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1 Introduction

The DIRAC collaboration [1] at CERN has measured the lifetime of pionium
in its ground-state, and the preliminary result yields τπ,10 = [3.1+0.9

−0.7(stat) ±
1(syst)] · 10−15s [2]. A lifetime measurement of pionium at the 10% level allows
one to determine the S-wave ππ scattering length difference |a00 − a20| at 5%
accuracy. The measurement can then be compared with theoretical predictions
for the S-wave scattering lengths [3, 4, 5] and with the results coming from
scattering experiments [6]. Particularly exciting is the fact that this enterprise
subjects chiral perturbation theory to a very sensitive test [7]. New measure-
ments are proposed for CERN PS, J-PARC and GSI [8]. These experiments
aim to measure the lifetime of π+π− and π±K∓ atoms simultaneously.
In order to extract the scattering lengths from such future precision measure-
ments, the theoretical expressions for the energy shifts and decay widths of the
π+π− and π±K∓ atoms must be known to a precision that matches the exper-
imental accuracy. Nearly fifty years ago, Deser et al. [9] derived the leading
order formulae for the decay width and the energy shift in pionic hydrogen.
Similar relations exist for π+π− and π±K∓ atoms [10, 11], which decay due to
the strong interactions into 2π0 and π0K0, respectively. Theoretical investiga-
tions on the spectrum and the decay of pionium have been performed beyond
leading order in several settings. Potential scattering has been used [12, 13, 14]
as well as field-theoretical methods [15, 16, 17, 18, 19, 20]. In particular, the
lifetime of pionium was studied by the use of the Bethe-Salpeter equation [19]
and in the framework of the quasipotential-constraint theory approach [20]. The
width of the π+π− atom has also been analyzed within a non-relativistic effec-
tive field theory [21, 22, 23], which was originally developed for bound states in
QED by Caswell and Lepage [24]. The non-relativistic framework has proven
to be a very efficient method to evaluate bound state characteristics. It was
further applied to the ground-state of pionic hydrogen [25, 26, 27] and very
recently to the energy-levels and decay widths of kaonic hydrogen [28]. Within
the non-relativistic effective field theory the isospin symmetry breaking cor-
rections to the Deser-type formulae can be evaluated systematically. In Refs.
[21, 22, 23, 29, 30] the lifetime of pionium was evaluated at next-to-leading order
in the isospin breaking parameters α ≃ 1/137 and (mu −md)

2.
We presented in Ref. [31], the results for the S-wave decay widths and strong
energy shifts of π+π− and π±K∓ atoms at next-to-leading order in isospin
symmetry breaking. Further, for the lifetime as well as for the first two energy-
level shifts, a numerical analysis was carried out. The aim of this article is to
provide the details that have been omitted in Ref. [31]. Chiral perturbation
theory (ChPT) allows one to relate the result for the width of the π±K∓ atom
to the isospin odd πK scattering lengths a−0 , while the strong energy shift is
proportional to the sum of isospin even and odd scattering lengths a+0 + a−0 .
The values for a+0 and a−0 , used in the numerical evaluation of the widths and
strong energy shifts, stem from the recent analysis of πK scattering from Roy
and Steiner type equations [33]. Within ChPT, the πK scattering lengths have
been worked out at one–loop accuracy [34, 35, 36], and very recently even the
chiral expansion of the πK scattering amplitude at next-to-next-to-leading order
became available [37]. Particularly interesting is that the isospin even scattering
lengths a+0 depends on the low–energy constant Lr

6 [38], and this coupling is
related to the flavour dependence of the quark condensate [39].

2



The paper is organized as follows: The general features of π+π− and π±K∓

atoms are described in Section 2. The non-relativistic effective field-theory ap-
proach is illustrated in Section 3 by means of the π−K+ atom. The discussion
includes the Hamiltonian, the master equation, and the matching to the rela-
tivistic πK amplitudes. In Sec. 4, we present the results for the decay widths
and strong energy shifts of the π±K∓ and π+π− atoms at next-to-leading order
in isospin symmetry breaking. The role of transverse photons is discussed in
Section 5. Transverse photons do contribute to the electromagnetic part of the
energy shift. The pure QED contributions have been worked out a long time
ago, based on the Bethe-Salpeter equation [40], the quasipotential approach
[41, 42] and an improved Coulomb potential [43]. We reproduced this result
within the non-relativistic framework. We further estimate the contributions
from transverse photons to the decay width of the π−K+ atom and show that
they vanish at next-to-leading order in isospin symmetry breaking. The con-
tributions generated by the vacuum polarization of the electron [22, 25, 44] are
discussed in Section 6. Formally of higher order in α, they are numerically
not negligible. A numerical analysis of the widths and the energy-level shifts is
carried out in Section 7 at O(p4, e2p2) in the chiral expansion.

2 General features of ππ and πK atoms

In this section, we describe the general features of the systems that we are going
to study. The π+π− and π±K∓ atoms are highly non-relativistic, loosely bound
systems, mainly formed by the Coulomb interaction. The average momentum
of the constituents in the c.m. frame lies in the MeV range. Further, their decay
widths ∼ 0.2eV are much smaller than the binding energies ∼ 103eV involved.
The π+π− atom in its ground-state decays predominantly into a pair of two
neutral pions, through the strong transition π+π− → π0π0. The decay width
into two photons is suppressed by the factor 4 · 10−3 [1, 29]. For a detailed
discussion of the decay channels of pionium, we refer to [23]. The decays of
the π−K+ atom have to conserve strangeness. Apart from the dominant S-
wave decay channel into π0K0, the only allowed decays are therefore K0 +
n1γ + n2e

+e− and π0K0 + n1γ + n2e
+e−, where n1 + n2 > 0. Here n1 and n2

denotes the number of photons and e+e− pairs, respectively. In the relativistic
theory, the odd intrinsic parity process π−K+ → K0 + 2γ corresponds to a
local interaction in the Wess-Zumino-Witten term [45], while the transition
π−K+ → K0 + γ occurs not until O(p6) [46].
The non-relativistic framework [21, 23, 24, 25] we are going to apply, provides
a systematic expansion in the isospin breaking parameter δ. In the case of
pionium, we count α as well as (mu −md)

2 as small quantities of order δ. As
for the π±K∓ atom, both α and mu−md count as order δ. The different power
counting schemes are due to the fact that in QCD, the chiral expansion of the
pion mass squared difference ∆π =M2

π+ −M2
π0 is of second order in mu −md,

while ∆K = M2
K+ −M2

K0 is linear in mu −md. At leading and next-to-leading
order in isospin symmetry breaking, the π+π−, (π−K+) atom decays into π0π0

(π0K0) exclusively. The leading order term for the width is of O(δ7/2), isospin
breaking corrections contribute at order δ9/2. The results for the S-wave decay
widths at order δ9/2 are presented in Secs. 4.1 and 4.3. At order δ5, also other
decay channels contribute. In Section 5.2, we estimate the order of the various
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decays.
The energy-level splittings of the π+π− and π±K∓ atoms are induced by both
electromagnetic and strong interactions. At order δ3, the energy shift con-
tributions are exclusively due to strong interactions, while at order δ4, both
electromagnetic and strong interactions contribute. It is both conventional and
convenient to split the energy shifts into a strong and an electromagnetic part,
according to1

∆Enl = ∆Eh
nl +∆Eem

nl . (2.1)

The expressions for the strong energy shift ∆Eh
nl at next-to-leading order in

isospin symmetry breaking are presented in Secs. 4.2 and 4.3. The electro-
magnetic part ∆Eem

nl is discussed in Section 5.1. Another important correction
is generated by the vacuum polarization of the electron. Formally, the vacuum
polarization contributes to the energy shift at order δ5 and to the width at order
δ11/2, but these corrections are amplified by powers of the ratio µ+/me. Here
µ+ denotes the reduced mass of the bound system and me the electron mass.
The vacuum polarization contributions are discussed in Section 6.
In what follows, we proceed systematically and discuss in detail the decays and
bound state spectra within the non-relativistic framework.

3 Non-relativistic framework

3.1 Hamiltonian

The Hamiltonian consists of a infinite series of operators with increasing mass
dimensions - all operators allowed by gauge invariance, space rotation, parity
and time reversal must be included. However, in the evaluation of the decay
width and the strong energy shift at next-to-leading order in isospin symmetry
breaking, only a few low dimensional operators do actually contribute. For the
π−K+ atom, the following Hamiltonian achieves the goal:

H = H0 +HC +HD +HS,

HΓ =

∫

d3xHΓ(0,x), Γ = 0,C,D, S, (3.1)

with

H0 =
∑

i=±,0

{

π†
i

(

Mπi − ∆

2Mπi

)

πi +K†
i

(

MKi − ∆

2MKi

)

Ki

}

,

HD = −
∑

i=±,0

{

π†
i

(

∆2

8M3
πi

+ · · ·
)

πi +K†
i

(

∆2

8M3
Ki

+ · · ·
)

Ki

}

,

HC = −2πα

(

∑

±

±π†
±π± ±K†

±K±

)

∆−1

(

∑

±

±π†
±π± ±K†

±K±

)

,

HS = −C1π
†
−
K†

+
π
−
K+ − C2

(

π†
−
K†

+
π0K0 + h.c

)

− C3π
†
0
K†

0
π0K0

−C4

(

π†
−

←→

∆K†
+
π0K0 + h.c

)

− C5

(

π†
−

←→

∆K†
+
π
−
K+ + h.c

)

−C6(π
†
−
π
−
)∆(K†

+
K+)− C7

(

∇π†
−
K†

+
∇π0K0 + h.c

)

+ · · · , (3.2)

1Note that this splitting cannot be understood literally, i.e. there are contributions from
strong interactions to ∆Eem

n0
.
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where u
←→

∆v
.
= u∆v + v∆u. We work in the c.m. system and thus omit terms

proportional to the c.m. momentum. The basis of operators with two space
derivatives is chosen such that none of them contributes to the S-wave decay
width and energy shift at the accuracy we are considering. For this reason, we
transformed the operator with two space derivatives on the neutral fields by the
use of the equations of motion,

π†
−
K†

+
π0

←→

∆K0 = −4µ0(Σ+ − Σ0)π
†
−
K†

+
π0K0 +

µ0

µ+
π†
−

←→

∆K†
+
π0K0. (3.3)

For the moment, we further neglect transverse photon contributions. To the
accuracy we are working, they do not contribute to the decay width and to
the strong energy-level shifts. However, transverse photons do contribute when
we work out the electromagnetic energy-level shifts in Section 5.1. The non-
relativistic Lagrangian in the presence of transverse photons is given in appendix
A. The Hamiltonian in Eq. (3.1) is built from the non-relativistic pion and kaon
fields

πi(0,x) =

∫

dν(p)eipxai(p), Ki(0,x) =

∫

dν(p)eipxbi(p), i = ±, 0,
(3.4)

with dν(p)
.
= d3p/(2π)3 and

[

ai(p), a
†
k(p

′)
]

= (2π)3δ3(p− p′)δik,
[

bi(p),b
†
k(p

′)
]

= (2π)3δ3(p− p′)δik. (3.5)

The two particle states of zero total charge are defined by

|p1,p2〉+ = a
†
−(p1)b

†
+(p2) |0〉, |p3,p4〉0 = a

†
0(p3)b

†
0(p4) |0〉, (3.6)

and the total and reduced masses Σi and µi respectively, read

Σi =Mπi +MKi , µi =
MπiMKi

Mπi +MKi

, i = +, 0. (3.7)

3.2 Master equation

To evaluate the decay width and the strong energy shifts we make use of resol-
vents. This technique, which was developed by Feshbach a long time ago [47],
has been discussed extensively in Ref. [23]. To remove the center of mass mo-
mentum from the matrix elements of any operatorsR, we introduce the notation

a〈p1,p2 | R(z) |p3,p4〉b
= (2π)3δ3(p1 + p2 − p3 − p4)a(p1,p2 | R(z) |p3,p4)b, (3.8)

where a, b stand for 0,+. Further, we have

a(q,−q | R(z) |p,−p)b
.
= a(q | R(z) |p)b. (3.9)

The master formula to be solved is given by the following eigenvalue equation,

z − En −
∫

dν(P)〈Ψn0,P | τ̄ (z) |Ψn0, 0〉 = 0, (3.10)

5



where En = Σ+ − α2µ+/(2n
2) denotes the n-th Coulomb energy and the un-

perturbed n-th eigenstate is given by

|Ψn0,P〉 =
∫

dν(q)Ψn0(q) | µ+

M
K+

P+ q, µ+

Mπ+
P− q〉+. (3.11)

Here Ψn0(q) stands for the Coulomb wave function of the bound π±K∓ system
in momentum space. The operator τ̄ , defined through

τ̄ = V+VḠn
C
τ̄ , V = HD +HS, (3.12)

is regular in the vicinity of En. The quantity Ḡn
C
stands for the n-th energy

eigenstate singularity removed Coulomb resolvent,

Ḡn
C
= GC

{

1−
∫

dν(P) |Ψn0,P〉〈Ψn0,P |
}

, GC =
1

z −H0 −HC

. (3.13)

The master equation presents a compact form of the Rayleigh-Schrödinger per-
turbation theory. If we insert τ̄ iteratively into (3.10), the eigenvalue equation
becomes

z = En − |Ψn0(x = 0)|2
[

C1 + C2
2J0(z)

]

+ · · · (3.14)

where Ψn0(x = 0) stands for the Coulomb wave function in coordinate space
and J0 denotes the loop integral in Eq. (D.3). The function J0 is analytic in
the complex z plane, except for a cut on the real axis starting at z = Σ0. The
imaginary part of J0 has the same sign as Im z throughout the cut z plane,
which does not allow Eq. (3.14) to have a solution on the first Riemann sheet.
However, if we analytically continue J0 from the upper rim of the cut to the
second Riemann sheet, we find a solution at z = Re z + i Im z, with

Re z = En − α3µ3
+C1

πn3
+ · · · , Im z = −α

3µ3
+µ0

2π2n3
C2

2

√
ρn + · · · , (3.15)

and ρn = 2µ0 (En − Σ0). In the following, we evaluate the S-wave decay width
Γn0 = −2Im z at order δ9/2 and the energy shift ∆En0 = Re z − En at order
δ4. We focus on the strong part of the energy shift only, the evaluation of the
electromagnetic energy shift is discussed in Section 5.1. As in Ref. [23], we
reduce Eq. (3.10) to a one-channel problem with an effective potential W,

̺τ̺̄ = ̺W̺+ ̺W̺Ḡ
n
C
̺τ̺̄, (3.16)

where
W = V +V̺0Ḡ

n
C

{

1− ̺0V̺0Ḡ
n
C

}−1
̺0V. (3.17)

Here ̺, (̺0) denotes the charged (neutral) two-particle projector

̺ =

∫

dν(p1)dν(p2) |p1,p2〉++〈p1,p2 |, ̺0 = 1− ̺. (3.18)

The matrix element of W between charged states takes the form2:

+(q | W(z) |p)+ = (2π)3δ3(q− p)

[

−p4

8

(

1

M3
π+

+
1

M3
K+

)

+ · · ·
]

+w(z) + w1(z)p
2 + w2(z)q

2 + w3(z)pq+ · · ·
(3.19)

2The delta function term contributes to the electromagnetic energy shift, see Eq. (5.6).
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To the accuracy we are working, only the constant term w(z) contributes to the
decay width and strong energy shift. We get for the S-wave decay width of the
π−K+ atom at order δ9/2,

Γn0 = −2 |Ψn0(x = 0) |2 Imw(En) (1 + 2Rew(En)〈ḡn
C
(En)〉) +O(δ5), (3.20)

while the S-wave energy-level shifts due to strong interactions read at order δ4,

∆Eh
n0 = |Ψn0(x=0) |2Rew(En) (1 + Rew(En)〈ḡn

C
(En)〉) +O(δ5). (3.21)

The quantity 〈ḡn
C
(En)〉, given in appendix C, is related to the integrated Schwin-

ger Green function [48]. The real and imaginary part of w(z) are given by

Rew(En) = −C1 +
C2

2C3µ
2
0

4π2
ρn,

Imw(En) = −µ0
√
ρn

2π
C2

2

[

1− C2
3µ

2
0ρn

4π2
+

5µ0ρn
8

M3
π0 +M3

K0

M3
π0M3

K0

]

. (3.22)

The decay width (3.20) and energy shift (3.21) still depend on the effective
couplings Ci, which have to be related to physical quantities.

3.3 Matching procedure

We now determine the diverse couplings from matching the non-relativistic and
the relativistic amplitudes at threshold. With the effective Lagrangian in Eqs.
(A.2), (A.4) and (A.5) we may calculate the non-relativistic π−K+ → π0K0

and π−K+ → π−K+ scattering amplitudes at threshold at order δ. Again, we
may omit contributions from transverse photons. The radiative corrections to
the one-particle irreducible amplitudes, generated by transverse photons, vanish
at threshold at order e2.
The coupling C3 enters the decay width (3.20) at order δ9/2 and the energy
shift (3.21) at order δ4 and is therefore needed at O(δ0) only. However, we
have to determine both C1 and C2 at next-to-leading order in isospin symmetry
breaking. The relativistic amplitudes are related to the non-relativistic ones
through

T lm;ik
R (q;p) = 4 [ωi(p)ωk(p)ωl(q)ωm(q)]

1
2 T lm;ik

NR
(q;p), (3.23)

where ωi(p) = (M2
i +p2)1/2 and p, (q) denotes the incoming (outgoing) relative

3-momentum. In the isospin symmetry limit, only the lowest order of the non-
relativistic Lagrangian contributes at threshold and the effective couplings C1,
C2 and C3 yield

C1 =
2π

µ+

(

a+0 + a−0
)

, C2 = −2
√
2π

µ+
a−0 , C3 =

2π

µ+
a+0 , (3.24)

where a+0 and a−0 denote the isospin even and odd S-wave scattering lengths,
the notation used is specified in appendix B. The πK scattering lengths are
defined in QCD, at mu = md = m̂ and Mπ

.
=Mπ+ , MK

.
=MK+ .

To match the coupling C2 including isospin symmetry breaking effects, we cal-
culate the real part of the non-relativistic π−K+ → π0K0 scattering matrix

7
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Figure 1: One-photon exchange diagrams for the π−K+ → π0K0 scattering
amplitude. The dotted line denotes a Coulomb photon. The dots stand for the
couplings Ci, i = 1, 2.

element in the vicinity of the threshold at order δ. In absence of virtual pho-
tons, the real part of the amplitude at threshold reads

ReT 00;±
NR

(q;p) = C2 + C2C
2
3J0(Σ+)

2 + · · · (3.25)

The ellipsis denotes terms which vanish a threshold or are of higher order in the
parameter δ. The one–loop integral J0 is given in appendix D. Bubbles with
mass insertions and/or derivative couplings do not contribute at threshold at
order δ, since they contain additional factors of p2 and/or Σ+ − Σ0.
We now include the Coulomb interaction. Feynman graphs, with a Coulomb
photon attached such that the heavy fields must propagate in time to connect
the two vertices, all vanish. This is because we may close the integration contour
over the zero-component of the loop momentum in the half-plane where there
is no singularity in the propagators. One example is the self-energy diagram,
which vanishes at order α. As a result of this, there is no mass renormalization
in the non-relativistic theory and the mass parameters Mπi and MKi , i = 0,+
in the non-relativistic Lagrangian (A.4) stand for the physical meson masses.
The amplitude at threshold contains both infrared and ultraviolet singularities,
coming from the one-Coulomb photon exchange diagrams depicted in Figure 1.
Around threshold, we get for the one-Coulomb exchange diagrams,

T 00;±
NR

(q;p) = −C2VC(p, P
0
thr)

[

1 + C1J+(P
0
thr)
]

+ C1C2BC(P
0
thr) + · · · , (3.26)

where P 0
thr = Σ+ + p2/(2µ+). The Coulomb vertex function VC in Figure 1(a)

and the two–loop integral BC in Fig. 1(c) are given in appendix D. The integral
J+, specified in Eq. (D.4), has to be evaluated at d 6= 3, because the vertex
diagram generates an infrared singular Coulomb phase [49] at threshold. We
split of this phase θc, according to

T 00;±
NR

(q,p) = eiαθc T̂ 00;±
NR

(q,p),

θc =
µ+

|p|µ
d−3

{

1

d− 3
− 1

2
[ln4π + Γ′(1)] + ln

2|p|
µ

}

, (3.27)

where µ denotes the running scale. The remainder T̂ 00;±
NR is free of infrared

singularities at threshold, at order δ. We find for the real part:

Re T̂ 00;±
NR

(q,p) =
B1

|p| +B2ln
|p|
µ+

+
1

N
ReA00;±

thr +O(p), (3.28)

with

B1 = C2
απµ+

2
+ o(δ), B2 = −C1C2

αµ2
+

π
+ o(δ), (3.29)
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Figure 2: Non-relativistic π−K+ → π−K+ scattering amplitude. The blob de-
scribes the vector form factor of the pion and kaon. T̄±;±

NR denotes the truncated
amplitude.

and

N = 4Mπ+MK+ +
MK+ −Mπ+

MK+ +Mπ+

(∆K −∆π) . (3.30)

At order δ, the constant term in Eq. (3.28) reads

1

N
ReA00;±

thr = C2

{

1− C2
3

µ3
0(Σ+ − Σ0)

2π2
+ C1

αµ2
+

2π

[

1− Λ(µ)− ln
4µ2

+

µ2

]}

+o(δ). (3.31)

The ultraviolet divergence Λ(µ), given in Eq. (C.5), stems from the two–loop
diagram BC and may be absorbed in the renormalization of the coupling C2,

Cr
2 (µ) = C2

[

1− αµ2
+

2π
C1Λ(µ)

]

. (3.32)

We now determine the coupling constant C1. At α = 0, the real part of the
non-relativistic π−K+ → π−K+ scattering amplitude reads at threshold,

ReT±;±
NR

(p,p) = C1 + C3C
2
2J0(Σ+)

2 + · · · , (3.33)

where the ellipsis denotes contributions which vanish at threshold or are of
o(δ). In the presence of virtual photons, we first have to subtract the one-
photon exchange diagram from the full amplitude, as displayed in Fig. 2. The
coupling constant C1 is now determined by the one-particle irreducible part of
the amplitude. The truncated part T̄±;±

NR again contains one-photon exchange
diagrams as shown in Figure 3,

T̄±;±
NR

(p,p) = −2C1VC(p, P
0
thr)

[

1 + C1J+(P
0
thr)
]

+ C2
1BC(P

0
thr) + · · · (3.34)

All diagrams with a Coulomb photon exchange between an incoming and an
outgoing particle vanish, because the pions (kaons) must propagate in time in
order to connect the two vertices. Again the vertex function VC leads to an
infrared singular Coulomb phase at threshold,

T̄±;±
NR

(p,p) = e2iαθc T̂±;±
NR

(p,p), (3.35)

where T̂±;±
NR is free of infrared singularities at threshold at order δ. Further, the

real part of the infrared regular amplitude T̂±;±
NR is given by

Re T̂±;±
NR

(p,p) =
B′

1

|p| +B′
2ln

|p|
µ+

+
1

4Mπ+MK+

ReA±;±
thr +O(p), (3.36)
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Figure 3: One-photon exchange diagrams for the truncated π−K+ → π−K+

scattering amplitude. The dotted line denotes a Coulomb photon. The dot
denotes the coupling C2.

with

B′
1 = C1απµ+ + o(δ), B′

2 = −C
2
1αµ

2
+

π
+ o(δ), (3.37)

and

1

4Mπ+MK+

ReA±;±
thr = C1

{

1 +
C1αµ

2
+

2π

[

1− Λ(µ)− ln
4µ2

+

µ2

]}

−C
2
2C3µ

3
0

2π2
(Σ+ − Σ0) + o(δ). (3.38)

Here, the ultraviolet pole term Λ(µ) in BC is removed by renormalizing the
coupling C1, according to

Cr
1 (µ) = C1

[

1− αµ2
+

2π
C1Λ(µ)

]

. (3.39)

The above renormalization of the low–energy couplings C1 and C2 eliminates at
the same time the ultraviolet divergences contained in the expressions for the
decay width (3.20) and the energy shift (3.21). We assume that the relativis-
tic πK amplitudes at order δ have the same singularity structure as the non-
relativistic amplitudes and use Eq. (3.23) to match the non-relativistic expres-
sions to the relativistic ones. The calculations of the relativistic π−K+ → π0K0

and π−K+ → π−K+ scattering amplitudes have been performed at O(p4, e2p2)
in Refs. [36, 50, 51]. Both the Coulomb phase and the singular term ∼ ln|p|
are absent in the real part of the amplitudes at this order of accuracy, they
first occur at order e2p4. The quantity ReA00;±

thr , (ReA±;±
thr ) is determined by

the constant term occurring in the threshold expansion of the corresponding
relativistic amplitude. Further, the relativistic calculations [36, 50, 51], con-
tain the same singular contribution ∼1/|p| as the non-relativistic amplitude in
Eqs. (3.28) and (3.36).
The results for the matching of the coupling constants Cr

1 (µ) and Cr
2 (µ) yield

10



at next-to-leading order in isospin symmetry breaking,

Cr
2 (µ) =

1

N
ReA00;±

thr − 2
√
2πa−0

[

2(Σ+ − Σ0)(a
+
0 )

2

+α

(

ln
4µ2

+

µ2
− 1

)

(a+0 + a−0 )

]

, (3.40)

and

Cr
1 (µ) =

1

4Mπ+MK+

ReA±;±
thr + 8π(Σ+ − Σ0)a

+
0 (a

−
0 )

2

+2πα

(

ln
4µ2

+

µ2
− 1

)

(a+0 + a−0 )
2. (3.41)

4 Strong energy shift and width

The matching relations in Section 3.3, allow us to specify the results for the
decay width and the strong energy shift in terms of the relativistic πK scattering
amplitudes at threshold. The expressions are valid at next-to-leading order in
isospin symmetry breaking, and to all orders in the chiral expansion.

4.1 S-wave decay width of the πK atom

The matching results in Eqs. (3.24) and (3.40) yield for the decay width at
order δ9/2 in terms of the relativistic π−K+ → π0K0 amplitude at threshold,

Γn0 =
8α3µ2

+

n3
p∗nA2 (1 +Kn) ,

A = − 1

8
√
2π

1

Σ+
ReA00;±

thr + o(δ), (4.1)

where

Kn =
Mπ+∆K +MK+∆π

Mπ+ +MK+

(a+0 )
2

−4αµ+(a
+
0 + a−0 )

[

ψ(n)− ψ(1)− 1

n
+ ln

α

n

]

+ o(δ). (4.2)

and ψ(n) = Γ′(n)/Γ(n). Aside from the kinematical factor p∗n, the decay width
is expanded in powers of α and mu −md. The outgoing relative 3-momentum

p∗n =
1

2En
λ
(

E2
n,M

2
π0 ,M2

K0

)1/2
, (4.3)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, is chosen such that the total
final state energy corresponds to the n-th energy eigenvalue of the π−K+ atom.
In the isospin limit, the π−K+ → π0K0 amplitude at threshold is determined
by the isospin odd scattering length a−0 . In order to extract a−0 from the above

11



result of the decay width, we first have to subtract the isospin breaking contri-
bution from the amplitude. We expand the normalized amplitude in powers of
the isospin breaking parameter δ,

A = a−0 + ǫ+ o(δ). (4.4)

The isospin breaking corrections ǫ have been evaluated at O(p4, e2p2) in Refs.
[50, 51]. See also the comments in Section 7. We may now rewrite the expression
for the width in the following form:

Γn0 =
8α3µ2

+

n3
p∗n(a

−
0 )

2 (1 + δK,n) +O(δ5), δK,n =
2ǫ

a−0
+Kn. (4.5)

The corrections δK,n to the Deser-type formula have been worked out at order
α, mu −md, αm̂ and (mu −md)m̂. The corrections δK,n, where n = 1, 2 are
given numerically in Table 1.
For the P-wave decay width into π0K0, the leading order term is proportional
the square of the coupling C7 and of order δ13/2. After performing the matching,
we get at leading order

Γn1,π0K0 =
8(n2 − 1)

n5
α5µ4

+p
∗3(a−1 )

2
, (4.6)

where a−1 denotes the P-wave scattering length.

4.2 Strong energy shift of the πK atom

With the matching results in Eqs. (3.24) and (3.41), we may specify the S-wave
energy shifts at order δ4, in terms of the relativistic truncated π−K+ → π−K+

amplitude at threshold,

∆Eh
n0 = −2α3µ2

+

n3
A′ (1 +K ′

n) , A′ =
1

8πΣ+
ReA±;±

thr + o(δ), (4.7)

with

K ′
n = −2αµ+(a

+
0 + a−0 )

[

ψ(n)− ψ(1)− 1

n
+ ln

α

n

]

+ o(δ). (4.8)

For the ground-state, the result agrees with the one obtained for the strong
energy shift in pionic hydrogen [25], if we replace µ+ with the reduced mass
of the π−p atom and ReA±;±

thr with the regular part of the π−p amplitude at
threshold.
In the isospin limit, the normalized amplitude A′ reduces to the sum of the
isospin even and odd scattering lengths a+0 + a−0 . Again, we expand A′ in
powers of α and mu −md,

A′ = a+0 + a−0 + ǫ′ + o(δ). (4.9)

The corrections ǫ′ have been evaluated at O(p4, e2p2) in Refs. [36, 51]. See also
the comments in Section 7. The isospin breaking corrections to the Deser-type
formula read at next-to-leading order:

∆Eh
n0 = −2α3µ2

+

n3
(a+0 +a−0 )

(

1 + δ′
K,n

)

+O(δ5), δ′
K,n =

ǫ′

a+0 + a−0
+K ′

n, (4.10)
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where δ′
K,n has been worked out at order α, mu −md, αm̂ and (mu −md)m̂ in

the chiral expansion. For the first two energy-levels, the numerical values for
δ′K,n are given in Table 1. What concerns the energy splittings for l = 1 and
n ≥ 2, the leading order contribution is given by

∆Eh
n1 = −2C6∇Ψ∗

n1(x = 0)∇Ψn1(x = 0). (4.11)

Here Ψn1 denotes the Coulomb wave function with angular momentum l = 1.
The low energy coupling constant C6 is determined through the l = 1 partial
wave contribution to the relativistic π−K+ → π−K+ scattering amplitude and
we find for the energy shift,

∆Eh
n1 = −2(n2 − 1)

n5
α5µ4

+

(

a+1 + a−1
)

. (4.12)

The result is proportional to the combination a+1 + a−1 of P-wave scattering
lengths and suppressed by a factor of α5.

4.3 Pionium

For pionium, we adopt the convention used in Refs. [23, 30] and count α and
(mu −md)

2 as small isospin breaking parameters of order δ. The decay width
and energy shifts of the π+π− atom can be obtained from the formulae (3.20),
(3.21) and (4.11) through the following substitutions of the masses MK+ →
Mπ+ ,MK0 →Mπ0 and coupling constants3,

C1 → c1, C2 →
√
2(c2 − 2c4∆π), C3 → 2c3, C6 → c6. (4.13)

The factor 2 in substituting C3 comes from the different normalization of the
π0π0 state |p3,p4〉0 = a†0(p3)a

†
0(p4)|0〉. For the coupling constant C2, the sub-

stitution is non-trivial because our basis of operators with two space derivatives
differs from the one used in Refs. [23, 30]. See also the comment in Section 3.1.
The result for the S-wave decay width of pionium reads at order δ9/2,

Γπ,n0 =
2

9n3
α3p∗π,nA2

π (1 +Kπ,n) , Aπ = a00 − a20 + ǫπ + o(δ), (4.14)

where

Kπ,n =
κ

9

(

a00 + 2a20
)2 − 2α

3

(

2a00 + a20
)

[

ψ(n)− ψ(1)− 1

n
+ ln

α

n

]

+ o(δ),

p∗π,n =

(

∆π − α2

4n2
M2

π+

)1/2

, (4.15)

and κ = M2
π+/M2

π0 − 1. The quantity Aπ is defined as in Refs. [23, 30]. The
isospin symmetry breaking contributions ǫπ have been evaluated at O(p4, e2p2)
in Refs. [23, 30, 52]. The corrections ǫπ are of the order of α and αm̂. This
is due to the fact that in the π+π− → π0π0 scattering amplitude at threshold,
the quark mass difference shows up at order (mu −md)

2m̂ only. For the decay

3The ci are the low–energy constants occurring in Refs. [23, 30].
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width of the ground-state at order δ9/2, we reproduce the result obtained in
Refs. [20, 23, 30]. Again we may rewrite the formula for the width:

Γπ,n0 =
2α3

9n3
p∗π,n(a

0
0− a20)

2 (1 + δπ,n)+O(δ5), δπ,n =
2ǫπ

a00 − a20
+Kπ,n. (4.16)

The parameter δπ,n contains the isospin breaking corrections to the Deser-type
formula at next-to-leading order. The numerical values for δπ,n, with n = 1, 2
are listed in Table 1. The decay width of the P-states into a pair of two neutral
pions is forbidden by C invariance.
The strong energy shift of the π+π− atom at order δ4 yields

∆Eh
π,n0 = −α

3Mπ+

n3
A′

π

(

1 +K ′
π,n

)

,

A′
π =

1

6

(

2a00 + a20
)

+ ǫ′π,

K ′
π,n = −α

3

(

2a00 + a20
)

[

ψ(n)− ψ(1)− 1

n
+ ln

α

n

]

+ o(δ), (4.17)

where A′
π is defined analogously to the quantity A′ discussed in Section 4.2. The

isospin symmetry breaking contributions ǫ′π have been calculated at O(p4, e2p2)
in Refs. [53, 54]. Again the corrections ǫ′π are of order α and αm̂. At order δ4,
the Deser-type formula is changed by isospin breaking corrections, according to

∆Eh
π,n0 = −α

3Mπ+

6n3
(2a00 + a20)

(

1 + δ′π,n
)

+O(δ5), δ′π,n =
6ǫ′π

2a00 + a20
+K ′

π,n.

(4.18)
For the first two energy-levels, the numerical values for δ′π,n are given in Table
1. Finally, the leading order contribution to the strong energy-level shift for
l = 1 and n ≥ 2 reads

∆Eh
π,n1 = − (n2 − 1)

8n5
α5M3

π+a11, (4.19)

here a11 denotes the P-wave ππ scattering length.

5 Transverse photons

We now concentrate on the contributions coming from transverse photons. At
order δ4, the energy-level shifts in π+π− and π±K∓ atoms contain apart from
the strong energy shift also an electromagnetic contribution as well as finite
size effects due to the electromagnetic form-factors of the pion and kaon. We
further discuss the contributions from transverse photons to the decay width
of the π−K+ atom and show that they do not contribute at order δ9/2. For
pionium, the various higher order decay channels have been discussed in Ref.
[23].

5.1 Electromagnetic energy-level shifts

As mentioned in Section 2, we split the total energy shift ∆Enl in Eq. (2.1)
into the strong part displayed in Eq. (4.7) and an electromagnetic contribution
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Figure 4: Self-energy (a) and one-photon exchange (b) to the electromagnetic
energy shift. The twisted lines denote transverse photons.

∆Eem
nl . The electromagnetic part is of order α4 and contains both pure QED

corrections as well as finite size effects due to the charge radii of the pion and
kaon, see appendix A. The energy shift contributions due to pure QED have
been evaluated by the use of the Bethe-Salpeter equation [40], the quasipotential
approach [41, 42] and an improved Coulomb potential [43]. Nevertheless, we find
it useful to provide the calculation within the non-relativistic framework.
Again, we start with the master equation (3.10), but instead of the effective
potential W, we consider the operator τ̄ in the second iterative approximation,

τ̄ = V +VḠn
C
V +O(V3). (5.1)

The non-relativistic Lagrangian including transverse photons (A.2), (A.4) and
(A.5) gives rise to the following perturbation,

V = HD +HS + eHγ + e2λHλ,

Hγ = iA

[

1

Mπ+

π†
−
∇π

−
− 1

MK+

K†
+
∇K+

]

,

Hλ = π†
−
K†

+
π
−
K+. (5.2)

The photon field A is given by

A(0,x) =

∫

d3k

(2π)32k0

∑

λ=1,2

[

ǫ(k, λ) aγ(k, λ)e
ikx + ǫ

∗(k, λ)a†γ(k, λ)e
−ikx

]

,

(5.3)
where k0

.
= |k| and ǫ(k, λ) denote the transversal polarization vectors. The

operator aγ satisfies the commutation relation,
[

aγ(k, λ), a
†
γ(k

′, λ′)
]

= 2k0(2π)3δ3(k− k′)δλλ′ , (5.4)

and the one-photon states read

|k, λ〉 = a†γ(k, λ)|0〉. (5.5)

The electromagnetic contributions to the energy-level shifts consists of

∆Eem
nl = − 1

8µ3
+

(

1− 3µ+

Σ+

)
∫

d3rΨ∗
nl(r)∆

2Ψnl(r) + e2λ|Ψn0(x = 0)|2

−
∫

dν(p)|Ψnl(p)|2
[

Σ̂π(Ωn,p) + Σ̂K(Ωn,p)
]

− e2

Mπ+MK+

∫

dν(p)dν(p′)Ψ∗
nl(p)Gγ(p,p

′)Ψnl(p
′), (5.6)
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with Ωn = Σ+ + p2/(2µ+) − En and Ψnl denotes the Coulomb wave function
for arbitrary n and l. Here, the first term contains the mass insertions HD, the
second describes the finite size effects due to Hλ, while the last two terms come
from the self-energy and one-photon exchange diagrams depicted in Figure 4
(a) and (b).
To avoid contributions from hard photon momenta, we use the threshold expan-
sion [55, 56] to evaluate the self-energy contributions. This procedure is outlined
in appendix D and the threshold expanded self-energy Σ̂h, where h = π,K, is
specified in Eq. (D.17). As can be read off from the wave function in momentum
space, the relative 3-momentum p is of order δ. Hence the quantities Σ̂π(Ωn,p)
and Σ̂K(Ωn,p) count as order δ

5 and are beyond the accuracy of our calculation.
What remains to be calculated is the one-photon exchange contribution4. The
integrand

Gγ(p,p
′) =

1

|p− p′|

[

α2µ+

2n2
+

p2

2Mπ+

+
p′2

2MK+

+ |p− p′|
]−1

×1

4

[

(p+ p′)2 − (p2 − p′2)2

(p− p′)2

]

, (5.7)

is a inhomogeneous function in the parameter δ, and to the accuracy we are
working required at leading order in δ only,

Gγ(p,p
′) =

1

4

1

|p− p′|2

[

(p+ p′)2 − (p2 − p′2)2

(p− p′)2

]

+ · · · (5.8)

In order to evaluate the one-photon exchange contributions, we replace the terms
∼ p2Ψ∗

nl(p) and ∼ p′2Ψnl(p
′) by making use of the Schrödinger equation,

[

p2 +
α2µ2

+

n2

]

Ψnl(p) = 8παµ+

∫

dν(q)
1

|p − q|2Ψnl(q). (5.9)

Further, we use the Fourier transform of |p − p′|−2, |p − q|−2 and |p′ − q|−2

to express the wave functions in coordinate space. The one-photon exchange
contribution now reads at order α4,

πα

µ+Σ+
|Ψn0(x = 0)|2 + α3µ+

n2Σ+
〈r−1〉 − 3α2

2Σ+
〈r−2〉, (5.10)

where the expectation values are defined as

〈r−k〉 =
∫

d3rΨ∗
nl(r)

1

|r|kΨnl(r), k = 1, 2. (5.11)

The electromagnetic energy shift at order α4 yields

∆Eem
nl =

α4µ+

n3

(

1− 3µ+

Σ+

)[

3

8n
− 1

2l + 1

]

+
4α4µ3

+λ

n3
δl0

+
α4µ2

+

Σ+

[

1

n3
δl0 +

1

n4
− 3

n3(2l + 1)

]

+O(α5lnα). (5.12)

4We thank A. Rusetsky for a very useful communication concerning technical aspects of
the calculation.
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Figure 5: Annihilation diagram π+π− → π+π− at order α in the relativistic
theory.

Here, the first terms is generated by the mass insertions, the second contains
the finite size effects and the last stems from the one-photon exchange contri-
butions (5.10). For n and l arbitrary, we get the same result for the pure QED
contributions as Ref. [40, 41, 43]. Further the formula for the ground-state
agrees with the result obtained in Ref. [25] for the electromagnetic energy shift
of the π−p atom, if we replace λ through the corresponding quantity in pionic
hydrogen.
To analyze the electromagnetic energy splittings of pionium, we need to con-
struct an effective Lagrangian that describes the relativistic π+π− → π+π−

amplitude at threshold correctly up to and including order α. The annihilation
graph showed in Figure 5 corresponds to a local four pion interaction in the
non-relativistic Lagrangian. However, the corresponding relativistic scattering
matrix element vanishes at threshold. We may thus obtain the electromag-
netic energy-level shift from Eq. (5.12) by simply substituting µ+ → Mπ+/2,
Σ+ → 2Mπ+ and λ→ 1/3〈r2π+〉,

∆Eem
π,nl = α4Mπ+

[

δl0
8n3

+
11

64n4
− 1

2n3(2l+ 1)

]

+
α4M3

π+〈r2π+〉
6n3

δl0 +O(α5lnα).

(5.13)

5.2 Decay channels of the πK atom

Next we discuss the contributions from other decay channels to the decay width
of the π−K+ atom. As already mentioned in Section 2, for S-states the only
possible decay channels are K0 + n1γ + n2e

+e− and π0K0 + n1γ + n2e
+e−,

where n1 + n2 > 0. Here n1 denotes the number of photons and n2 the number
of e+e− pairs. The decay widths into π−K+ + n1γ + n2e

+e− vanish due to
lack of phase space. Moreover, radiative transitions5 with the emission of one
photon are forbidden between two states with l = 0. For the 2P-state of the
π−K+ atom on the contrary, the main annihilation mechanism is the 2p − 1s
radiative transition into the ground-state, followed by the decay into π0K0.
To investigate the decays into K0 + nγ, n = 1, 2 we have to extend the La-
grangian in Eqs. (A.4) and (A.5) to include terms with odd intrinsic parity,
such as

LA = eD1B · (π†
−

←→

DK†
+
K0 + h.c) + e2D2E ·B(π†

−
K†

+
K0 + h.c) + · · · , (5.14)

5Transitions between S-states with the simultaneous emission of two photons are not for-
bidden. However, they are suppressed by a factor of α8.
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where u
←→

Dv
.
= uDv − vDu. The covariant derivative D is specified in appendix

A, E denotes the electric and B the magnetic field. The couplings D1 and D2

are real and may be determined through matching with the chiral expansion
of the relativistic amplitudes. In the relativistic theory, the π+K−K02γ vertex
is contained in the Wess-Zumino-Witten term [45]. The π+K−K0γ interaction
occurs not until the odd intrinsic parity sector of the ChPT Lagrangian at O(p6)
[46]. The such extended Hamiltonian is hermitian and the operator τ̄ obeys the
unitarity condition,

τ̄ (z)− τ̄
†(z) = −2πiτ̄ (z)δ̄(z −H0 −HC)τ̄

†(z). (5.15)

The symbol δ̄ is understood as follows: in order to evaluate the right-hand side
of the equation, we insert a complete set of eigenstates (H0+HC)|β〉 = Eβ |β〉,
omitting the n-th Coulomb eigenstate of the π−K+ atom. This implies for the
total decay width:

Γnl =
∑

β

Γnl,β, (5.16)

where

Γnl,β =

∫

dpβ dν(P)2πδ(z − Eβ)〈Ψnl,P | τ̄ (z) |β〉

×〈β | τ̄ †(z) | Ψnl,0〉, (5.17)

and z is the solution of the master equation (3.10). Here, dpβ denotes the
phase space integral over the intermediate state |β〉. At the accuracy we are
considering, we may use z = En. In the following, we estimate the order of the
various decays using this formula. As an illustration, we start with the decay
into π0K0. The relative 3-momenta of the π−K+ pairs p and p′ count as order
δ and we have

dν(p)dν(p′)Ψ∗
nl(p)Ψnl(p

′) = O(δ3). (5.18)

As can be read off from the energy delta function, the outgoing π0 and K0 3-
momenta p3 and p4 count as order δ

1/2. This leads to a phase space suppression
factor of order δ1/2,

dν(p3)dν(p4)δ
3(p3 + p4)δ (En − Eπ0K0) = O(δ1/2), (5.19)

where

Eπ0K0 = Σ0 +
p2
3

2Mπ0

+
p2
4

2MK0

. (5.20)

Further, the reduced matrix element +(p | τ̄ (En) | p3)0 is of O(1) and the S-
wave decay width thus starts at order δ7/2. The relation (5.17) allows one to
rather straightforwardly rederive the next-to-leading order formula for the decay
width of the S-states. In order not to interrupt the argument, we relegate the
relevant calculation to appendix E, and continue here with the discussion of the
radiative decay into π0K0+γ. The outgoing π0 and K0 3-momenta again count
as O(δ1/2), while the outgoing photon 3-momentum k is of order δ. This can
by seen by performing the phase space integrations over p3, p4 and k explicitly.
In total, the phase space suppression factor amounts to δ5/2,

dν(p3)dν(p4)
d3k

2 |k |δ
3(p3 + p4 + k)δ

(

En − Eπ0K0γ

)

= O(δ5/2), (5.21)
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Figure 6: Leading order contributions to the decays into π0K0+γ and K0+nγ,
n = 1, 2. The dot denotes the coupling C2, while the box stands for the couplings
D1 and D2 in LA. The twisted lines denote transverse photons.

with

Eπ0K0γ = Σ0 +
p2
3

2Mπ0

+
p2
4

2MK0

+ |k | . (5.22)

The leading order contribution stems from Figure 6(a) and 6(b). The corre-
sponding reduced matrix element is given by

+(p,−p | VḠ
n
C
V |p3,p4,k, λ)0 = −eC2p · ǫ(k, λ)

[

f(Mπ+ ,p2,−p · k)
+ f(MK+ ,p2,p · k)

]

+ · · · , (5.23)

where

f(M,p2,±p · k) =
1

M

[

α2µ+

2n2
+

p2

2µ+
+

k2

2M
+ |k | ±p · k

M

]−1

. (5.24)

This matrix element is of order δ1/2 which implies that the decay width Γπ0K0γ

starts at order δ13/2. However, this contribution vanishes after performing the
integrations over p and p′.
Next, we consider the decay into K0 + nγ, n = 1, 2 (see Figure 6(c) and 6(d)).
Here, the outgoing K0 and photon 3-momenta belong to the hard scale and thus
count as O(1). For π−K+ → K0 + γ, the Lagrangian (5.14) leads to a reduced
matrix element of order δ3/2,

+(p,−p | V | p4,k, λ)0 = 2eD1p · (k× ǫ(k, λ)) + · · · . (5.25)

Naive power counting implies that the decay width into K0 + γ starts at order
δ6. The matrix element (5.25) is odd in p and the S-wave decay width therefore
even more suppressed, while Γn1,K0γ starts at order δ6.
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For the transition π−K+ → K0+2γ, we get from the Lagrangian (5.14) a local
matrix element of order δ,

+(p,−p | V | p4,k1, λ1,k2, λ2)0 = e2D2k
0
1ǫ(k1, λ1) · [k2 × ǫ(k2, λ2)]

−2e2D1ǫ(k1, λ1) · [k2 × ǫ(k2, λ2)]

+k1 ↔ k2, λ1 ↔ λ2, (5.26)

and the decay width of the S-states into K0 + 2γ thus starts at order δ5. For
the P-wave decay width into K0 + 2γ this contributions vanishes, because the
matrix element in Eq. (5.26) is p independent.
Processes with a higher number of photons may be treated in a analogous man-
ner. We expect them - using power counting arguments - to be even more
suppressed. Since hard processes such as K0 + n1γ + n2e

+e−, n1 + n2 > 0
do not contribute to the decay width at order δ9/2, we may assume that all
couplings in the non-relativistic Lagrangian in Eqs. (A.2), (A.4) and (A.5) are
real. The total S-wave decay width of the π−K+ atom amounts to

Γn0 = Γn0,π0K0
+O(δ5). (5.27)

The π−K+ atom in the 2P-state on the other hand decays predominantly
through the radiative transition into the ground-state. To evaluate this tran-
sition, we insert the ground-state plus one photon into Eq. (5.17). Here the
photon 3-momentum k counts as order δ2, as can be read off from the energy
delta function δ(E2 − E1 − |k|). At leading order, we get for the spontaneous
2p− 1s transition the well-known expression, see e.g. Ref. [57]

Γ21 =
(

2
3

)8
α5µ+ + · · · (5.28)

The result is of order α5 and given numerically in Table 3. The first subleading
decay mode of the 2P-state starts at order δ6 with the odd intrinsic parity decay
into K0 + γ. The P-wave decay width into π0K0 in Eq. (4.6) is of order δ13/2

and suppressed with respect to radiative 2p− 1s transition by a factor of 10−7.

6 Vacuum polarization

What remains to be added are the contributions coming from the electron vac-
uum polarization. The calculation of these corrections within a non-relativistic
Lagrangian approach has been performed in Ref. [22]. In our framework, the
contributions due to vacuum polarization arise formally at higher order in α.
However, they are amplified by powers of the coefficient µ+/me, where me de-
notes the electron mass. To the accuracy considered here, the only effect of the
vacuum polarization of the electron is a modification of the Coulomb potential
HC → HC +Hvac, with

+(p | Hvac |q)+ = −4α2

3

∫ ∞

4m2
e

ds

s+ (p− q)2
1

s

[

1 +
2m2

e

s

] [

1− 4m2
e

s

]1/2

. (6.1)

The vacuum polarization leads to an electromagnetic energy shift evaluated in
Refs. [22, 25, 44],

∆Evac
nl = (Ψnl | Hvac |Ψnl) . (6.2)
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102δh,1 102δh,2 102δ′h,1 102δ′h,2
π+π− atom 5.8± 1.2 5.6± 1.2 6.2± 1.2 6.1± 1.2
π±K∓ atom 4.0± 2.2 3.8± 2.2 1.7± 2.2 1.5± 2.2

Table 1: Next-to-leading order corrections to the Deser-type formulae.

For the first two energy-level shifts of pionium6 and the π±K∓ atom, ∆Evac
π,nl

and ∆Evac
nl are given numerically in Table 2 and 3. Formally of order α2l+5,

this contribution is numerically sizeable due to its large coefficient containing
(µ+/me)

2l+2.
The vacuum polarization also interferes with strong interactions and contributes
to the decay width and to the strong energy shift. This can be seen by insert-
ing the modified Coulomb potential into the master equation (3.10). For the
spectrum and the width of the π±K∓ atom, we get

Γn0 =
8α3µ2

+

n3
p∗n(a

−
0 )

2
(

1 + δK,n + δvac
K,n

)

,

∆Eh
n0 = −2α3µ2

+

n3
(a+0 + a−0 )

(

1 + δ′K,n + δvacK,n

)

. (6.3)

What concerns pionium, the decay width and strong energy shift are modified,
according to

Γπ,n0 =
2α3

9n3
p∗π,n(a

0
0 − a20)

2
(

1 + δπ,n + δvacπ,n

)

,

∆Eh
π,n0 = −α

3Mπ+

6n3
(2a00 + a20)

(

1 + δ′π,n + δvacπ,n

)

. (6.4)

The correction δvach,n, h = π,K is proportional to the change in the Coulomb
wave function [22] of the bound system due to vacuum polarization,

δvach,n =
2δΨn0(x = 0)

Ψn0(x = 0)
. (6.5)

Here, Ψnl stands for a generic Coulomb wave function and h = π,K. For the
ground-state, this result is contained in Table II of Ref. [22]. Formally, δvach,n is

of order α2, but enhanced because of the large coefficient containing µ+/me.

7 Numerics

In the numerical evaluation of the widths and energy shifts of the π+π− and
π±K∓ atoms, we use the following numbers: The ππ scattering lengths yield
a00 = 0.220± 0.005, a20 = −0.0444± 0.0010 and a11 = (0.379± 0.005) · 10−1M−2

π+

[4, 5]. The correlation matrix for a00 and a20 is given in Ref. [5]. For the isospin
symmetry breaking corrections to the ππ threshold amplitudes (4.14) and (4.17)
at order e2p2, we use ǫπ = (0.61±0.16)·10−2 and ǫ′π = (0.37±0.08)·10−2 [23, 54].

6For pionium, the electromagnetic energy shift due to vacuum polarization is denoted by
∆Evac

π,nl
.
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π+π− atom ∆Eem
π,nl[eV] ∆Evac

π,nl[eV] ∆Eh
π,nl[eV] 1015τπ,nl[s]

n=1, l=0 −0.065 −0.942 −3.8± 0.1 2.9± 0.1
n=2, l=0 −0.012 −0.111 −0.47± 0.01 23.3± 0.7
n=2, l=1 −0.004 −0.004 ≃ −1 · 10−6 ≃ 1.2 · 104

Table 2: Numerical values for the energy shift and the lifetime of the π+π−

atom.

The values for the πK scattering lengths are taken from the recent analysis
of data and Roy-Steiner equations [33]. The S-wave scattering lengths yield
a+0 = (0.045± 0.012)M−1

π+ , a
−
0 = (0.090 ± 0.005)M−1

π+ [33], and for the P-waves

we use a
1/2
1 = (0.19± 0.01) · 10−1M−3

π+ and a
3/2
1 = (0.65± 0.44) · 10−3M−3

π+ [33].

The correlation parameter for a+0 and a−0 is also given in Ref. [33]. The isospin
breaking corrections to the πK threshold amplitudes (4.4) and (4.9) have been
worked out in Refs. [36, 50, 51] at O(p4, e2p2). Whereas the analytic expressions
for ǫ and ǫ′ obtained in Refs. [36, 50, 51] are not identical, the numerical values
agree within the uncertainties quoted in [51]. In the following, we use [51]
ǫ = (0.1 ± 0.1) · 10−2M−1

π+ and ǫ′ = (0.1 ± 0.3) · 10−2M−1
π+ . For the charge

radii of the pion and kaon, we take 〈r2π+〉 = (0.452 ± 0.013) fm2 and 〈r2
K+〉 =

(0.363 ± 0.072) fm2 [58]. In the evaluation of the uncertainties, we take into
account the correlation between the ππ, (πK) scattering lengths.
The isospin breaking corrections δh,n and δ′h,n, h = π,K to the widths (4.5),
(4.16) and strong energy shifts (4.10), (4.18) are listed in Table 1. The energy
shift corrections δ′K,n are smaller than in the case of pionium. This discrep-
ancy comes from the different size of the isospin breaking contributions to the
elastic one-particle irreducible ππ and πK amplitudes. At leading order in the
chiral expansion, the isospin breaking part of the π−K+ → π−K+ amplitude
at threshold is suppressed by a factor of Mπ+/MK+ with respect to the corre-
sponding quantity in ππ scattering.
As described in Section 6, Eqs. (6.3) and (6.4), the width and strong energy
shift are modified due to vacuum polarization, according to

δh,n → δh,n + δvach,n, δ′h,n → δ′h,n + δvach,n, (7.1)

where h = π,K and δvach,n is defined in Eq. (6.5). For the ground-state, the

corrections due to vacuum polarization yield δvac
K,1 = 0.45 ·10−2 and δvacπ,1 = 0.31 ·

10−2[22]. However, for the numerical analysis of the width and the strong energy
shift, we may neglect the contributions from δvach,n, because the uncertainties in
δh,n and δ′h,n are larger than δvach,n itself.

For the first two states of the π+π− and π±K∓ atoms, the numerical values
for the lifetime τnl

.
= Γ−1

nl , (τπ,nl
.
= Γ−1

π,nl) and the energy shifts are listed in
Table 2 and 3. The numbers for the lifetime and strong energy shifts of the
S-states are valid at next-to-leading order in isospin symmetry breaking. The
bulk part in the uncertainties of these quantities is due to the uncertainties
in the corresponding scattering lengths. For the lifetime of the 2P-state, the
numerical values are valid at leading order only, and determined by the 2p− 1s
radiative transition in Eq. (5.28) [59].
The energy-level shift due to vacuum polarization ∆Evac

nl , (∆Evac
π,nl) [22, 44]
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π±K∓ atom ∆Eem
nl [eV] ∆Evac

nl [eV] ∆Eh
nl[eV] 1015τnl[s]

n=1, l=0 −0.095 −2.56 −9.0± 1.1 3.7± 0.4
n=2, l=0 −0.019 −0.29 −1.1± 0.1 29.4± 3.3
n=2, l=1 −0.006 −0.02 ≃ −3 · 10−6 ≃ 0.7 · 104

Table 3: Numerical values for the energy shift and the lifetime of the π±K∓

atom.

is specified in Eq. (6.2). Formally of higher order in α, this contribution is
numerically sizable. We do not display the error bars for the electromagnetic
energy shifts. At order α4, they come from the uncertainties in the charge radii
of the pion and kaon only. In the case of pionium, the uncertainties of ∆Eem

π,10 at
order α4 amount to about 0.7%, while for the π±K∓ atom ∆Eem

10 is known at the
5% level. To estimate the order of magnitude of the electromagnetic corrections
at higher order, we may compare with positronium. Here, the α5 and α5 lnα
corrections [60] amount to about 2% with respect to the α4 contributions.
Both, the electromagnetic and vacuum polarization contributions to the energy
shift are known to a high accuracy. A future precision measurement of the
energy splitting between the nS and nP states [61] will therefore allow one to
extract the strong S-wave energy shift in Eq. (4.10), and to determine the
combination a+0 +a−0 of the πK scattering lengths. The 2s− 2p energy splitting
yields

∆E2s−2p = ∆Eh
20 +∆Eem

20 −∆Eem
21 +∆Evac

20 −∆Evac
21

= −1.4± 0.1 eV. (7.2)

The uncertainty displayed is the one in ∆Eh
2 only. To the accuracy we are

working, we may neglect the strong shift in the 2P state, it is suppressed by the
power of α5. For pionium the energy splitting between the 2S and 2P states
reads

∆Eπ,2s−2p = ∆Eh
π,20 +∆Eem

π,20 −∆Eem
π,21 +∆Evac

π,20 −∆Evac
π,21

= −0.59± 0.01 eV. (7.3)

Again the uncertainty displayed is the one in ∆Eh
π,2 only and we may neglect

contributions from the strong shift in the 2P state.
As an illustration, we alternatively use the ChPT predictions for the πK scatter-
ing lengths [34, 36] in the numerical evaluation of the lifetime. The ChPT predic-
tions yield at order p4, a+0 = (0.032± 0.016)M−1

π+ and a−0 = (0.079± 0.001)M−1
π+

[33]. Here, the errors include the uncertainties in the values of the input param-
eters only. The uncertainty in a−0 is remarkably small, because the isospin odd
scattering length involves at O(p4) a single low–energy constant Lr

5 [36]. On
the other hand, a+0 contains apart from the combination 2Lr

6 + Lr
8 five further

coupling constants [36], which are enhanced by one power of MK+/Mπ+ with
respect to the counterterm in a−0 . For a−0 , the two-loop correction has to be
rather substantial, in order to reproduce the central value of the Roy-Steiner
evaluation. Very recently, the chiral expansion of the πK scattering amplitude
at next-to-next-to-leading order became available [37]. According to the prelim-
inary numerical study performed in Ref. [37], the S-wave scattering lengths are
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at order p6 in reasonable agreement with the Roy-Steiner evaluation [33]. The
O(p4) ChPT prediction for the lifetime of the π±K∓ atom in its ground-state
is

τ10 = 4.7 · 10−15s, ChPT, [O(p4)], (7.4)

whereas
τ10 = (3.7± 0.4) · 10−15s, Roy-Steiner. (7.5)

The ChPT prediction is valid at next-to-leading order in isospin symmetry
breaking and up to and including O(p4) in the chiral expansion.

8 Summary and Outlook

We have considered the spectra and decays of π+π− and π±K∓ atoms in the
framework of QCD + QED. We evaluated the corrections to the Deser-type
formulae for the width and the energy shift - valid at next-to-leading order in
isospin symmetry breaking - within a non-relativistic effective field theory. It
is convenient to introduce a different book keeping for the π+π− and π±K∓

atoms. What concerns pionium, we count α and (mu−md)
2 as small quantities

of order δ, in the case of the π±K∓ atom both α and mu − md are of order
δ. The different counting schemes are due to the fact that in QCD, the pion
mass difference starts at (mu −md)

2, while the kaon mass difference is linear in
mu −md.
Consider first the energy shifts that are split into an electromagnetic and a
strong part, according to Eq. (2.1). The electromagnetic part in Eqs. (5.12)
and (5.13) contains both pure QED contributions as well as finite size effects due
to the charge radii of the pion and kaon. The strong energy shift of the π−K+

atom is proportional to the one-particle irreducible π−K+ → π−K+ scattering
amplitude at threshold. In the isospin symmetry limit, the elastic threshold
amplitude reduces to the sum of isospin even and odd scattering lengths a+0 +a

−
0 .

The isospin breaking contributions to the amplitude have been evaluated at
O(e2p2, p4)[36, 51] in the framework of ChPT. The result in Eq. (4.10) displays
the S-wave energy shift in terms of the sum a+0 +a−0 , and a correction of order α
andmu−md. For the first two energy-level shifts, the isospin symmetry breaking
correction modifies the leading order term at the 2% level. The isospin even
scattering length a+0 is sensitive to the combination of low–energy constants
2Lr

6 + Lr
8. The consequences of this observation for the SU(3)×SU(3) quark

condensate [39] remain to be worked out. In the case of pionium, the strong
energy shift displayed in Eq. (4.18) is related to the ππ scattering lengths
combination 2a00 + a20 and a correction of order α and (mu − md)

2. For the
first two energy-levels, these isospin symmetry breaking contributions amount
to about 6%.
A future measurement of the energy splitting between the 2S and 2P state in
the π+π−, (π±K∓) atom will allow one to extract the strong energy shift and
to determine the scattering lengths combination 2a00+a

2
0, (a

+
0 +a−0 ). This is due

to the fact that the electromagnetic energy shifts are known to high accuracy
and the strong P-wave energy shifts in Eqs. (4.12) and (4.19) are suppressed
by the power of α5. However, another higher order correction - generated by
the vacuum polarization - is numerically sizable and contributes to the energy
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splitting in Eqs. (7.2) and (7.3). Formally of order α2l+5, this correction is
enhanced due to its large coefficient containing (µ+/me)

2l+2.
We now turn to the decay widths of the π+π− and π−K+ atoms. At lead-
ing and next-to leading order the π+π− and π−K+ atoms decay into 2π0 and
π0K0 exclusively. Aside from a kinematical factor - the relativistic outgoing 3-
momentum of the bound system - their decay width can be expanded in powers
of α and mu−md. By invoking ChPT, the result for the S-wave decay width of
the π−K+ atom may be expressed in terms of the isospin odd scattering length
a−0 , and an isospin symmetry breaking correction of order α and mu −md, see
Eq. (4.5). For the ground-state decay width, this correction modifies the lead-
ing order Deser-type relation at the 4% level. The next-to-leading order result
for the S-wave decay width of pionium is given in Eq. (4.16). The expression
for the ground-state width agrees with the result obtained in Refs. [20, 23, 30].
For the 2P state of the π−K+, (π+π−) atom, the decay width starts at order α5

with the 2p− 1s radiative transition into the ground-state, see Eq. (5.28). The
P-wave decay width of the π−K+ atom into π0K0 in Eq. (4.6) is suppressed
by the power of δ13/2. For pionium, the P-wave decay width into a pair of two
neutral pions vanishes due to C invariance.
We find it very exciting that in view to the beautiful work performed by our
experimental colleagues, we may expect that many of the above predictions will
be confronted with experimental data in a not too distant future. This will
certainly improve our knowledge of the low–energy structure of QCD.
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A Non-relativistic Lagrangian

The non-relativistic Lagrangian must be invariant under space rotation, P , T
and gauge transformations. We do not include terms corresponding to transi-
tions between sectors with different numbers of heavy fields (pions and kaons).
These interactions describe processes with an energy release at the hard scale.
In general, such decay processes are accounted for by introducing complex cou-
plings in the non-relativistic Lagrangian. However, as shown in Section 5.2,
intermediate states do not contribute to the decay width at order δ9/2 and we
may therefore assume the low–energy couplings to be real.
In the sector with one or two mesons, the non-relativistic effective Lagrangian
is given by

LNR = L1 + L(0)
2 + L(2)

2 + · · · (A.1)
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The first term contains the one-pion and one-kaon sectors

L1 =
1

2
(E2 −B2) + π†

0

(

i∂t −Mπ0 +
∆

2Mπ0

+
∆2

8M3
π0

+ · · ·
)

π0

+K†
0

(

i∂t −MK0 +
∆

2MK0

+
∆2

8M3
K0

+ · · ·
)

K0

+
∑

±

π†
±

(

iDt −Mπ+ +
D2

2Mπ+

+
D4

8M3
π+

+ · · ·
)

π±

+
∑

±

K†
±

(

iDt −MK+ +
D2

2MK+

+
D4

8M3
K+

+ · · ·
)

K±

∓e
∑

±

D(E)

(

cπ
6M2

π+

π†
±π± +

cK
6M2

K+

K†
±K± + · · ·

)

, (A.2)

with electromagnetic charge e, E = −∇A0 − Ȧ and B = ∇×A. The covariant
derivatives of the charged meson fields are given by

Dtπ± = ∂tπ± ∓ ieA0π±, Dπ± = ∇π± ± ieAπ±,

DtK± = ∂tK± ∓ ieA0K±, DK± = ∇K± ± ieAK±. (A.3)

The one-pion-one-kaon sector of total zero charge reads at lowest order

L(0)
2 = C1π

†
−
K†

+
π
−
K+ + C2

(

π†
−
K†

+
π0K0 + h.c

)

+ C3π
†
0
K†

0
π0K0. (A.4)

To evaluate the decay width and energy shifts of the π−K+ atom, we need in
addition the following terms with two covariant space derivatives7

L(2)
2 = C4

(

π†
−

←→

D
2
K†

+
π0K0 + h.c

)

+ C5

(

π†
−

←→

D
2
K†

+
π
−
K+ + h.c

)

+C6(π
†
−
π
−
)D2(K†

+
K+) + C7

(

∇π†
−
K†

+
∇π0K0 + h.c

)

+ · · · ,(A.5)

where u
←→

D
2
v
.
= uD2v + vD2u. We work in the center of mass system and thus

omit terms proportional to the c.m. momentum. We do not display time deriva-
tives, for on-shell matrices they can be eliminated by the use of the equations of
motion. The parameters Mπi (MKi) denote the physical pion, (kaon) masses –
there is no mass renormalization in the non-relativistic theory, see Section 3.3.
We work in the Coulomb gauge and eliminate the A0 component of the photon
field by the use of the equations of motion. At the accuracy we are considering,
the term linear in D(E) in Eq. (A.2) then reduces to a local interaction which
modifies the low–energy coupling C1,

C′
1 = C1 − e2λ,

λ =
cπ

6M2
π+

+
cK

6M2
K+

. (A.6)

7In the c.m. system and by the use of the equations of motion, we identify

π
†
−
K

†
+π0

←→

∆K0 = −4µ0(Σ+ − Σ0)π
†
−
K

†
+π0K0 +

µ0

µ+

π
†
−

←→

D
2
K

†
+π0K0.
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It is sufficient to match the non-relativistic couplings cπ and cK at order δ0.
We therefore consider the pion and kaon electromagnetic form-factors in the
external field Aµ. The results of the matching yield

cπ =M2
π+〈r2π〉, cK =M2

K+〈r2K〉, (A.7)

where rπ and rK denote the charge radii of the charged pion and kaon, respec-
tively. The remaining low energy constants Ci, i = 1, . . . 7 may be determined
through matching the πK amplitude in the vicinity of the threshold for different
channels, see Section 3.3.

B Relativistic scattering amplitudes

First, we consider the S = 1 processes

π−K+ → π−K+, π−K+ → π0K0, π0K0 → π0K0, (B.1)

in the isospin symmetry limit. The decomposition into amplitudes with definite
isospin yields

T±;± =
1

3
[T 3/2(s, t) + 2T 1/2(s, t)] ,

T 00;± =

√
2

3
[T 3/2(s, t)− T 1/2(s, t)] ,

T 00;00 =
1

3
[2T 3/2(s, t) + T 1/2(s, t)] . (B.2)

The isospin I = 1/2 and I = 3/2 components are related via

T 1/2(s, t, u) =
3

2
T 3/2(u, t, s)− 1

2
T 3/2(s, t, u). (B.3)

The T+, (T−) amplitude

T+(s, t) =
1

3
[T 1/2(s, t) + 2T 3/2(s, t)] ,

T−(s, t) =
1

3
[T 1/2(s, t)− T 3/2(s, t)] , (B.4)

is even (odd) under s ↔ u crossing. In the s-channel, the decomposition into
partial waves reads

T I(s, t) = 16π
∞
∑

l=0

(2l + 1)tIl (s)Pl(cos θ), (B.5)

where s = [ωπ+(p)+ωK+(p)]2, t = −2p2(1−cosθ) and θ is the scattering angle
in the c.m. system.
The real part of the partial wave amplitudes near threshold is of the form,

Re tIl (s) =

√
s

2
p2l
(

aIl + bIl p
2 +O(p4)

)

, (B.6)

where aIl denote the scattering lengths and bIl the effective ranges.
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What follows, are the ππ scattering processes:

π−π+ → π−π+, π−π+ → π0π0, (B.7)

with

T±;±
π =

1

6

[

T 2
π(s, t) + 3T 1

π(s, t) + 2T 0
π(s, t)

]

,

T 00;±
π =

1

3

[

T 2
π(s, t)− T 0

π(s, t)
]

. (B.8)

The decomposition into partial waves yields

T I
π (s, t) = 32π

∞
∑

l=0

(2l + 1)Pl(cos θ)t
I
π,l(s), (B.9)

where s = 4(M2
π+ + p2). At threshold, the partial wave amplitudes take the

form
RetIπ,l(s) = p2l

[

aIl + p2bIl +O(p4)
]

. (B.10)

C Schwinger’s Green function

The Schwinger Green function fulfills

[

E − q2

2µ+

]

+(q | GC(z) |p)+ + e2
∫

dν(k)
1

(k − q)2
+(k | GC(z) |p)+ =

(2π)3δ3(q− p), (C.1)

where E = z − Σ+. The explicit expression is given by8

+(q | GC(z) |p)+ =
(2π)3δ3(q− p)

E − q2

2µ+

− 1

E − q2

2µ+

4πα

(q − p)2
1

E − p2

2µ+

− 1

E − q2

2µ+

4παηI(E,q,p)
1

E − p2

2µ+

, (C.2)

with η = α/2(−E/(2µ+))
−1/2. The function

I(E,q,p) =

∫ 1

0

dρ ρ−η

[

(q− p)2ρ+
η2

α2
(1− ρ2)(E − q2

2µ+
)(E − p2

2µ+
)

]−1

,

(C.3)
contains poles at η = 1, 2, . . . or, equivalently, at z = En. The integral

〈ḡn
C
(En)〉 =

∫

ddp

(2π)d
ddq

(2π)d
+(q | Ḡn

C
(En) |p)+,

=
αµ2

+

π

{

ψ(n)− ψ(1)− 1

n
+

1

2

[

Λ(µ)− 1 + 2ln
α

n
+ ln

4µ2
+

µ2

]}

,

(C.4)

8To simplify the notation, we omit the positive imaginary part in E.
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with ψ(n) = Γ′(n)/Γ(n) develops an ultraviolet singularity as d→ 3,

Λ(µ) = (µ2)d−3

{

1

d− 3
− Γ′(1)− ln4π

}

. (C.5)

D Non-relativistic integrals

What follows is a list of the non-relativistic integrals used to calculate the πK
scattering amplitudes in Section 3.3 as well as in the evaluation of the decay
width (Sec. 3.2) and energy shifts (Secs. 3.2 and 5.1). Whenever necessary,
the integrations are worked out in D 6= 4 space-time dimensions to take care of
possible ultraviolet or infrared divergences.
The non-relativistic propagator of the heavy fields reads

GNR,h(x)
.
= i〈0|T h̄(x)h̄†(0)|0〉 =

∫

dDp

(2π)D
e−ipx 1

Mh + p2

2Mh
− p0 − iǫ

, (D.1)

where h̄ stands for the free fields, with h = π−, π0,K+,K0 and Mh denotes the
corresponding mass. The tadpole diagrams GNR,h(0) vanishes in dimensional
regularization. This can be seen, by performing the integration over the zero
component of the loop momentum explicitly. The remaining integral is scaleless
and therefore zero in dimensional regularization.
At α = 0, the elementary loop function to calculate a diagram with any number
of bubbles is given by

Ji(P
0) =

1

i

∫

dDl

(2π)D
1

Mπi + l2

2Mπi
− l0

1

MKi + l2

2M
Ki

− P 0 + l0
, (D.2)

where i = +, 0. After the integration over the zero component of the loop
momentum, we arrive at

Ji(P
0) =

∫

ddl

(2π)d
1

Σi +
l2

2µi
− P 0

. (D.3)

The function is analytic in the complex P 0 plane, except for a cut on the real
axis for P 0 ≥ Σi. For P

0 ≥ Σi and d 6= 3, we get

Ji(P
0) =

iµ
3/2
i√
2π

√

P 0 − Σi

[

1 +
d− 3

2

×
(

−iπ − 2− Γ′(1) + ln 4π + ln 2µi(P
0 − Σi)

)

]

. (D.4)

To obtain the contribution to the scattering amplitude, we need to evaluate this
function at P 0 = ωπ+(p) + ωK+(p). At threshold, the integral J+(P

0) is of
order p, while J0(P

0) is given by

J0(Σ+) =
iµ

3/2
0√
2π

√

Σ+ − Σ0. (D.5)
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We now include the Coulomb interaction. The self-energy diagram with one
virtual Coulomb photon vanishes, because the integration contour over the zero
momentum of the photon can be closed in the upper half-plane, where there
is no singularity. Next, we evaluate the Coulomb vertex function VC and the
two–loop integral BC. The Coulomb vertex function, see for example Figure
1(a), is given by

VC(p, P
0) = −e2 1

i

∫

dDl

(2π)D
1

|p− l|2
1

Mπ+ + l2

2Mπ+
− l0

× 1

MK+ + l2

2M
K+

− P 0 + l0
. (D.6)

After integrating over the zero component of the loop momentum, the function
amounts to

VC(p, P
0) = e2

∫

ddl

(2π)d
1

|p− l |2
1

P 0 − Σ+ − l2

2µ+

. (D.7)

The contribution to the scattering amplitude is obtained for P 0 = ωπ+(p) +
ωK+(p). We expand the function around threshold which leads to

VC(p, P
0
thr) = −παµ+

2 |p | − iαθc +O(d − 3), (D.8)

where P 0
thr = Σ++ p2

2µ+
and the infrared-divergent Coulomb phase θc is specified

in Eq. (3.27). The two–loop Coulomb photon exchange diagram depicted in
Figure 1(c) reads

BC(P
0) = −e2

∫

dDl1
(2π)D

dDl2
(2π)D

1

|l1 − l2|2

× 1

Mπ+ +
l21

2Mπ+
− l01

1

MK+ +
l21

2M
K+

− P 0 + l01

× 1

Mπ+ +
l22

2Mπ+
− l02

1

MK+ +
l22

2M
K+

− P 0 + l02

. (D.9)

Performing the integrations over the zero components of the loop momenta l1
and l2, we get

BC(P
0) = e2

∫

ddl1
(2π)d

ddl2
(2π)d

1

| l1 − l2 |2
1

P 0 − Σ+ − l2
1

2µ+

1

P 0 − Σ+ − l2
2

2µ+

. (D.10)

The expansion in the vicinity of the threshold amounts to

BC(P
0
thr) = −αµ

2
+

2π

[

Λ(µ) + 2ln
2 |p |
µ

− 1− iπ

]

+O(d− 3). (D.11)

The ultraviolet pole term Λ(µ) is given in Eq. (C.5).
In the presence of transverse photons, the non-relativistic integrals have to be
treated properly in order to avoid loop momenta coming from the hard scale.
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Otherwise, these loop corrections lead to a breakdown of the non-relativistic
counting scheme. We use the threshold expansion [55, 56] to disentangle the
hard scale (given by the meson masses) from the soft scales. We illustrate the
procedure for the two-point function of the charged pions and kaons at order
e2,

i

∫

dxeipx〈0|Th±(x)h†±(0)|0〉 =
1

M+ + p2

2M+
− p0 − Σh(p0,p)

, (D.12)

where h = π,K and M+ denotes the corresponding mass. The self-energy Σh is
depicted in Figure 4(a) (upper line). In D 6= 4 space-time dimensions, we have

Σh(p
0,p) =

e2

M2
+

1

i

∫

dDk

(2π)D
p2 − (p · k)2/k2

−k2(M+ + (p−k)2

2M+
− p0 + k0)

+O(e4). (D.13)

After integrating over the zero component of the loop momentum, we arrive at

Σh(p
0,p) =

e2

M2
+

∫

ddk

(2π)d
1

2|k|
p2 − (p · k)2/k2

Ω+ k2

2M+
− p·k

M+
+ |k|

+O(e4), (D.14)

where Ω =M++p2/(2M+)−p0. The threshold expansion amounts to expanding
the integrand in Eq. (D.14) in the small parameter v, according to the counting9,

k = O(v2), p = O(v), Ω = O(v2). (D.15)

The threshold expanded self-energy

Σ̂h(Ω,p) =
e2

2M2
+

p2Ωd−2 Γ(d)Γ(2 − d)

(4π)d/2Γ(1 + d
2 )

+O(e4), (D.16)

contains an ultraviolet divergence as d→ 3,

Σ̂h(Ω,p) =
e2

6π2M2
+

p2Ω

(

L(µ) + ln
2Ω

µ
− 1

3

)

+O(e4, d− 3),

L(µ) = µd−3

[

1

d− 3
− 1

2
(Γ′(1) + ln4π + 1)

]

. (D.17)

E Unitarity condition: Evaluation of the width

The unitarity condition in Eq. (5.17) renders the evaluation of the S-wave decay
width at next-to-leading order straightforward. It can be seen from Eqs. (5.18)
and (5.19) that in order to evaluate the width at O(δ9/2), it suffices to calculate
the matrix element +(p | τ̄ (En) |p3)0 at order δ. Here, the following term occurs

Γn0,π0K0 = −C2
2

M3
π0 +M3

K0

8M3
π0M3

K0

|Ψn0(x = 0)|2
∫

dν(p3)2πδ
(

En − Σ0 −
p2
3

2µ0

)

×p4
3





1

z − Σ0 − p2
3

2µ0

+
1

z̄ − Σ0 − p2
3

2µ0





∣

∣

∣

∣

∣

z→En+iǫ

+ · · · , (E.1)

9Instead of first performing the integration over the zero component of the photon field,
we may apply the threshold expansion directly to Eq. (D.13), with k0 = O(v2).
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which is generated by the matrix element +(p |HSGC(z)HD |p3)0 and its her-
mitian conjugate. This contribution can be calculated by the use of

− 2πiδ

(

En − Σ0 −
p2
3

µ0

)

=
1

z − Σ0 − p2
3

µ0

− 1

z̄ − Σ0 − p2
3

µ0

∣

∣

∣

∣

∣

z→En+iǫ

, (E.2)

and the result for the decay width at order δ9/2 agrees with Eq. (3.20).
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