrees of freedom are bosonic, and are
naturally identified with the physical fluctuations of the
order parameters. This is the standard approach related
to the study of phase transitions.

Before moving to the theories of interest to us, we
introduce in this section the relevant definitions and
the classification of the multricritical behaviors emerg-
ing when two order parameters compete for order. We
will keep the discussion general.

Following [7] and [12] when we have two order parame-
ters, ℓ and σ, which compete with symmetries O(N1) and
O(N2), respectively, one can write the effective theory
symmetric under O(N1) ⊕ O(N2). Up to quartic terms
the effective theory containing both order parameters in
D Euclidean dimensions is:

L =
1

2
(∂µℓ)

2 +
1

2
(∂µσ)

2 +
1

2
m2

ℓℓ
2 +

1

2
m2

σσ
2

+
λ

4!
(ℓ2)2 +

g4
4!
(σ2)2 +

g2
4
ℓ2σ2. (1)

Here ℓ2 =
∑N1

n=1 ℓ
2
n and σ2 =

∑N2

m=1 σ
2
m. It is possible

that for a certain value of the physical parameters, and in
D=3, the correlation lengths of the two order parameters
diverge simultaneously yielding a multicritical point. At
such a point the critical behavior can be determined by
tuning the parameters m2

ℓ and m2
σ to their critical values

and studying the stable fixed points of the renormaliza-
tion group flow.

A. Fixed points and critical behavior at one loop

A first order analysis in the ǫ-expansion [7] for the
theory (1) at multicritical point shows, that six distinct
fixed points exist. Four of them have g2 = 0, and three of
these, namely the gaussian, O(N1) and O(N2) symmetric
ones, are always unstable against the perturbations away
from the g2 = 0-plane, while the fourth one is stable for
sufficiently large values of N1 and N2. Since g2 = 0,
the two fields behave independently and this stable fixed
point is termed decoupled fixed point. The other two sta-
ble fixed points lie at nonzero g2. First of them is called
the Heisenberg O(N1 +N2) fixed point, due to enhanced
symmetry, and the second one is called the biconical fixed
point. The fixed points can be determined by computing
the zeros of the beta functions of the theory which at one
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loop are:

β(λ) =
λ

6

(N1 + 8)

8π2
+ 3

g22
2

N2

8π2
− λǫ ,

β(g4) =
g4
6

(N2 + 8)

8π2
+ 3

g22
2

N1

8π2
− λǫ ,

β(g2) =
λ g2
6

(N1 + 2)

8π2
+
g4 g2
6

(N2 + 2)

8π2
+ 2

g22
8π2

− g2ǫ .

The stability of a generic fixed point is ensured if the
matrix

ωij =
∂βi
∂gi

∣

∣

∣

∣

g∗

, (2)

evaluated at the fixed point g∗ has real and positive eigen-
values. Our results agree with the ones in [7].
The nature of the multicritical point is determined by

the sign of the quantity λg4 − g22/9 [8]. This constraint
simply tells us, at the level of the effective Lagrangian, if
the phase displaying two orders (i.e. non vanishing con-
densates for both order parameters) has a higher or lower
free energy with respect to the phases in which one of the
condensates vanishes [8]. If the sign is positive we expect
a tetracritical behavior. For the negative sign the phase
with two orders has higher free energy than the phases
with only partial order. In this case a simultaneous exis-
tence of two orders is unstable and a jump between the
phases with partial orders occurs. In the latter case we
expect a bicritical behavior.
Decoupled and biconical stable fixed points mentioned

above satisfy the criterion of tetracriticality, λg4 > g22/9,
at the critical point, while for the fixed point correspond-
ing to the isotropic N1 +N2-vector model can, interest-
ingly, be either bicritical or tetracritical [12]. This possi-
bility arises due to the presence of a dangerous irrelevant
variable [16].
Defining n = N1 + N2, the low order ǫ-expansion

calculation shows that for n < 4 the critical behav-
ior is due to the stable fixed point corresponding to an
isotropic O(n)-Heisenberg model. As n increases, the
biconical fixed point becomes stable and yields a new
tetracritical behavior. Finally, for large n, namely for
N1N2 + 2N1 + 2N2 ≥ 32, the stable fixed point is the
decoupled one, which leads to the tetracritical behavior
in which the two fields do not affect each other.
We first summarize in table I the generic results which

were obtained in the O(ǫ) calculation, and then we dis-
cuss them in the context of strong interactions. Each
of these fixed points have interesting specific properties:
For the Heisenberg fixed point the symmetry is enhanced
from O(N1)⊕O(N2) to O(N1 +N2), and the theory (1)
becomes that of isotropic Heisenberg N1+N2-component
model, as can be seen by inspecting the lagrangian (1)
at the fixed point given by λ = g4 = 3g2. The critical
exponents ν1 and ν2 quoted in the table I are defined in
terms of the eigenvalues λℓ and λσ of the corresponding
relevant variables m2

ℓ and m2
σ in the linearized renormal-

FP n = N1 +N2 ν1, ν2

Decoupled n ≥ 10 1

2
+ N2+2

N2+8

ǫ
4
, 1

2
+ ǫ

12

(N1 = 1)

Biconical 4 ≤ n < 10
(N1 = 1)
N2 = 3 0.5 + 0.1250ǫ, 0.5 + 0.0417ǫ
N2 = 4 0.5 + 0.1336ǫ, 0.5 + 0.0560ǫ
N2 = 5 0.5 + 0.1403ǫ, 0.5 + 0.0667ǫ
N2 = 6 0.5 + 0.1460ǫ, 0.5 + 0.0741ǫ
N2 = 7 0.5 + 0.1515ǫ, 0.5 + 0.0789ǫ
N2 = 8 0.5 + 0.1568ǫ, 0.5 + 0.0816ǫ

Heisenberg n < 4 1

2
+ n+2

n+8

ǫ
4
, 1

2
+ 1

n+8

ǫ
2

TABLE I: The critical exponents of the correlation length at
the various multicritical points of O(N1 = 1)⊕O(N2) theory.

ization group recursion relations as:

ν1 =
1

λℓ
, ν2 =

1

λσ
. (3)

These describe the divergence of the correlation lengths
as a function of suitable scaling fields, for example the
reduced temperature t = T/Tc−1 and, say a new scaling
field g. The latter can be a magnetic field, a quark mass
parameter etc.
The effect of the perturbation controlled by g is gen-

erally captured by the crossover exponent φ defined
through the usual scaling formula for e.g. correlation
length

ξ(T, g) ∼ t−νF (g/tφ), (4)

and similarly for other thermodynamical quantities. Here
ν = ν1 corresponds to g = 0 case and φ = ν/ν2. The
crossover scaling function F (z) is finite at z = 0, but has
divergences at specific points and these divergences then
modify the g = 0 behavior ∼ t−ν .
Considering magnetic systems as an example, for n <

4 at O(ǫ), the crossover corresponds to the weakly
anisotropic n-vector model, where the anisotropy is given
by the term ∼ gℓ2σ2 in the isotropic Hamiltonian. In
other words, ν1 describes the divergence of the correla-
tion length as ξ ∼ |t|−ν1 , where t is the reduced temper-
ature, while the exponent ν2 describes the divergence of
the correlation length in the anisotropy g as ξ ∼ g−ν1

when g → 0. The crossover exponent in this case is given
by φ = 1 + nǫ

2(n+8) .

The decoupled fixed point describes a system consist-
ing of effectively independent N1- and N2-component
Heisenberg subsystems, and therefore the critical indices
are the ones of the two independent Heisenberg sub-
systems and are in that respect trivial. Interestingly,
though, the total scaling will break, since a single scal-
ing function cannot properly describe the asymptotic free
energy when N1 6= N2. Finally, the biconical fixed point
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features completely new critical exponents. However,
since they are numerically very close to the correspond-
ing Heinseberg ones, they may be hard to distinguish
experimentally.

B. Results from higher order computations

It is important to note that the numbers quoted in
table I are a result of a first order calculation in ǫ. Fur-
thermore, these results must be extrapolated to ǫ = 1
to be applicable. However, past experience has shown
that even in this limit, the ǫ expansion describes the
fixed point physics surprisingly well. Already the O(ǫ)
results show that as a function of n the critical behav-
ior in the case of two competing orders leads to a rich
spectrum of possibilities. However in the present case
higher order contributions are relevant. For the case
of O(N1) ⊕ O(N2) theory, a remarkable O(ǫ5) calcula-
tion exists [12], and we will briefly discuss the improve-
ments for the critical exponents in what follows. First,
however, let us note that the higher orders also lead
to important changes in the domains of stability of the
fixed points in the (N1, N2)-plane. The O(ǫ3) results for
the Heisenberg fixed point [17] lead to the stability for
N1 +N2 < 4− 2ǫ+ 5

12 (6ζ(3)− 1) +O(ǫ3).

A calculation to O(ǫ5) further narrows the domains of
stability for the fixed points: The O(n)-Heisenberg fixed
point is stable only for n = 2, i.e. only in the case of two
intersecting Ising lines. Then, for n = 3 the stable fixed
point is the biconical one, and the decoupled fixed point
is stable for all n ≥ 4 with any values of N1 and N2. For
further details we refer to the existing literature [7, 12].

Since the domain of stability of the Heisenberg fixed
point shrinks down to n = 2 it will not play a role in our
strong interaction examples. The biconical fixed point is
stable for n = 3. We will see that this fixed point will
be relevant for our investigations. For all of the other
combinations of N1 and N2 such that N1 +N2 ≥ 4, the
stable fixed point is the decoupled one with well known
independent O(N1) and O(N2) exponents. Therefore, to
conclude this section, let us state the high order values
for the critical exponents relative to the biconical fixed
point at ǫ = 1. Using the general definitions ν = ν1 and
φ = ν/ν2, the numerical Padé–Borel resummed O(ǫ5)
values for the biconical exponents at N1 = 1 and N2 = 2
are: νB = 0.70(3), φB = 1.25(1). As already mentioned,
these are very close to the corresponding Heisenberg O(3)
exponents: νH = 0.7045(55), φH = 1.260(11) at O(ǫ5)
[18].

Away from the tetracritical points the second order
lines have independent critical behaviors and the two or-
der parameters do not compete.

We have now the basic terminology and tools to ana-
lyze and make predictions for strongly interacting theo-
ries exhibiting multicritical behavior.

III. FINITE TEMPERATURE ADJOINT QCD

Let us now turn to the possibility of tetracritical be-
havior in the theories of strong interactions. To be spe-
cific, consider two color QCD with Nf ≤ 2 massless Dirac
flavors in the adjoint representation of the gauge group.
One of the main motivations for studying the phase dia-
gram of gauge theories with fermions in the adjoint rep-
resentation (adjoint QCD) is that, contrary to ordinary
QCD, in adjoint QCD there is a well defined symmetry
associated to confinement. The symmetry is identified
with the center of the gauge group which for a generic
SU(N) gauge theory is ZN . Here we consider explicitly
the case N = 2. The breaking of this symmetry is mon-
itored by the expectation value of the Polyakov loop [3]
which is the order parameter of the theory.
Besides the center group symmetry, and in absence

of quark masses, adjoint QCD possesses a global quan-
tum symmetry which for Nf Dirac fermions is SU(2Nf)
[29]. The fact that the symmetry group here is SU(2Nf)
rather than SU(Nf)× SU(Nf)×U(1) is due to the fact
that the fermions belong to a real representation of the
gauge group. We note that the ordinary baryon num-
ber is one of the diagonal generators of SU(2Nf). If a
democratic Dirac mass term is added into the theory,
SU(2Nf) breaks explicitly to SU(Nf)×U(1), with U(1)
the baryon number of the theory. In this section we con-
sider the massless limit, but note that the introduction of
a small mass term for the fermions in the theory can be
introduced and studied in a straightforward way. At low
temperatures the global symmetry is expected to break
to the maximum diagonal subgroup O(2Nf ) leaving be-
hind a number of goldstone bosons, some of them charged
under the ordinary baryon number. We will collectively
refer to the goldstone bosons as pions and will also use,
at times, chiral symmetry to indicate the global symme-
try of the theory. In the next section, and for the specific
case of two colors and one Dirac flavor, we will work
out in detail the global symmetry properties for massless
and massive fermions. We will also discuss the break-
ing patterns of the global symmetry, and consider old
and new arguments supporting these patterns. At high
temperatures it is natural to expect a global symmetry
restoration. Such a global symmetry restoration is also
termed, at times, chiral symmetry restoration.
We now naturally have two well defined order param-

eters: The Polyakov loop and the fermion condensate.
It is interesting to consider the possibility that they may
compete for order when considering a temperature driven
phase transition. The hope being, as already mentioned
in the introduction, that by studying strongly interact-
ing theories such as adjoint QCD, one might shed light
on ordinary QCD.
Having outlined the general behavior, symmetries and

defined the order parameters it is now natural to use the
results and methodology presented in the previous sec-
tion to make predictions for the critical exponents related
to the phase transitions of adjoint QCD.
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For two colors the center group is Z2, which is equiv-
alent to a O(1) symmetry and the associated order pa-
rameter is denoted by ℓ. The flavor groups SU(4) for
Nf = 2 and SU(2) for Nf = 1 are locally isomorphic
respectively to O(6) and O(3), and the order parameter
with such symmetry is denoted by σ.
Here the results of [12], denoted by O(1) ⊕ O(6) and

O(1)⊕O(3), are directly applicable. The first phase dia-
gram we draw is the one in which the temperature drives
the phase transition at zero quark chemical potential. We
know [3] that at high temperatures we have center group
order and at low temperatures chiral order. This sorts
for us the orientation for a possible phase structure with
respect to the condensed matter ones [12].
Besides the temperature, which can be tuned, we also

have two independent and dynamically generated scales
in the problem. The deconfining scale Λd, and the chi-
ral symmetry restoration scale Λc. These two scales are
intimately related to the number of colors and flavors of
the theory.
However, it is the relative magnitude of these scales

which is of importance for the phase diagram. One might
argue that in strong interactions only one scale is dynam-
ically generated. On the other hand it is quite reasonable
to imagine the dynamics driving chiral symmetry break-
ing to be different than the one for center group breaking.
There are also theoretical arguments [19] suggesting

that Λd ≤ Λc (see next section for a more detailed dis-
cussion). It is then natural to define a new parameter:

g =
Λd − Λc

Λd
≤ 0 . (5)

Differently from the condensed matter cases, here g can-
not be tuned but rather defines the theory. A possible
phase diagram in the (g, T ) plane is the one shown in fig.
1. We stress that the expectation Λd ≤ Λc, forces the
physically allowed part of the phase diagram to lie below
the g = 0 line.

FIG. 1: Phase diagram displaying a tetracritical point. The
physically allowed part of the phase diagram lies beneath the
g = 0 line.

At exactly g = 0 tetracritical behavior would be ex-
pected, and for this point we can translate the critical

behavior discussed in the previous sections for strong in-
teractions. The deconfinement order parameter symme-
try fixes N1 = 1, and we now consider different flavors in
turn.

Let us start with quenched super Yang-Mills. In this
case we have only one Majorana fermion in the ad-
joint representation of the gauge group. The only global
symmetry associated is an axial symmetry which is af-
fected by the Adler-Bell-Jackiw anomaly. However in the
quenched limit such a symmetry is restored. The chiral
symmetry is then U(1) (which is also an R-symmetry
from the supersymmetry transformations point of view)
which breaks spontaneously. Here N2 = 2 and if a tetra-
critical point would exist it would be a biconical one.
Away from the quenched limit the U(1)-R symmetry is
explicitly broken by an anomaly and it might still be
interesting to study what happens if one considers this
symmetry almost restorable at large T .

In the case of two Majorana fermions in the adjoint
(i.e. one Dirac flavor) the chiral symmetry group, after
having taken into account anomalies, is SU(2), i.e. O(3)
with N2 = 3. The physics of the tetracritical point, ac-
cording to high order calculations, is the one for which
the critical behaviors of the two order parameters are
unaffected by each other, i.e. we have a decoupled fixed
point. Finally for two Dirac flavors we have N2 = 6 and
again a decoupled fixed point is expected.

Lattice simulations can determine how far we are from
the tetracritical point. For two colors with fermions in
the adjoint, there are numerical computations [6] which
indicate that the chiral and deconfinement phase transi-
tion happen at different temperatures. This corresponds
to g 6= 0 and the two transitions have the expected in-
dependent critical behavior. It would be interesting if
more recent simulations might further investigate how
competing the two orders actually are.

The main problem for not being able to reach a tetra-
critical point here is that in order to change g one has
to change theory. In condensed matter physics one can
usually tune parameters, via other scaling fields than the
temperature, e.g. external magnetic fields. The free-
dom to tune different quantities in the theory allows, on
one hand, to test the theory of critical phenomena and
to shape our understanding of phase transitions, on the
other.

Since the parameter we have defined for the adjoint
QCD is dimensionless, one would expect it to be pro-
portional to some combination of number of colors and
flavors. Then, in numerical experiments, it might be pos-
sible to use e.g. number of flavors, Nf , as a scaling field.
Tuning the value of Nf would affect the relative magni-
tude of Λd and Λc and allow, perhaps, the two transitions
to close on each other. The existing numerical investiga-
tions [6] show the strong dependence on the number of
flavors for the chiral phase transition. As already em-
phasized, it would be interesting to have an up to date
study of these matters.

We shall shortly see how we can achieve a multicritical
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point in strong interactions with diquark condensation
and confinement as competing orders by introducing a
more practical scaling field into the problem, i.e. the
quark mass.

IV. DECONFINEMENT-CHIRAL SYMMETRY

TETRACRITICAL POINT

In this section we investigate in some detail the two
color gauge theory with one Dirac fermion in the adjoint
representation of the gauge group. This is a theory with a
number of fascinating properties. A relevant one, for our
purposes, being that when adding a nonzero quark chem-
ical potential one observes, at sufficiently large baryon
chemical potential, a color superfluid transition rather
than a color superconductive one [14]. This is so since
we have some goldstone bosons (pions) carrying baryonic
charge.
We have divided this section into a number of subsec-

tions to help the reader concentrate on one problem at
the time, and to build up the relevant knowledge. We
will first describe the symmetries of the fermionic action
of the underlying theory, and then explore the symmetry
breaking pattern first at zero temperature and baryon-
chemical potential of the theory. We briefly review
the temperature (zero-baryon chemical potential) phase
transition scenario, which has essentially been studied in
the previous section. Subsequently, we describe the de-
confining phase transition at nonzero temperature and
baryon chemical potential, while ignoring the possible
superfluid phase transition. We then describe the super-
fluid phase transition at nonzero temperature and quark
chemical potential neglecting the deconfining phase tran-
sition. We will consider both transitions simultaneously
in the next section. It is important to observe that both,
the introduction of the chemical potential as well as the
presence of a Dirac mass for the theory break explicitly
the underlying global SU(2) symmetry group while pre-
serving the U(1) baryon symmetry of the theory, as we
will explicitly see below. At nonzero temperature and
nonzero baryon chemical potential we will then consider
only the exact symmetries of the problem, i.e. the center
group and the U(1) symmetries.
It interesting to note, that when this theory has been

investigated in the literature at finite temperature and
chemical potential, so far attention has been paid only
to the global symmetry of the theory.

A. Symmetries of the Underlying Theory

Consider one massless Dirac flavor in the adjoint repre-
sentation of two colors. The flavor group is SU(2) which
spontaneously breaks toO(2). The latter is the conserved
quark number. In order to elucidate all of the symme-
tries of the problem in detail we write the underlying tree
level Lagrangian for the fermionic part [30] in presence

of the mass term and quark chemical potential:

+ i Q̄Aσ̄µDAB
µ QB − µ Q̄Aσ̄0 BQA −

m

2

[

QAτ1QA + h.c.
]

.

Here DAB
µ QB = ∂µδ

ABQB − ifABC GB
µ Q

C , and fABC

are the structure constants of the gauge group. The ma-
trices τa are the pauli matrices with the baryon number
B = τ3 acting in the flavor space, and A = 1, 2, 3 is the
gauge index for the fermions in the adjoint representa-
tion. The Weyl spinor QA

α,f , with α = 1, 2 the spin index
and f = 1, 2 the flavor index, can be represented as a
vector as follows:

QA
α =

(

χA
α

ψA
α

)

, (6)

while in the Dirac representation we have

ΨA
D =

(

χA
α

ψ̄α̇ A

)

. (7)

At zero quark mass and chemical potential the SU(2)
symmetry is evident. The extra classical UA(1) symme-
try is anomalous. The baryon number here is the τ3

generator of SU(2). At non zero baryon chemical poten-
tial and nonzero Dirac quark mass the baryon symmetry
is the only symmetry left unbroken at the fundamental
level.

B. Chiral symmetry breaking: no anomaly

matching but entropy-counting

We set, for the moment, the fermion mass term and
the baryon chemical potential to zero. Usually one of the
powerful methods to discover if, in strongly interacting
gauge theories, a global symmetry breaks at low energies,
is to require the global anomaly matching conditions [20]
among the ultraviolet and the infrared realization of the
theory. Unfortunately, for this theory the global anoma-
lies vanishes, since the flavor group is SU(2), and hence
we cannot invoke the ’t Hooft anomaly matching con-
ditions [20] to suggest that chiral symmetry must break
at low temperatures. Indeed, we can well imagine a low
temperature phase in which chiral symmetry is not bro-
ken. Although in principle we do not need massless com-
posite fermions, the simplest fermions we can construct
are composite objects of the type λα,F ∼ Q̄α̇ A

F σ̄µ
α̇αG

A
µ .

Due to the Vafa-Witten theorem [21], vector symmetries
cannot break spontaneously, which, in turn, means that
the fermions do not develop dynamically generated Majo-
rana masses. However, a Dirac mass term is of the form
λαF=1λαF=2 and breaks the global SU(2) symmetry to
the baryon number U(1).
Therefore, in absence of ’t Hooft anomaly matching

conditions two possible scenarios arise: We can either
have spontaneous chiral symmetry breaking, with as-
sociated two Goldstone bosons, or chiral symmetry in-
tact but a massless composite Dirac fermion. This is
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very similar to the case of ordinary QCD with two fla-
vors. According to the guide suggested in [22], the most
likely phase in the infrared is the one for which the de-
grees of freedom counted according to the entropy factor,
f = ♯ Real Bosons + (7/4)♯ Weyl Fermions, are mini-
mized. Here, the spontaneously broken phase has f = 2
and the chiral symmetry preserving phase has f = 7/2.
Chiral symmetry, here the SU(2), is therefore predicted
to break at low temperatures. Clearly these results do
not depend on the number of colors. In the case of larger
number of fermion flavors the ’t Hooft anomaly condi-
tions are non trivial and single out the infrared phase in
which chiral symmetry is broken. ’t Hooft anomaly con-
ditions have been generalized, first, at nonzero temper-
ature [23] and more recently at nonzero quark chemical
potential [24].
A possible scalar condensate must be of the form:

ǫαβ〈QA
α,f Q

A
β,f ′〉 ∝ Eff ′ . (8)

The subgroup which leaves the condensate invariant is
given by the generators of SU(2) satisfying the condition:

τa E + E τaT = 0 . (9)

Since the condensate is symmetric in color and anti-
symmetric in spin, it must be symmetric in flavor (i.e.
E = ET ). Requiring the SU(2) symmetry to break to
its maximal orthogonal subgroup (i.e. O(2)) [31], we can
have, for example, E proportional to the two by two iden-
tity matrix or to τ1. If we choose the identity, then the
unbroken generator is τ2, but if we choose τ1, then the
unbroken generator is τ3. Since we have identified the
O(2) generator corresponding to the baryon number with
τ3, the condensate must be proportional to τ1, i.e.:

ǫαβ〈QA
α,f Q

A
β,f ′〉 ∝ τ1ff ′ . (10)

Two Goldstone bosons are present and are associated to
the generators Xa = τa/2 with a = 1, 2. Note, that since
the pions here are associated to the generators which do
not commute with the baryon generator τ3 they are au-
tomatically charged under the baryon number. The low
energy effective theory in absence of quark chemical po-
tential is:

Leff = F 2
πTr

[

∂µU
†∂µU

]

+ F 2
πm

2
πTr

[

U + U †
]

. (11)

with

U = ei
π
a
X

a

Fπ , a = 1, 2 , (12)

where we have introduced also a Dirac mass m in the
underlying theory. Such a mass appears in the effective
Lagrangian as a nonzero mass for the pions, and one ex-
pects m2

π ∝ m. U transforms as gτ1 UgT for g ∈ SU(2).
The previous effective Lagrangian still preserves the U(1)
baryon symmetry.
Besides chiral symmetry we also have deconfinement.

Here the order parameter is the Polyakov loop, which

is associated to the center group symmetry Z2 for two
colors. Note that the previous analysis is completely in-
dependent on the number of colors, which becomes a rel-
evant parameter only when considering the center group
symmetry as well.

C. The temperature driven phase transition

We have discussed the nonzero temperature case in
section III. Here we recall the salient information needed
when endowing the quarks with a nonzero mass and
chemical potential. At zero quark chemical potential,
the SU(2) symmetry is restored at a given temperature
Tc, while the Z2 deconfinig phase transition is indicated
with Td. The latter is expected to be somewhat lower
than Tc. If the two phase transitions are independent, no
tetracritical point is expected to occur in this case. As
soon as we add a quark mass, we expect a cross over be-
havior for the SU(2) phase transition. This is true also at
nonzero chemical potential, since both the mass term and
the chemical potential term explicitly break the SU(2)
global symmetry. It is also worth emphasizing again,
that at zero quark chemical potential and quark mass,
and due to the absence of the ’t Hooft anomaly condi-
tions to satisfy, in principle, a chiral symmetry restoring
phase transition before deconfinement might have been
possible. However, this is not allowed according to the
guide in [22], which selects the chiral symmetry break-
ing confined phase as the preferred ground state even in
absence of ’t Hooft anomaly conditions. Summarizing,
the SU(2) symmetry is always broken at nonzero baryon
chemical potential and Dirac mass. If a crossover phe-
nomenon exists, it is expected to happen, for fixed chem-
ical potential and quark mass, at a temperature larger or
at most equal to the critical temperature for deconfine-
ment. As we increase the chemical potential, the explicit
breaking of the SU(2) symmetry becomes severe. We will
then neglect the SU(2) symmetry and analyze the fate
of the U(1) baryon symmetry, the only global symmetry
left unbroken.

D. The U(1) baryon superfluid phase transition at

nonzero µ and T

As we increase the baryon chemical potential the U(1)
baryon symmetry may break spontaneously. In QCD
with three massless quarks in the fundamental repre-
sentation the breaking is due to a cooper pairing phe-
nomenon, i.e. color superconductivity.
For adjoint QCD the situation is different. The spon-

taneous breaking of the U(1) baryon symmetry is a su-
perfluid phenomenon [14]. This is so since the pions, in
this theory, are charged under the baryon number. We
have already proven this statement in subsection B. Ac-
tually they have baryon number two with respect to the
quarks, which we have defined to have unit baryon num-
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ber. One can easily show that the chemical potential
couples directly to the pions via:

∂0U → D0U = ∂0 − iµ [U,B] . (13)

After having substituted this covariant derivative in the
effective Lagrangian, a negative mass squared term pro-
portional to µ2 is induced. For µ > mπ/2 the U(1) ∼
O(2) breaks spontaneously. On general grounds we ex-
pect two regions on the phase diagram, one with intact
O(2) and the other where O(2) is spontaneously broken.
This is schematically represented in figure 2. The sec-
ond order line starts at mπ/2 at zero T . In literature it
is argued, by computing the effective action within the
chiral perturbation theory approach [15], that such a sec-
ond order line ends in a tricritical point, and continues
as a first order line. There is a simple way to understand

FIG. 2: A schematic (T, µ)-phase diagram when only the di-
quark condensation is considered

why the phase transition line must curve to the right in
the T − µ plane: By increasing the chemical potential,
we effectively increase the negative mass squared of the
goldstone boson. On the other hand, the temperature
contribution to the mass of the goldstone boson is pos-
itive and tries to compensate the negative contribution
of the chemical potential to the squared mass term. The
larger is the chemical potential, the higher must also the
temperature be to restore the symmetry. This is, in a
nutshell, the relativistic Bose-Einstein condensation phe-
nomenon pioneered by Haber and Weldon in [25].
Both the critical temperature and the critical chemical

potential of the tricritical point increase with the pion
mass [15]. What is relevant for us is that: i) two well
separated regions exist, and ii) we have a second order
phase transition near µ = mπ/2.

E. Deconfinement at nonzero µ and T .

As already stated, the presence of quarks in the ad-
joint representation of the gauge group does not break
the center group symmetry. Note also, that up to now
the color played little role. In other words, whether the
center group is Z2 or Z3, one expects the chiral symmetry
part of the analysis (here also the U(1) baryon symmetry

is termed chiral symmetry) to be to a large extent unaf-
fected. This, however, is not true, as we will demonstrate
below. In this subsection we only consider the pure de-
confinement phase transition. Two distinct regions in the
phase diagram occur: in one we have center group order
(i.e. deconfinement) and in the other we have disorder
(i.e. confinement). If the number of colors is larger than
two we expect a first order line, while if the number of
colors is two, a second order line is most likely to occur.
Let us consider the two color case: Then a possible phase
diagram (for deconfinement only) is provided in figure
3. We have not considered the possibility of a tricritical

FIG. 3: A schematic (T, µ)-phase diagram where only decon-
finement is considered

point, but here the important point is that there are two
well separated regions. We have simply estimated the
critical chemical potential for deconfinement to be of the
order of ∼ πTd, with Td the deconfinement temperature
at zero chemical potential. This value is meant only to
guide our intuition, and it has been obtained using the
bag model. However, we do expect the correct value to
be near the one predicted. More specifically, the contri-
butions to the pressure from free gluons and quarks in
the adjoint representation are, respectively,

Pg = gg
π2T 4

90
, (14)

Pq = gqT
4

[

7π2

180
+

1

6

µ2

T 2
+

1

12π2

µ4

T 4

]

, (15)

where generally gg = (N2
c −1) and gq = Nf(N

2
c −1), and

we set Nc = 2 and Nf = 1. The phase transition line in
the (T, µ)-plane is determined through

Pg + Pq = B, (16)

where B is the bag constant. We determine B at zero
chemical potential, and using the value so obtained, we
find at zero T that µd = 0.9πTd for the deconfinement
transition. Ultimately this value will have to be deter-
mined via lattice simulations. The above computation is
meant to be just a rough estimate.
If we take the number of colors larger than two, the

second order deconfinement line is replaced by a first or-
der one.
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V. EMERGENCE OF A TETRACRITICAL

POINT

The previous analysis neglects the fact that the two or-
der parameters (i.e. the Polyakov loop and the diquark
condensate) can and will compete. To argue that a tetra-
critical point is a natural outcome, take the pion mass to
be lighter than twice the critical chemical potential (near
zero temperature) for deconfinement, mπ . 2π Td. Now
the two curves, i.e. the one for deconfinement and the
one for the U(1) baryon (or chiral) symmetry breaking,
meet at a tetracritical point as qualitatively illustrated in
the figure 4. We have chosen, to plot the curves, the pion

FIG. 4: A possible (T, µ)-phase diagram when both possible
phase transitions, chiral and deconfinement, are taken into
account.

mass to be such that the tetracritical point occurs when
the two second order lines meet. A tetracritical point is a
very intriguing possibility and the two order parameters
here will influence each other. So, the naive expectation
that in the adjoint representation chiral symmetry and
deconfinement do not communicate is misleading.
By tuning the value of mπ one can tune the position of

the diquark condensation line with respect to the decon-
finement one. Here the pion mass plays the role of the
anisotropy parameter.
Near the tetracritical point one can apply the results of

a standard ǫ expansion analysis as discussed earlier. The
tetracritical fixed point in adjoint QCD with single Dirac
flavor, when the two second order lines meet, is in the
universality class of the O(1)⊕O(2) theory. The effective
potential contains the Polyakov loop ℓ and the matrix U
which corresponds in practice to a complex scalar field, or
two-component real field. Due to such a group structure,
using the results of [7, 12], we predict the tetracritical
point to be a nontrivial (i.e. non decoupled) biconical
one. The critical exponents are provided in section II.
Other interesting phase diagrams can be considered:

For example, by tuning the quark mass the first order chi-
ral line can meet the second order deconfinement transi-
tion. As another alternative, while we have assumed here
the deconfinement transition to be second order over the
whole T − µ plane, we cannot generally exclude the pos-
sibility that the deconfinement line develops a tricritical

point before meeting the chiral line. Also, when the num-
ber of colors is larger than 2, the deconfinement line is
always first order. We do not exclude the possibility that
for similar theories one could observe the appearance of
a bicritical point. In this case a typical phase diagram
is depicted in figure 5. If the pion mass is sufficiently

FIG. 5: A possible (T, µ)-phase diagram when both possi-
ble phase transitions, chiral and confinement, are taken into
account and meet at a bicritical point.

large, deconfinement is expected to occur before sponta-
neous breaking of the baryon number. In this regime the
two order parameters do not compete anymore. Clearly
all of these possibilities are intriguing and deserve to be
investigated.

VI. CONCLUSIONS AND SUGGESTIONS

We have shown that when the fermions are in the ad-
joint representation of the gauge group, a tetracritical
fixed point naturally emerges. This is possible since the
ZN symmetry associated with deconfinement is well de-
fined in this theory. The tetracritical point lies in the
T − µ plane and for two colors may be biconical with a
suitable choice of the quark mass. What is interesting,
is that in this way we can quantitatively test the effects
of confinement, or center group symmetry, on a chiral
symmetry type phase transition and vice versa.
For quarks in the fundamental representation of the

gauge group the possibility of a tetracritical point is not
expected, since the center group symmetry is explicitly
broken. Besides, the breaking of the ZN symmetry was
used to explain in [4, 26], via a simple effective La-
grangian, how deconfinement and chiral symmetry are
intertwined not only at the level of susceptibilities but
also at the level of condensates. The results in our earlier
investigations were able to provide a general qualitative
understanding of the lattice data. It is, however, still
possible, although unlikely (see the discussion in [27]),
that the breaking of the center group symmetry (due to
the quarks in the fundamental representation of the cen-
ter group symmetry) is dynamically suppressed. Such
a breaking is much attenuated, for example, when con-
sidering a small ratio of the number of flavors over the
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number of colors. If such a dynamical suppression of the
center symmetry breaking occurs in the chiral limit, a
(quasi)tetracritical point may be observed in lattice sim-
ulations. Unfortunately, it is very hard to disentangle
such a behavior if the phase transitions are of first or-
der, and hence this behavior might be better tested in
two color QCD with one Dirac flavor or two Dirac fla-
vors in the fundamental representation. The tetracrit-
ical point on the temperature axis would be character-
ized by a O(1)⊕O(3) or O(1)⊕O(6) symmetry respec-
tively. A decoupled tetracritical point would emerge with
independent Ising and Heisenberg behaviors. Consider-
ing this scenario at any nonzero quark masses, the O(1)
symmetry would be (quasi)exact, and the chiral transi-

tion would be then induced [4]. The critical exponents
are well known here. Departures from these limiting be-
haviors is a measure of the amount of center symmetry
breaking induced by the presence of the quarks in the
fundamental representation of the gauge group.

Acknowledgments

We thank P.H. Damgaard, K. Rummukainen and K.
Splittorff for careful reading of the manuscript. We ac-
knowledge useful discussions with A.D. Jackson, K. Ka-
jantie, A. Mócsy, R. Pisarski and B. Svetitsky.

[1] An incomplete list: A. M. Polyakov, Phys. Lett. B
72, 477 (1978); G. ’t Hooft, Nucl. Phys. B 138, 1
(1978); G. E. Brown, A. D. Jackson, H. A. Bethe
and P. M. Pizzochero, Nucl. Phys. A 560, 1035
(1993); F. Wilczek, Int. J. Mod. Phys. A 7, 3911
(1992) [Erratum-ibid. A 7, 6951 (1992)]; K. Ra-
jagopal and F. Wilczek, Nucl. Phys. B 399, 395
(1993) [arXiv:hep-ph/9210253]. G. E. Brown, L. Grand-
champ, C. H. Lee and M. Rho, arXiv:hep-ph/0308147;
S. Digal, E. Laermann and H. Satz, Nucl. Phys. A
702, 159 (2002); O.Scavenius, A.Mocsy, I.N.Mishustin
and D.H.Rischke, Phys. Rev. C 64, 045202 (2001);
K. Fukushima, arXiv:hep-ph/0310121;

[2] P. H. Damgaard, Theories,” Phys. Lett. B 194, 107
(1987); J. Engels et al., Z. Phys. C 42, 341 (1989); J. En-
gels et al., χ 2-method,” Phys. Lett. B 365, 219 (1996);
P. Bacilieri et al., Phys. Rev. Lett. 61, 1545 (1988);
F. R. Brown et al., Phys. Rev. Lett. 61 (1988) 2058;
O. Kaczmarek et al., Phys. Rev. D 62, 034021 (2000);
G. G. Batrouni and B. Svetitsky, Phys. Rev. Lett. 52,
2205 (1984); A. Gocksch and M. Okawa, Phys. Rev. Lett.
52, 1751 (1984); F. Green and F. Karsch, Phys. Rev. D
29, 2986 (1984); J. F. Wheater and M. Gross, Theory,”
Phys. Lett. B 144, 409 (1984).

[3] A. M. Polyakov, Phys. Lett. B 72, 477 (1978); G. ’t
Hooft, Nucl. Phys. B 138, 1 (1978); B. Svetitsky and
L. G. Yaffe, Nucl. Phys. B 210, 423 (1982).

[4] A. Mocsy, F. Sannino and K. Tuominen,
arXiv:hep-ph/0308135. To appear in Phys. Rev. Lett.

[5] F. Karsch and M. Lutgemeier, Nucl. Phys. B 550, 449
(1999) [arXiv:hep-lat/9812023].

[6] J. B. Kogut, J. Polonyi, H. W. Wyld and D. K. Sinclair,
Phys. Rev. Lett. 54, 1980 (1985); J. B. Kogut, Phys.
Lett. B 187, 347 (1987).

[7] J. M. Kosterlitz, D. R. Nelson and M. E. Fisher, Phys.
Rev. B 13, 412 (1976).

[8] K.-S. Liu and M.E. Fisher, J. Low Temp. Phys. 10, 655
(1972).

[9] S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke and
A. Auerbach, Phys. Rev. B 60, 13070 (1999).

[10] S. Chandrasekharan, V. Chudnovsky, B. Schlittgen and
U.-J. Wiese, Nucl. Phys. B (Proc. Suppl.) 94, 449 (2001);
S. Chandrasekharan and U.-J. Wiese, hep-ph/0003214.

[11] B. Vanderheyden and A. D. Jackson, Phys. Rev. D 64,

074016 (2001) [arXiv:hep-ph/0102064].
[12] P. Calabrese, A. Pelissetto and E. Vicari,

arXiv:cond-mat/0306273; P. Calabrese, A. Pelis-
setto and E. Vicari, Phys. Rev. B 67, 054505 (2003)
[arXiv:cond-mat/0209580].

[13] S. Hands, I. Montvay, L. Scorzato and J. Skullerud,
Eur. Phys. J. C 22, 451 (2001) [arXiv:hep-lat/0109029].
0109029;

[14] J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M. Ver-
baarschot and A. Zhitnitsky, Nucl. Phys. B 582, 477
(2000) [arXiv:hep-ph/0001171].

[15] K. Splittorff, D. Toublan and J. J. M. Verbaarschot, Nucl.
Phys. B 639, 524 (2002) [arXiv:hep-ph/0204076].

[16] A.D. Bruce and A. Aharony, Phys. Rev. B 11, 478 (1975);
E. Domany and M.E. Fisher, Phys. Rev. B 15, 3510
(1977).

[17] I.J. Ketley and D.J. Wallace, J.Phys. A 6, 1667 (1973).
[18] R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).
[19] A. Casher, Phys. Lett. B 83, 395 (1979);
[20] G. ’t Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P.K. Mit-

ter, I.M. Singer and R. Stora, Recent Developments In
Gauge Theories (Plenum Press 1980) 135.

[21] C. Vafa and E. Witten, Nucl. Phys. B 234, 173 (1984).
[22] T. Appelquist, Z. y. Duan and F. Sannino, Phys. Rev. D

61, 125009 (2000) [arXiv:hep-ph/0001043].
[23] H. Itoyama and A. H. Mueller, Nucl. Phys. B 218, 349

(1983).
[24] F. Sannino, Phys. Lett. B 480, 280 (2000)

[arXiv:hep-ph/0002277]; S. D. H. Hsu, F. Sannino
and M. Schwetz, Mod. Phys. Lett. A 16, 1871 (2001)
[arXiv:hep-ph/0006059];

[25] H. E. Haber and H. A. Weldon, Phys. Rev. D 25, 502
(1982).

[26] A. Mocsy, F. Sannino and K. Tuominen, Phys. Rev. Lett.
91, 092004 (2003) [arXiv:hep-ph/0301229]; A. Mocsy,
F. Sannino and K. Tuominen, arXiv:hep-ph/0306069.
F. Sannino, Phys. Rev. D 66, 034013 (2002)
[arXiv:hep-ph/0204174].

[27] A. Mocsy, F. Sannino and K. Tuominen,
arXiv:hep-ph/0401149.

[28] J. Wess and J. Bagger, “Supersymmetry And Supergrav-
ity,” Princeton University Press (1992).

[29] The classical symmetry is U(2Nf ) = SU(2Nf ) × UA(1).
The axial global U(1)A is explicitly broken by the Adler-

http://arxiv.org/abs/hep-ph/9210253
http://arxiv.org/abs/hep-ph/0308147
http://arxiv.org/abs/hep-ph/0310121
http://arxiv.org/abs/hep-ph/0308135
http://arxiv.org/abs/hep-lat/9812023
http://arxiv.org/abs/hep-ph/0003214
http://arxiv.org/abs/hep-ph/0102064
http://arxiv.org/abs/cond-mat/0306273
http://arxiv.org/abs/cond-mat/0209580
http://arxiv.org/abs/hep-lat/0109029
http://arxiv.org/abs/hep-ph/0001171
http://arxiv.org/abs/hep-ph/0204076
http://arxiv.org/abs/hep-ph/0001043
http://arxiv.org/abs/hep-ph/0002277
http://arxiv.org/abs/hep-ph/0006059
http://arxiv.org/abs/hep-ph/0301229
http://arxiv.org/abs/hep-ph/0306069
http://arxiv.org/abs/hep-ph/0204174
http://arxiv.org/abs/hep-ph/0401149


11

Bell-Jackiw anomaly.
[30] We use the notation of Wess and Bagger [28] for the

spinors but with metric mostly minus.
[31] If the symmetry would not break to its maximal sub-

group, more goldstones would appear. These infrared re-

alizations would then be disfavored, according to the en-
tropy guide, with respect to the case in which the SU(2)
breaks to the maximal diagonal subgroup.


