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This paper reviews some recent progress on QCD functional integrals at nonzero chemical poten-
tials. One issue discussed is the use of QCD inequalities for this regime. In particular, the positivity
of the integrand of particular Euclidean space functional integrals for two-flavor QCD with degen-
erate quark masses is used to demonstrate that the free energy per unit volume for QCD with a
baryon chemical potential µB (and zero isospin chemical potential) is necessarily greater than the
free energy with isospin chemical potential µI = 2µB

Nc
(and zero baryon chemical potential). This

result may be of use in model finite density systems. A corollary to this result is a rigorous ab
initio bound on the nucleon mass. The second major issue addressed is the so-called “Silver Blaze”
problem: the fact that at zero temperature and chemical potentials less than some critical value the
free energy remains as that of the vacuum. This is puzzling in the context of a functional integral
since a chemical potential affects the functional determinant of the Dirac operator and any nonzero
µ changes every eigenvalue of the Dirac operator compared to the µ = 0 value. The isospin Silver
Blaze problem is solved through the study of the spectrum of the operator γ0(D/+m). The status
of the baryon Silver Blaze problem is briefly discussed.

I. INTRODUCTION

The problem of QCD at nonzero density is important both phenomenologically and theoretically. Unfortunately, it
is a problem of formidable difficulty.
There is no known analytical way to attack the problem in terms of a convergent systematic expansion except

at very high density. In the very high density regime one can use the fact the system is weakly coupled to deduce
the form of an interaction kernel between quarks which gives rise to a gap equation yielding color superconductivity
[1, 2]. Unfortunately, this regime is only known to be valid at exponentially high densities. Accordingly it is doubtful
whether this regime is relevant either in astrophysics or in laboratory experiments.
One might hope to learn about the system via numerical simulations of lattice QCD[3]. Here, too, is a problem.

The standard Monte Carlo algorithm relies on a functional with a positive definite measure. Typically finite densities
are achieved via a chemical potential and the chemical potential generally yields a functional determinant which is
not positive definite and this notorious fermion sign problem spoils the Monte Carlo approach. One way to avoid
this is to concentrate on the case of QCD with an isospin chemical potential rather than a baryon one. This has the
virtue of having a manifestly real and positive measure in the functional integral [4]. Numerical simulations have been
done for this system.[5, 6] Unfortunately, this problem is of little interest phenomenologically since it is relevant to
no known physical circumstance either in astrophysics or in a doable terrestrial experiment. There has been recent
progress in ways to treat systems with finite baryon chemical potentials. However, these approaches are restricted to
the regime of high temperature and low density. While this regime is certainly of some interest and the techniques
may be suitable for reaching the QCD critical point (which is certainly of interest) the techniques are not suitable for
the interesting regime of relative cold matter which is of real astrophysical interest.
Thus, for much of the regime of interest one is compelled to resort to model building. Clearly it is of interest to

see whether there are any new analytically approaches to this class of problems which can provide new insights. Such
insights may be of use in furthering theoretical understanding. They also may serve to constrain model building.
This paper reports on two related new developments based on formal properties of the QCD functional integrals at

nonzero chemical potentials.
The first is based on the techniques of QCD inequalities[7]. The key insight is that the functional integral for QCD

with a finite baryon chemical potential differs from QCD with a finite isospin chemical potential only by a phase.
This in turn lets one bound the free energy for QCD with a nonzero baryon chemical potential (and zero isospin
chemical potential) by the free energy for QCD with a nonzero isospin chemical potential (with zero isospin chemical
potential)[8]. This result is of interest theoretically and may be of importance in constraining model building—since
the isospin chemical potential case may be simulated on the lattice, one has a calculable bound which models must
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not violate to be consistent with QCD. The method also has a surprising spin-off—it provides a rigorous bound on
the mass of the nucleon.
The second development discussed concerns the so-called “Silver Blaze” problem[9]. This problem is named after

the famous Arthur Conan Doyle story of that name. In this story Sherlock Holmes used the “curious incident” of a
dog doing nothing in the night time as a key clue. In the context of QCD at nonzero chemical potential, the problem
arises when one tries to understand the behavior of QCD at zero temperature and small chemical potential via the
analysis of functional integrals. We know, of course, that at zero temperature the physical system is unaffected by a
chemical potential which is less than some critical value. (For the case of an isospin chemical potential the value is mπ;
for the case of a baryon chemical potential it is the energy per nucleon of infinite nuclear matter.) Of course, from the
phenomenological perspective this not surprising in the least—until one has a chemical potential equal to the lightest
energy per particle number (of the appropriate type) in the spectrum of the system, then at zero temperature the
system will remain in its vacuum state. From the point of view of the functional integral, however, this is a curious
incident indeed. The chemical potential enters the problem through the functional determinant which is the product
of eigenvalues of the Dirac operator. The inclusion of any nonzero chemical potential alters all of the eigenvalues.
This leads to the natural expectation that the nonzero chemical potential will affect all functional determinants and
thus all functional integrals and thereby all observables. Clearly this does not happen; the question is simply“why
not?”
It can legitimately be asked why one should bother trying to understand this problem. This is, quite literally,

trying to understand nothing. The significance, however, is that if one wants to ever develop a method based on
functional integrals to understand why something happens when the critical chemical potential is exceeded, one has
to understand why nothing happens below. The baryon Silver Blaze problem remains unsolved. However, the isospin
Silver Blaze problem was solved last year providing new insights into the physics of pion condensation[9].
A word about notation and language. For simplicity of presentation, this paper explicitly discusses the case of QCD

with two degenerate flavors (u and d). Everything goes through without change if one includes any number of heavy
flavors so long as the chemical potentials associated with these flavors is zero. Thus the phrase “baryon chemical
potential” should be taken to mean “the part of the baryon chemical potential associated with the light nonstrange
quarks.”
In the following section the use of QCD inequalities to constrain QCD at finite baryon chemical potential will be

discussed. Following this there will be a short section exploiting the result to rigorously constrain the nucleon mass
directly from QCD. The final section is devoted to the Silver Blaze problem. The treatment in sect. II and III is
largely based on ref. [8] and the discussion borrows heavily from that work, while the work in the final section is
principally from ref. [9]. The discussion here, however, is more expansive and considerably more accessible.

II. QCD INEQUALITIES FOR QCD AT NONZERO CHEMICAL POTENTIAL

A. A Brief Review of QCD Inequalities

QCD inequalities are an ideal method to learn some qualitative features of QCD in a rigorous way directly from
the theory. Nussinov[10] developed a precursor to the approach with a demonstration that bounds could be placed
on various hadronic quantities for a large class of models which were inspired by QCD. The approach itself emerged
shortly thereafter with the realization by Weingarten [11] and Witten [12] that analogous bounds could be obtained
directly from QCD itself. The key tool to deriving these was the Euclidean space functional integral representations
of physical quantities. The method has an undeniable appeal in that one can deduce certain qualitative features of
QCD from first principles even while being unable to fully solve the theory. Of course the method is quite limited.
One gains qualitative as opposed to quantitative information, and that being only for particular observables. The
information gleaned from them is important, however. One role they serve is simply to supplement the understanding
obtained from lattice simulations. They also give us an analytic means to understanding some features of QCD which
are both observed in the physical world and which can be seen to emerge from lattice studies. As seen here, QCD
inequalities can also provide insight and phenomenologically relevant constraints for certain properties of QCD that
are not tractable on the lattice using standard Monte Carlo algorithms. The QCD inequality approach is now more
than 20 years old and has been reviewed recently[7]. In this subsection a few relevant features will be quickly reviewed
so the the results are comprehensible; for more details the reader is directed to see ref. [7].
Before proceeding it is worth noting that the resulting inequalities are not derived with full mathematical rigor.

The results cannot strictly be called theorems. However, by the standards of physicists they are quite rigorous; they
use only the most vanilla flavored assumptions typically made by physicists. The approach implicitly assumes that
the QCD exists as a theory, that it is legitimate to use functional integrals to compute hadronic quantities from
the underlying quantum field theory, that the standard Wick rotation to Euclidean space from Minkowski space is
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permitted, and the like. But no additional dynamical assumptions specific to QCD are made.
The key to QCD inequalities is almost trivially simple. One begins in the standard way by relating a physical

quantity of interest to a Euclidean functional integral over all possible gauge field configurations. Now suppose a
second interesting quantity is found whose functional integral has the following feature: the integrand for the second
quantity is greater than or equal to the integrand of the first quantity for every gauge configuration. If one finds
such a pair of quantities, it is readily known that the second functional integral is necessarily bigger than the first.
Since the two functional integrals are related to physical observables, one immediately derives bounds on the physical
quantities.
A bound on the free energy at fixed baryon chemical potential is the focus of this section. In fact, thermodynamically

intensive quantities such as free energy densities are not typically studied via QCD inequalities. The method is more
commonly applied to the the study of correlation functions which are then used to bound the masses of particles. There
is one important example from the past, however, where the approach used intensive quantities: the demonstration
by Vafa and Witten [13] where the vacuum energy for QCD with a θ term has an absolute minimum at θ = 0. In fact,
this Vafa-Witten paper [13] is the subject of some considerable controversy[14]. However, the controversy concerns the
extension of this argument to conclude that parity cannot be spontaneously broken. The underlying demonstration
that the vacuum energy has a minimum θ = 0 is clearly correct. The Vafa-Witten proof will be discussed next as it
provides a template for the bound on the free energy density of QCD at fixed baryon chemical potential.
The derivation by Vafa and Witten is both simple and elegant. The functional integral for the partition function is

given by

Z(θ) =

∫

D[A]
∏

i=flavors

det
(

D/+mi

)

e−SY M + iθν (1)

where det(D/+mi) is the functional determinant for a particular flavor and is known to be both real and non-negative
[11]. The Euclidean space Yang-Mills action is denoted by SYM , and the topological winding number is denoted by
ν. Consider what happens when one sets θ to be nonzero. The only effect of doing this is to include a pure phase
factor eiθν relative to the θ = 0 case. Now the rest of the integrand is real and non-negative and the real part of
this phase factor is always less than or equal to unity. (We can ignore the imaginary part since we know on physical
grounds that it will integrate to zero.) Thus, even without being able to compute the functional integral explicitly
one can deduce that the functional integral for the partition function with nonzero θ is smaller than the partition
function with θ = 0. But the partition function has a well-known physical meaning: Z(θ) = e−V E(θ) where V is the
four-dimensional volume and E(θ) is the vacuum energy as a function of θ. Thus, the bound on the partition function
implies that E(θ) > E(0).

B. A QCD Inequality for Free Energies at Nonzero Chemical Potential

In this section, a derivation quite analogous to that of Vafa and Witten discussed above is presented. As noted in
the introduction, the explicit problem discussed will be for the of two flavor QCD with degenerate quark masses at
a nonzero chemical potential. As was also noted in the introduction the generalization to the problem of addition
flavors is quite straightforward.
Like the Witten-Vafa case, the starting point is an appropriate free energy density. We begin by considering QCD

at fixed temperature and a baryon chemical potential, GB(T, µB). The free energy is related to the grand partition
function ZB(T, µB) in the usual way,

GB(T, µB) = − (βV3)
−1 log

(

ZB(T, µB)
)

, (2)

where V3 is the (three-dimensional) volume of the system while β is the inverse temperature. The next step is to
express this grand partition function as a functional integral. For QCD with two degenerate flavors this is given by

ZB(T, µB) =

∫

d[A]
(

det
(

D/+m−
µB

Nc

γ0
)

)2

e−SY M . (3)

In the preceding equation Nc is the number of colors (3 for the physical world), the functional determinant is taken
for one quark flavor. Temperature is treated in the standard way via the imposition of boundary conditions: the
gluon fields are subject to periodic boundary conditions in time A(t + β) = A(t) with β = 1/T ; the fermions in the
functional determinant are subject to antiperiodic boundary conditions. Note that while the functional determinant
is for a single flavor, it comes in squared reflecting the presence of two flavors in the system. Finally a notational
issue should be considered. The chemical potential is for the baryon number (not for the quark number). The fact
that the chemical potential is for the baryon number necessitates the factor of 1

Nc
seen in Eq. (3).
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This functional integral cannot be simulated on the lattice via standard Monte Carlo methods. The difficulty is, of
course, the fermion sign problem which arises from the functional determinant. The key feature about the inclusion
of a nonzero chemical potential is that the functional determinant is, in general, not necessarily real or positive.
However, from the perspective of the lattice, what is a major problem from the perspective of QCD inequalities
becomes a major opportunity. In particular, it allows one to place an upper bound on the partition function:

ZB(T, µB) ≤

∫

d[A]

∣

∣

∣

∣

det
(

D/+m−
µB

Nc

γ0
)

∣

∣

∣

∣

2

e−SY M . (4)

The inequality seen above is clearly quite analogous to the Vafa-Witten case in equality and stems from the identical
reason—a phase factor in an otherwise positive definite integrand will always lower the integral relative to an integral
with a phase factor of unity.
Of course, as written, inequality (4) is of little interest. While the left-hand side has a clear physical interpretation,

the right-hand side at present does not. The insight which enables the approach to be fruitful is that the right-hand
side can also be related to a physically meaningful quantity. In particular, it is quite straightforward to see that the
right-hand side can easily be related to the free energy density of QCD with an isospin chemical potential [4]. An
isospin chemical potential term enters the QCD Lagrangian with the form µI qγ0

τ3
2 q. The functional integral for the

appropriate grand partition function ZI(T, µI) = exp (−β V3GI(T, µI)) is

ZI(T, µI) =

∫

d[A] e−SY M det
(

D/+m−
µI

2
γ0
)

det
(

D/+m+
µI

2
γ0
)

. (5)

The expression has two functional determinants—one for each flavor—and they have opposite signs in their µI terms
which encodes the fact that up and down quarks have opposite values for I3.
The next steps involve some trivial results of linear algebra:

γ5
(

D/+m+
µI

2
γ0
)

γ5 =
(

−D/+m−
µI

2
γ0
)

= (D/+m−
µI

2
γ0)

† . (6)

The final equality is based on the fact that D/ is anti-Hermitian (in Euclidean space) but the unit operator and γ0 are
each Hermitian. The cyclic property of the determinant means that one can express the second functional determinant
in Eq. (5) as det(D/+m+ µI

2 γ0) = det
(

γ5(D/+m+ µI

2 γ0)γ5
)

. This fact along with Eq. (6) gives

det
(

D/+m+
µI

2
γ0
)

=
[

det
(

D/+m−
µI

2
γ0
)

]∗

. (7)

Using Eq. (7) along with Eq. (5) allows one to deduce that

ZI(T, µI) =

∫

d[A]
∣

∣

∣
det

(

D/+m−
µI

2
γ0

)

∣

∣

∣

2

e−SY M . (8)

Note that this expression is of the same form as the right-hand side of Eq. (4). Thus we see that inequality (4)
together with Eq. (8) yields a useful inequality,

ZI

(

T,
2µB

Nc

)

≥ ZB(T, µB) . (9)

This inequality for the partition functions along with the standard relationship of the free energy to the partition
function implies that

GB(T, µB) ≥ GI

(

T,
2µB

Nc

)

. (10)

Inequality (10) is the principal result of this section.
As discussed above, although the results in this paper are derived for two flavor QCD, they can be generalized

trivially. It should be immediately clear that the argument goes through without change for QCD with two degenerate
light flavors and any number of additional heavy flavors. The only modification is that the chemical potential term
must be understood as being the chemical potential associated with the up and down quarks and not the full baryon
chemical potential. The reason it goes through is straightforward. The various functional integrals in this more general
case include functional determinants for the heavy flavors. However, since, as noted above, the chemical potential only
affects the light flavors, these additional functional determinants are real and non-negative. Because the inequalities
depend only on the fact that various terms in the functional integrals are real and positive, the presence of these
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extra functional determinants do not alter the preceding inequalities. It is worth noting that this more general case
is significant: in nature QCD has two light quarks which are nearly degenerate and have additional heavy flavors.
There is another scenario in which the inequalities hold. Suppose one considers the general case and looks at the

full baryon chemical potential (i.e., a chemical potential coupled to all flavors of quarks) . Suppose further that one
is working in a regime in which the sγ0s = cγ0c = bγ0b = tγ0t = 0. In such a regime, the total baryon number in
fact comes from up and down quarks so the previous derivation holds. It should be noted that such a regime actually
occurs. In particular it happens at zero temperature if one works below the critical chemical potential for strangeness
condensation.
It is useful to consider how inequality (10) may prove useful. Recall that standard Monte Carlo methods fail

for QCD at finite baryon chemical potential and low temperatures. Moreover, it is generally believed that weak
coupling techniques valid at very high densities which lead to nonperturbative phenomena in a manner very similar
to conventional BCS theory[1, 2] are thought to work only at extraordinarily high densities. Thus for the foreseeable
future all studies of phenomenological significance for relatively cold dense matter will of necessity by based on
simplified models [2, 15] rather than QCD. There is nothing wrong with using simplified models; virtually all of the
theory of traditional nuclear physics has been made from the perspective of simplified models and not QCD. On
the other hand, models need to be constrained in order to be useful. Empirical data is one way to constrain model
building. To the extent possible, though, one ought to constrain models directly from QCD. Inequality (10) may
prove very useful for this purpose. While one may have to model the left-hand side of the inequality, the right-hand
side is amenable to lattice QCD simulations. The reason for this is precisely the same reason the inequality was
derivable in the first place: namely, the integrand of the functional integral for ZI is manifestly real and non-negative
[4]. Indeed preliminary lattice studies have been done for this quantity both for quenched QCD [5] and for full QCD
[6]. These studies have been done on rather small lattices and it is not clear just how reliable they are. However,
lattice calculations will undoubtedly improve with time and eventually may provide important constraints on model
building through inequality (10).

III. A BOUND ON THE NUCLEON MASS

The topic of this section is off of the main line discussed in this article. However, it is worth pursuing since a
significant result for the nucleon mass emerges naturally as a corollary to inequality (10). As will be seen, the bound
is not very stringent, but it is still of interest because it is a direct result of QCD. Moreover, it provides a solution to
a very old problem. Nussinov originally derived a bound in the context of QCD-inspired models: the nucleon mass
must be greater than or equal to 3mπ

2 [10]. Weingarten, in his seminal paper introducing QCD sum rules, attempted
to place a bound on the nucleon as being larger than some multiple of the pion mass[11]. This attempt, unlike that
of Nussinov, directly used QCD. However, the attempt failed—the method was only valid for QCD in a world of six
or more degenerate light flavors. But this certainly does not correspond to the real world. Weingarten also suggested
an alternative approach which did not require six degenerate flavors. However, this method depended on plausible
but unproved assumptions about the behavior of the quark propagator in background gauge potentials. Nussinov and
Sathiapalan [16] were able to derive a QCD-based bound that MN > Nc mπ

2 . Their derivation did not rely on ad hoc

assumptions about the quark propagator, and it holds for two degenerate flavors. However, the derivation only works
in the large Nc limit of QCD. Therefore, prior to ref. [8] there were no known rigorous bounds on the nucleon mass
from QCD.
One particular remarkable fact about the bound on the nucleon mass obtained in ref. [8] is that it is based on

thermodynamic arguments. The usual way masses are bounded in QCD inequalities is via the study of Euclidean
space correlation functions.
The derivation begins with the observation that inequality (10) is valid at any temperature and thus applies at

T = 0. The zero temperature system has remarkably simple thermodynamic properties: the system is in a single
quantum state (that is to say, thermal fluctuations are completely absent). The quantum state is simply the one that
minimizes the G = H − µN , where H is the Hamiltonian, G is the appropriate free energy and µ is the appropriate
chemical potential (either isospin or baryon); N = V3ρ is the associated particle number. The chemical potential
serves to select the quantum state by altering the free energies of the various quantum states according to the particle
number. Assuming the spectrum has a gap, an increase in the chemical potential from zero (at zero temperature)
will do no nothing until it reaches a critical value where the free energy of a quantum state other than the vacuum
drops below the vacuum state. Below this critical value the density must be zero at zero temperature. Note that it
is precisely due to the existence of such a critical chemical potential that the Silver Blaze problem arises.
The critical chemical potentials can be defined by the following relations:

GB(T = 0, µB) = 0 for |µB| < µc
B ,
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GB(T = 0, µB) < 0 for |µB| > µc
B ,

GI(T = 0, µI) = 0 for |µI | < µc
I ,

GI(T = 0, µI) < 0 for |µI | > µc
I . (11)

Inequality (10) along with the relations defining the critical chemical potential (11) imply that

µc
B ≥

Nc µ
c
I

2
. (12)

Now inequality (12) is specified in terms of a critical chemical potential and we want a relation on the nucleon mass.
How can we relate the two? The answer is straightforward: µc

B is bounded from above by the nucleon mass. This
can be seen rather trivially from a variational argument. Focus on a quantum state that we know is an eigenstate
of the Hamiltonian: a single nucleon at rest. The free energy of this state is known. The energy is MN while the
baryon number is unity, thus the free energy is GB = MN − µB. It is obvious that the free energy of this state is
less than zero when µB ≥ MN . This means that there exists a state of lower free energy than the vacuum whenever
µB ≥MN . Of course, it is logically possible that there are states of lower free energy than the vacuum for some value
µB less than the nucleon mass implying a critical chemical potential of less than MN . Indeed, that is what happens
in nature. Extrapolations of the masses and densities of finite nuclei (while removing Coulomb effects) to an infinite
system [17] lead to the conclusion that in the absence of Coulomb effects, bound infinite nuclear matter forms. Since
it is bound the energy per particle is less than that of isolated nucleons. The transition to infinite nuclear matter
is first order at zero temperature; just below µc

B the system has zero energy and zero density, while just above the
system has nonzero energy and nonzero density. Thus µc

B = MN − B where B is the binding energy per nucleon of
infinite nuclear matter. For the present purpose the essential observation is that regardless of whether µc

B is equal to
or less than MN , it cannot be greater:

µc
B ≤MN . (13)

Inequalities (12) and (13) together yield a bound on the nucleon mass,

MN ≥
Nc µ

c
I

2
. (14)

Inequality (14) is a principal result of this section. We have succeeded in bounding the nucleon mass from below by
another physical observable.
As written, inequality (14) is of limited use. We have no direct way to measure or compute µc

I without further
assumptions, although we do have strong theoretical grounds for believing that µc

I = mπ. We can, however, turn the
inequality around to make a rigorous statement which can be checked. Recall that µc

I is the energy per unit isospin
of the state in QCD with the lowest energy per unit isospin. We can name this state X and denote its mass mX and
isospin IX so that µc

I = mX

IX
. Inequality (14) can then be written as

MN ≥
NcmX

2 IX
. (15)

where X is some state which exists in QCD. This is a sharp prediction of QCD that can be checked. Taking X to be
the pion we see that the inequality is satisfied by more than a factor of 4.

IV. THE SILVER BLAZE PROBLEM

A. The Isospin Silver Blaze Problem

Let us now turn to the Silver Blaze problem. For simplicity of presentation we consider QCD with two degenerate
light flavors. In this section we will consider the theory at zero temperature and a nonzero but small chemical potential
(either for baryon number or isospin or a combination thereof). For concreteness let us start the discussion for the
case of an isospin chemical potential (at zero baryon chemical potential). While this problem is not particularly
interesting phenomenologically, it raises many general questions which have analogs in the more general case and has
the virtue of being solved [9].
Phenomenologically this system is well understood at low chemical potential [18]. The system remains in the

vacuum state with zero energy density and isospin density for all |µI | less than mπ, which serves as the critical point.
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At the critical point there is a second-order phase transition. The state above the transition is a pion condensate. It
is very easy to explain this behavior in terms terms of eigenstates of QCD. The µc

I—the critical value of µI—is simply
the energy per unit isospin for the state of the system with the smallest energy per unit isospin. For this system it
is a pion at rest. However, while this interpretation is trivial the connection to the QCD lagrangian remains quite
obscure; we have no simple way to obtain the eigenstates starting directly from QCD.
The point of the present study is to try to understand what is going on in terms of a Euclidean space functional

integral formulation of the theory. The reason for doing this is twofold. In the first place, Euclidean space functional
integrals are a general, powerful, theoretical tool. Secondly, lattice QCD is formulated in terms of them.
The zero temperature limit introduces subtleties. Thus it is simpler to work at finite (but small) temperature at

the outset and then consider the limit as T → ∞ at an appropriate later stage. The key quantity of interest is the free
energy. It is given by GI(T, µI) = E−TS−µII3 (where E, T , S and µI are the energy, temperature, entropy density,
isospin and chemical potential, respectively). To help keep things well defined, we work in a finite (but large) box
with a volume denoted by V . The infinite volume (thermodynamic) limit V can be taken at the end of the day. In
this limit it is natural to express results in terms of intensive quantities such as the energy density, the free energy or
isospin density. The free energy is related to the grand partition function in the standard way: ZI(TµI) = e−βG(T,µI)

(where β = 1/T ). As seen in Subsect. II B the grand partition function can be represented as the following functional
integral,

ZI(T, µI) =

∫

d[A]
∣

∣

∣
det

(

D/+m−
µIγ0
2

)
∣

∣

∣

2

e−SY M . (16)

The essential issue is how the chemical potential influences the free energy. From the functional integral expression it
is clear that the chemical potential influences the free energy through the functional determinant of the Dirac operator
and only through the functional determinant. We do not know too much about this determinant. But one thing we
do know is that the determinant is simply the product of the eigenvalues of the Dirac operator det

(

D/+m− µIγ0

2

)

=
∏

j λj where
(

D/+m− µIγ0

2

)

ψj = λjψj .
This is at the crux of the Silver Blaze problem. If we knew nothing else, it would be natural to assume that for any

given gauge field configuration, the eigenspectrum of the Dirac operator with µI = 0 differs from the eigenspectrum
with any nonzero µI . Indeed, it is naturally to expect that every eigenvalue is would be different. The reason for
such an expectation is simply the lack of any known reason why the eigenvalues should not depend on µ. Again, in
the absence of any other knowledge, one would also naturally assume then that for every gauge configuration, the
functional determinant with nonzero µI would differ from the functional determinant µI = 0. Since all functional
determinants appear to depend on µI it is also natural to conclude that ZI(T, µI) must depend on µI for any nonzero
µI . Nothing about this expectation seems to depend in a critical way on the temperature; it would seem to hold
at T = 0. Thus one has a natural expectation that at T = 0 any nonzero chemical potential would alter the free
energy. Obviously this expectation is completely wrong. At T = 0 the free energy is exactly equal to its vacuum
value whenever |µI | < mπ. The Silver Blaze problem is about how to understand the “curious incident” of nothing
happening to the free energy for the entire regime |µI | < mπ in the context of a functional integral treatment.
The insight needed for the solution of the isospin Silver Blaze problem is that instead of focusing on the eigenspec-

trum of the Dirac operator, D/+m, one should instead focus on the eigenspectrum of the γ0 times the Dirac operator.
Why is this of interest? To begin with, note that product rule for determinants implies that

det
(

D/+m−
µIγ0
2

)

=
det

(

γ0
(

D/+m− µIγ0

2

)

)

det (γ0)
= det

(

γ0

(

D/+m−
µIγ0
2

))

(17)

where the last equality exploits the fact that det (γ0) = 1. Actually this is a bit of a swindle since the matrices are
infinite but it indicates why γ0 times the Dirac matrix may be of interest. A more legitimate way to express things
can be found using some simple linear algebra:

det
(

D/+m−
µIγ0
2

)

= det (D/+m ) exp

{

−
1

2

∫ µI

0

dµ′
I tr

1

γ0(D/+m)−
µ′

I

2

}

. (18)

This indicates that a knowledge of the eigenvalues of γ0 times the Dirac operator at various values of the chemical
potential will enable one to find the relevant trace and to do the integral to find the determinant of interest.
The details of how to characterize these eigenstates and compute the determinant are given in detail in Refs. [9, 19].

Most of these technical details are omitted here but a few of the salient results will be noted.
The first important result is that the anti-periodic boundary conditions on the eigenstates in the trace along with

the hermiticity properties of the various operators imply that the eigenfunctions of γ0(D/ + m) −
µ′

I

2 are arranged
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into families which can be denoted by two indices; an index j representing an “intrinsic” eigenstate, and an index n
representing a phase factor indicating which anti-periodic solution one is studying:

|ψjn+1〉 = e
i2πt
β |ψjn〉 , λjn = ǫj −

µ′
I

2
+ i

(

φj
β

+
(2n+ 1)π

β

)

. (19)

The eigenvalue of the operator λjn has a real and an imaginary part. To uniquely specify this decomposition a
condition on the phase needs to be imposed. Here we take the condition that −π ≤ φj < π.
The form of Eq. (19) should look familiar. Apart from the phase factor φj it is of the same form as for free

noninteracting fermions. Of course, in the case of a noninteracting particle, ǫj has a simple interpretation: it is the
energy of a mode. Thus we will denote ǫj (the real part of eigenvalue) as a quasi-energy. These quasi-energies are
fundamentally different from energies in some essential ways. In the first place they depend on the background gauge
field configuration. Moreover we have no analytic expressions for them.
The trace can be done in two parts: summing over the quasi-energies, and parameterizing the imaginary parts

parameterized by the index n. The sum over n is the analog of a typical Matsubura sum[20] and can be done
explicitly. Straightforward algebra then yields

det
(

D/+m− µIγ0

2

)

det (D/+m )
= exp

(

− i
∑

j

φj θ(ǫj)θ(|µI | − 2ǫj)
)

× exp
( β

2

∑

j

θ(ǫj) θ(|µI | − 2ǫj) (|µI | − 2ǫj) +O
(

e−βΛ
)

)

(20)

where the fact that we are ultimately interested in the zero temperature limit has been used to obtain θ functions
from hyperbolic tangents which emerge from the Matsubura sum. At this stage we will take the zero temperature
limit and neglect the exponentially suppressed terms. Note, however, that this is making the assumption that the
quantity of interest, the free energy at nonzero chemical potential, is smooth in the zero temperature limit.
The theta functions in Eq. (20) gives an obvious hint as to how the isospin Silver Blaze problem may be solved.

They imply that at zero temperature the functional determinant for any gauge configuration is precisely equal to

its µI = 0 value unless |µI |
2 is greater than the quasi-energy of the minimum positive quasi-energy mode. Thus, if

there is a gap in the quasi-energy spectrum for a given field configuration, then at least for that configuration nothing
happens until the gap is reached.
However, this is not sufficient to resolve the Silver Blaze problem by itself. A full resolution requires that a gap

in the spectrum exists for the configurations that contribute with nonzero weight to the functional integral at zero
temperature. One needs a formal way to specify this and it is naturally given in terms of a spectral density: ρ̂(ǫ),

ρ̂(ǫ) ≡
∑

j

δ(ǫ − ǫj) (21)

where ǫj is the jth quasi-energy (for a given configuration). Using the Matsubura sum and generic properties of the
propagator, a very useful expression is obtained for the spectral density [9]

ρ̂(ǫ) =
1

2β

∂

∂ǫ
tr
[

(γ0(D/+m)− ǫ)
−1

+ ((−D/+m)γ0 − ǫ)
−1

]

+O
(

e−βΛ
)

. (22)

Next let us introduce a notation to indicate averaging over gauge configurations:

〈Ô〉T,µI
=

1

ZI(T, µI)

∫

d[A] Ô
∣

∣

∣
det

(

D/+m−
µIγ0
2

)∣

∣

∣

2

e−SY M . (23)

We can define the minimum relevant positive quasi-energy, ǫmin: 〈ρ̂(ǫ)〉0,0 = 0 if and only if |ǫ| < ǫmin.
With these notational preliminaries in place, the isospin Silver Blaze problem is resolved provided that two conditions

are satisfied:

i) 〈ρ̂(ǫ)〉0,µI
= 〈ρ̂(ǫ)〉0,0 for all µI < 2ǫmin ,

ii) ǫmin =
mπ

2
.
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It is easy to see that these two conditions do indeed resolve the problem. If one uses the relation of the free energy
in terms of ZI along with Eqs. (16) and (21) then

∂G(0, µI)

∂µ
= 2

∫

µI
2

0

dǫ 〈ρ̂(ǫ)〉0,µI
. (24)

This means that at zero temperature and |µI | < mπ and if these two conditions are true, the free energy will be
independent of µI and thus equal to its vacuum value. This in turn means the expectation value of the isospin
vanishes.
The validity of these two conditions can be established given one basically innocuous assumption—that there is

no first order phase transition for T = 0 and |µI | < mπ. This assumption is highly plausible from first principles
and is known to be true in nature. Condition i) can then be established using straightforward methods which are
detailed in ref. [9]. Condition ii) is a bit more interesting. The trick is to study the charged pseudoscalar susceptibility
χ+
ps =

∫

d4x〈J−(x)J+(0)〉 (with J+ = dγ5u). The key point is that it is expressible as a functional integral; using
similar techniques to those discussed above, one obtains

χ+
ps(T, µI) =

1

V

∫

dǫ
〈ρ̂(ǫ)〉T,µI

(

1 +O
(

e−βΛ
))

|2 ǫ− µI |
. (25)

Thus χ+
ps will diverge when

µI

2 reaches the smallest value of ǫ for which 〈ρ̂(ǫ)〉0,µI
is nonzero. Condition i) then implies

that this occurs at ǫmin. Phenomenologically, in the absence of a first order transition, χ+
ps diverges in the infrared

when the chemical potential reaches the mass of the lowest excitation with these quantum numbers, namely, mπ. This
completes the demonstration.

B. The Baryon Silver Blaze Problem

The baryon Silver Blaze problem is far more interesting. The problem is how can one use a functional integral
formulation to understand how it happens that for µB < MN − B (where B is the binding energy for nucleon of
nuclear matter ) the system is unchanged from its vacuum. In the first place it is of much greater phenomenological
importance than the isospin case. After all, it is at the crux of understanding infinite nuclear matter from QCD. It is
also of far more interest theoretically than its isospin cousin. The isospin Silver Blaze problem is resolved in a direct
way: all of the functional determinants in the configurations which matter are unchanged from their vacuum values.
Can the baryon Silver Blaze problem be resolved in a similar way? The answer depends on the regime in which one

works. First consider a regime in which 0 < µB < 3mπ/2. In this regime the derivation given for the isospin Silver
Blaze problem applies; all of the gauge configurations which contribute have a functional determinant identical to that
of the vacuum. We note that there is a paradox associated with the baryon Silver Blaze problem which applies in this
regime. From Sect. II we see that GB

(

T, µB) ≥ GI(T,
2µB

Nc

)

and that this holds at any temperature including T = 0.
The origin of this inequality was simply the phase of the functional determinant. Naively one would expect this phase
factor to differ from unity for all gauge configurations since all eigenvalues of the Dirac operator are complex. This in
turn leads to an expectation that the inequality should not be saturated, and that GB(T = 0, µB) ≥ GI

(

T = 0, 2µB

3

)

for all µB. But in the present regime this does not happen. Both GB and GI are the vacuum value and, hence, they
are equal. Why was the expectation wrong? The derivation in the isospin Silver Blaze problem neatly explains this.
Consider Eq. (20). Note that there are theta functions for the quasi-energies contributing to the phase factor. These

are precisely the same theta functions as those for contributions to the magnitude of the functional determinant. Thus,
the fact that the configurations which matter to the functional integral have their magnitudes unchanged from their
vacuum value in this regime (the resolution of the isospin Silver Blaze problem) also implies that the phases of the
functional determinant are unchanged for the relevant configurations. This explains why in this regime GB = GI

rather than being less.
Next let us turn to the regime 3mπ/2 < µB < MN −B. In this case it is clear that the nature of the solution of the

Silver Blaze problem is qualitatively different from the isospin case. To see this let us again return to Sect. II. Recall
that the fundamental reason why an inequality was derived in that case was because the integrand for the free energy
with a baryon chemical potential differs from the integrand for the free energy with the appropriate isospin chemical
potential only due to a phase factor. Now in this kinematic regime we know phenomenologically that GB(T = 0, µB)
is at its vacuum value while GI

(

T = 0, 2µB

3

)

is below the vacuum value due to pion condensation. Pion condensation
implies that the functional determinants of gauge configurations that contribute are altered from their vacuum value.
The only way the baryon chemical potential can leave the free energy unaltered is because of the phase factors.
However, this implies a very large conspiracy—the entire effect of the magnitude of the functional determinants
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increasing must be exactly compensated by averaging over the phases. This phenomena is clearly qualitatively quite
distinct from the behavior responsible for the isospin Silver Blaze problem.
What is the origin of this conspiracy? At the present time this is unknown. A pessimistic view is that answering

this question is tantamount to solving QCD analytically and, hence, is intractable. An optimistic view is that the issue
may become clear if one can find a suitable reorganization of the problem. After all, the isospin Silver Blaze problem
also looked intractable until it was realized that the key was to express things in term of the eigenvalue of γ0 times the
Dirac operator rather than the Dirac operator itself. Where should we look for hints about how such a reorganization
might be accomplished? Although we do not really know, there are some obvious sources for inspiration. One is the
region just above 3mπ/2 = µB. In this region the relevant configurations have functional determinants slightly larger
than at µB = 0 which must be canceled by the phase effects during averaging. Since the functional determinant
is small one may be able to derive analytic expressions on the necessary conditions for cancellation which in turn
may give a clue as to how things should be organized. The second place to look is in the large Nc limit of QCD. A
diagrammatic analysis in the large Nc limit suggests that effects linking the functional determinant for the up quarks
with the functional determinant for the down quarks is suppressed by 1/Nc. Thus one expects that in the large Nc

limit the critical chemical potential for the up quark charge and the down quark charge are identical. Clearly this
does not happen as it implies the critical baryon chemical potential is just Nc/2 times the isospin chemical potential
which clearly fails in the chiral limit. Therefore, understanding the breakdown of the large Nc approximation for
these quantities may well provide a clue.
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