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Spectrum of q-Deformed Schrödinger Equation
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Abstract

The energy spectrum of q-deformed Schrödinger equation is demonstrated. This
spectrum includes an exponential factor with new quantum numbers–the q-exciting
number and the scaling index. The pattern of quark and lepton masses is qualitatively
explained by such a q-deformed spectrum in a composite model.
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Quarks and leptons are considered as point-like particles which is correct at least down

to 10−17cm. The regularities found in the quark and lepton mass spectrum and several

other motivations suggest a possibility that at short distances much smaller than 10−17cm

quarks and leptons are composites of some basic entities. For an earlier consideration of a

substructure, see e. g. Refs. [1, 2]. One of the common problem of composite models is

to understand the mysterious mass spectrum of quarks and leptons. The striking features

of the quark-lepton mass spectrum are that it is similar (the family structure and the

generation structure) and has a large mass range (the mass ratios reach as large as 105

order) with exponential interval.

Because such substructures involve distances which are many orders of magnitude below

ones of present physics, dynamics at very short distances may be radically different, and is

likely to involve some entirely new principles. According to the present tests of quantum

electrodynamics, quantum theories based on Heisenberg’s commutation relation (Heisen-

berg’s algebra) are correct at least down to 10−17 cm. For possible new quantum theories

it is likely that a modification of Heisenberg’s algebra must be at short distances much

smaller than 10−17 cm. In searching for such a possibility at short distances consideration

of the space structure is a useful guide.

Recently q-deformed quantum mechanics is proposed [3–9] in the framework of quan-

tum group. Quantum groups are a generalization of symmetry groups which we have

successfully used in physics. A general feature of space carrying a quantum group struc-

ture is that they are noncommutative and inherit a well-defined mathematical structure

from quantum group symmetries. There is a possibility that noncommutativity of space

might be a realistic picture of space at short distances. q-deformed quantum mechanics is

based on the q-deformed Heisenberg algebra [4, 6] which is a generalization of Heisenberg’s

algebra. Starting from the q-deformed Heisenberg algebra a general dynamical equation of

q-deformed quantum mechanics is obtained [9]. A general feature of this equation is that

its energy spectrum shows an exponential q-structure [6–9]. In this letter we report that

the pattern of the quark-lepton masses can be qualitatively explained by such a q-deformed

spectrum in a composite model, for example, the rishon model [2]. The calculated quark

and lepton masses agree with known data.
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In the q-deformed phase space Refs. [4, 6] generalized the Heisenberg algebra to the

following q-deformed Heisenberg algebra:

q1/2XP − q−1/2PX = iΛ−1, ΛX = qXΛ, ΛP = q−1PΛ, (1)

where the position X and the momentum P are hermitian, Λ is unitary:

X† = X, P † = P, Λ† = Λ−1. (2)

In (1) the parameter q is real and q > 1, Λ is called scaling operator. The algebra (1) is

based on the definition of the hermitian P . However, if X is assumed to be a hermitian

operator in a Hilbert space, the usual quantization rule P → −i∂X does not yield a

hermitian momentum operator. Ref. [6] showed that a hermitian momentum operator P

is related to ∂X and X in a nonlinear way by introducing a scaling operator Λ

Λ ≡ q1/2[1 + (q − 1)X∂X ], ∂̄X ≡ −q−1/2Λ−1∂X , P ≡ − i

2
(∂X − ∂̄X),

where ∂̄X is the conjugate of ∂X . Because the scaling operator Λ is introduced in the

definition of the hermitian momentum operator, it closely relates to properties of dynamics

and plays an essential role in q-deformed quantum mechanics. The nontrivial properties

of Λ leads to that the algebra (1) has a richer structure than the Heisenberg algebra. In

the case of q approaching to one the scaling operator Λ reduces to the unit operator, thus

the algebra (1) reduces to the Heisenberg algebra.

The variables X , P of the q-deformed algebra (1) can also be expressed in terms of

the variables of an undeformed algebra. There are three pairs of canonically conjugate

variables [6]:

1. The variables x̂ and p̂ of the undeformed quantum mechanics which satisfy: [x̂, p̂] = i.

2. The variables x̃ and p̃ which are obtained by a canonical transformation of x̂ and p̂:

p̃ = f(ẑ)p̂, x̃ = x̂f−1(ẑ) where

f−1(ẑ) =
[ẑ − 1

2
]

ẑ − 1
2

, ẑ = − i

2
(x̂p̂ + p̂x̂), (3)

and [A] = (qA − q−A)/(q − q−1). The function defined by (3) satisfy x̂f(ẑ) = f(ẑ + 1)x̂,

p̂f(ẑ) = f(ẑ − 1)p̂. The variables x̃ and p̃ also satisfy the same commutation relation as
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x̂ and p̂: [x̃, p̃] = i. Thus in the x̃ representation p̃ = −i∂̃, where ∂̃ = ∂/∂x̃, and all the

machinery of quantum mechanics can be used for the (x̃, p̃) system.

3. The q-deformed variables X and P , where X , P and the scaling operator Λ are

related to x̃ and p̃ in the following way:

X = x̃, P = f−1(z̃)p̃, Λ = q−z̃. (4)

In (4) z̃ and f−1(z̃) are defined by the same equations (3) for ẑ and f−1(ẑ). It is easy to

check that X , P and Λ in (4) satisfy (1) and (2).

In order to derive the dynamical equation of q-deformed quantum mechanics our start-

ing point is to use the q-deformed variables to write down the Hamiltonian in analogy with

the undeformed system, then using (4) to represent X , P and Λ by x̃ and p̃. From (1) and

(2) it follows that

P 2 = −(q − q−1)−2X−2
[

q2Λ−2 − (q + q−1) + q−2Λ2
]

. (5)

Using (4) and (5) we obtain the stationary dynamical equation of q-deformed quantum

mechanics

{

− 1

2µ
(q − q−1)−2x̃−2

[

q(q−2x̃∂̃ − 1) + q−1(q2x̃∂̃ − 1)
]

+ V (x̃)

}

ψ(x̃) = Eqψ(x̃). (6)

Eq. (6) is a non-linear equation, which is a q-generalization of the Schrödinger equation.

For the case of q closing to 1, let q = ef , 0 < f ≪ 1. The perturbation expansion of

(6) reads

H = − 1

2µ
(2f +

1

3
f 3 + · · · )−2x̃−2

[

4f 2x̃2∂̃2

+
1

3
f 4(4x̃4∂̃4 + 16x̃3∂̃3 + 10x̃2∂̃2) + · · ·

]

+ V (x̃). (7)

To the lowest order of f , (6) reduces to the Schrödinger equation of the (x̃, p̃) system

[

− 1

2µ
∂̃2 + V (x̃)

]

ψ(x̃) = Eψ(x̃). (8)

In (7) the next order correction of H shows a complex structure which amounts to some

additional momentum dependent interaction. As an example, we consider the harmonic
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oscillator potential V (x̃) = 1
2
µω2x̃2. The spectrum of the un-perturbation Hamiltonian

H0 = − 1
2µ
∂̃2+ 1

2
µω2x̃2 is equal interval, E

(0)
n = ω(n+ 1

2
),(n = 0, 1, 2, · · · ). The perturbation

Hamiltonian HI in (7) is

HI = − f 2

12µ
(2x̃2∂̃4 + 8x̃∂̃3 + 3∂̃2). (9)

The perturbation shifts of the energy levels are ∆E
(0)
n =

∫

dx̃ψ
(0)∗
n (x̃)HIψ

(0)
n (x̃), where

ψ(0)
n (x̃) = 2−n/2(n!)−1/2(µω/π)1/4exp(−µωx̃2/2)Hn(

√
µωx̃)

and Hn is the Hermite polynomials. The first few shifts are ∆E
(0)
0 = −3f 2ω/16, ∆E

(0)
1 =

−5f 2ω/12, ∆E
(0)
2 = −f 2ω/2, etc. Thus the intervals of the total spectrum En = E

(0)
n +

∆E
(0)
n are not equal.

For the non-perturbation properties of the q-deformed system, we consider a simple

case, the ”free” Hamiltonian H0 = 1
2µ
P 2. Suppose that the eigenvalue of H0 is solved:

H0|ǫ0〉 = ǫ0|ǫ0〉 with the normalization condition of |ǫ0〉, 〈ǫ′0|ǫ0〉 = δ(ǫ′0 − ǫ0). H0 is semi-

positive definite, i.e. ǫ0 ≥ 0. The state |ǫ0〉 is a common eigenstate of H0 and the mo-

mentum P , P |ǫ0〉 = ±(2µǫ0)
1/2|ǫ0〉, here the plus and minus sign correspond, respectively,

to the right and left moving modes. Now we consider the action of the scaling opera-

tor Λ on the state |ǫ0〉. From the algebra (1) we have H0(Λ
M |ǫ0〉) = ǫ0q

2M(ΛM |ǫ0〉). i.

e. ΛM |ǫ0〉 = |ǫ0q2M〉 with the normalization condition 〈ǫ′0q2M
′ |ǫ0q2M〉 = δM ′Mδ(ǫ

′
0 − ǫ0).

Thus in the general case the q-deformed spectrum of H0 is H0|ǫ0q2nM〉 = En|ǫ0q2nM〉,
|ǫ0q2nM〉 = (ΛM)n|ǫ0〉, En = ǫ0q

2nM , where n = 0, 1, 2, · · · ; M = 0, 1, 2, · · · . The unde-

formed energy ǫ0 is determined by dynamics, the exponential factor q2nM (the q-exciting

structure) is determined by the algebra (1). The non-trivial properties of the scaling op-

erator Λ leads to a richer structure of the algebra (1) than the Heisenberg algebra and, as

a result, leads to the q-structure of the spectrum. This spectrum includes new quantum

numbers, the q-exciting number n and the scaling index M . In the case of q = 1, which

corresponds to the present-day physics, the q-exciting degree of freedom freezes, and the

q-exciting spectrum En reduces to the undeformed one ǫ0.

In the following in a composite scheme we use the q-deformed spectrum to qualitatively

explain the mass pattern of quarks and leptons. The only strong gauge interaction that
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we understand in any detail is QCD. But for the non-perturbation aspect of the strong

coupling it is not clear in QCD how to calculate bound states of quarks to yield the hadron

spectrum except for some simple cases which can be treated by lattice QCD. Thus it is

helpful to treat the hadron spectrum by some phenomenological approaches which may

guide us to the right direction. In analogy with calculations of the hadron mass spectrum

we calculate bound states of substructure to yield the quark-lepton mass spectrum in

a phenomenological approach. Suppose that the composite system is described by the

Hamiltonian H = H0 − V0, where H0 is the ”free” Hamiltonian and V0 > 0 is the binding

energy. In order to reduce the number of phenomenological parameters we consider a

simplified example,the rishon model [2] in which the most economical set of building blocks

consists of two spin J = 1/2 rishons, a charged T (Q = 1/3) and a neutral V (Q = 0). Their

antiparticles are T̄ (Q = −1/3) and V̄ (Q = 0). The first generation of composite fermions is

u-quark (TTV, TV T, V TT ), d-quark (T̄ V̄ V̄ , V̄ T̄ V̄ , V̄ V̄ T̄ ), neutrino νe(V V V ) and electron

e(T̄ T̄ T̄ ). The dynamics is supposed to be that the three states of quarks are degenerate.

The q-deformed spectrum in the above simplified example is

H|ǫ(i)0 q
2nMi〉 = E(i)

n |ǫ(i)0 q
2nMi〉, (10)

E(i)
n = ǫ

(i)
0 q

2nMi − V
(i)
0 , (n = 0, 1, 2, · · · ;Mi = 0, 1, 2, · · · ), (11)

ǫ
(1)
0 = 2µT + µV , ǫ

(2)
0 = µT + 2µV , ǫ

(3)
0 = 3µT , ǫ

(4)
0 = 3µV , (12)

V
(1)
0 = V

(2)
0 = V

(3)
0 = V0, V

(4)
0 = V ′

0 . (13)

The physical contents of the spectrum (10)-(13) are as follows. The index i = 1, 2, 3, 4

represents families, i. e. the scaling indicesM1,M2 andM3,M4 correspond to, respectively,

the quark families (u, c, t), (d, s, b) and the lepton families (e, µ, τ), (νe, νµ, ντ ). The q-

exciting quantum numbers n = 0, 1, 2 correspond to, respectively, the first, the second and

the third generation (u, d; νe, e), (c, s; νµ, µ) and (t, b; ντ , τ)
1 . The undeformed spectrum

1In composite models the next generation are simply considered as higher excitations of the first gen-
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ǫ
(i)
0 are flavor dependent, and µT and µV are, respectively, the ground state energies of the

”free” T and V . The binding energy V ′
0 of the neutrino family is supposed to be different

from the other ones.

Eq. (12) gives a simple regularity among mu, md and me

2mu −md = me. (14)

which we were not previously aware of.

If we put in

q2M1 = 128.98, q2M2 = 17.28, q2M3 = 15.90,

µT = 2.35MeV, µV = 5.70MeV,

V0 = 6.55MeV. (15)

Eqs. (11)-(13) give (in MeV units)

1. mu = E
(1)
1 = 4 (1.5− 5),

mc = E
(1)
2 = 1340 (1100− 1400),

mt = E
(1)
3 = 170× 103

(

(73.8± 5.2)× 103

(170± 7(+14))× 103

)

(16)

2. md = E
(2)
1 = 7 (3− 9),

ms = E
(2)
2 = 230 (60− 170),

mb = E
(2)
3 = 4100 (4100− 4400). (17)

3. me = E
(3)
1 = 0.5 (0.51099907± 0.00000015),

mµ = E
(3)
2 = 106 (105.658389± 0.000034),

mτ = E
(3)
3 = 1777

(

1777.05
+0.29

−0.26

)

. (18)

eration. At the present stage one of the common open problems in composite models is that there is no
principle to govern a choice of the value n of generations. The only way of fixing the maximum value
of n is the experimental results from measurements at the Z peak. These measurements establish the
number of light neutrino generations to be nν = 2.994 ± 0.012 (Standard Model fits to LEP data) and
nν = 3.07± 0.12 (Direct measurement of invisible Z) [12].
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And

mu/md = 0.54 (0.20− 0.70),

ms/md = 32 (17− 25),

m̄ = (mu +md)/2 = 5.6 (2− 6),

[ms − (mu +md)/2]/(md −mu) = 68 (34− 51). (19)

In (16)-(19) the data in the brackets are cited from Ref. [10]. (In (16) for top quark the

datum in the first line from direct observation of top events; the one in the second line

from Standard Model electroweak fit). The calculated masses agree with known data 2 .

At present little about neutrino masses can be predicted because of lack of definite data.

In Standard Model of particles neutrinos could be exactly massless, although this would

violate naive quark-lepton symmetry. According to (11) massless neutrinos correspond to

ǫ
(4)
0 = V

(4)
0 , q2M4 = 1. There are several hints for non-vanishing neutrino masses which can

be inferred from the observations of the solar neutrinos [11], the atmospheric neutrinos [12]

and the results of LSND [13]. These data can be understood in terms of neutrino oscillations

which depend on the different neutrino mass-squared differences ∆m2
ij . The solution of the

MSW type [14] to the solar neutrino puzzle yields the so-called small angle solution [11]

∆m2
ei ∼ 4 × 10−6 − 1.2 × 10−5 eV 2. Assuming νµ − ντ oscillation the presently available

atmospheric neutrino data yields [12] ∆m2
µτ ∼ 4× 10−4− 5× 10−3 eV 2. Finally, the LSND

data suggests [13] that ∆m2
eµ ∼ 0.2−10 eV 2. The Solar MSW small angle and atmospheric

neutrino along [15, 16] indicate very small differences between the neutrino masses 3 . We

may suggest a degenerate scheme where all three masses are large relative to their splitting

and almost degenerate. There is no clear way to set a meaningful limit on mνe . If the three

neutrinos are the candidate for the hot dark matter, an estimation of the total mass of

neutrinos is about 4.8 eV [17]. In (11)-(13) the estimations of mνe ∼ mνµ ∼ mντ ∼ 1.6 eV ,

2The concept of quark mass is involved. The values of the quark masses depend on the energy scale
where they are calculated. As in the quark model of hadrons, the free parameters in (11)-(13) are a
phenomenological input of the theory. In (16) and (17) the values of mu, mt and mb cited from Ref. [12]
are used to fix the parameters. Thus the energy scale of the calculated quark masses in (16) and (17) is
related to the energy scale of quark masses cited in Ref. [12].

3For the mass-squared differences ∆m2

ei in the MSW small angle result, the type of neutrino νi is,
depending on the specific version of the effects, a νµ, a ντ , a νµ − ντ mixture, or perhaps a sterile neutrino
νs.
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∆m2
eµ ∼ ∆m2

µτ ∼ 10−4 eV 2 correspond to inputs 3µV − V ′
0 ∼ 1.6 eV , q2M4 − 1 ∼ 10−10.

In (16)-(18) 9 observed masses are explained by a fit to 6 free parameters, which are

a phenomenological input of the theory. If we find an effective way to solve the nonlinear

q-deformed Schrödinger equation (6), the parameters µT , µV and V0 are expected to be

calculable.

If q-deformed quantum mechanics is a correct theory, its effects mainly manifest at

short distances much smaller than 10−17 cm. At such short distances if rishon dynamics

is governed by a q-deformed gauge theory, we may expect a better explanation of the

quark-lepton mass spectrum by bound state calculation in q-deformed gauge theory. Of

course, this will be very difficult topics, perhaps much difficult than bound state treatment

in QCD.

In summary, in this letter we show that the new degrees of freedom in the q-deformed

spectrum emerge. The qualitative explanation of the mass spectrum of quarks and leptons

by this spectrum is encouragement which may guide us to the right direction in under-

standing dynamics at very short distances.
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