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⋆Université Louis Pasteur, Laboratoire de Physique Théorique
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Abstract

The shape of the electron energy spectrum in 3H β-decay permits a direct assay of the absolute
scale of the neutrino mass; a highly accurate theoretical description of the electron energy spectrum
is necessary to the empirical task. We update Sirlin’s calculation of the outer radiative correction
to nuclear β-decay to take into account the non-zero energy resolution of the electron detector.
In previous 3H β-decay studies the outer radiative corrections were neglected all together; only
Coulomb corrections to the spectrum were included. This neglect artificially pushes m2

ν
< 0 in a

potentially significant way. We present a computation of the theoretical spectrum appropriate to
the extraction of the neutrino mass in the sub-eV regime.
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Empirical evidence of neutrino oscillations in atmospheric, solar, and reactor neutrino data [1, 2, 3]
compels the existence of non-zero neutrino masses, yet such experiments are insensitive to the absolute
scale of a neutrino mass, for the oscillation experiments determine ∆m2

ij ≡ m2
i −m2

j , where mi is the
mass of neutrino i. To determine the absolute value of the neutrino mass requires different methods.
Cosmological constraints on the neutrino mass do exist [4], though our focus shall be on the study
of the electron energy spectrum in tritium β-decay near its endpoint, as this represents the most
sensitive terrestrial measurement. The spectrum shape constrains the mass of the neutrino, be it of
Dirac or Majorana character, and the inferred mass is insensitive to phases in the neutrino mixing
matrix — in contradistinction to the constraint on the neutrino mass from neutrinoless double β-
decay. An accurate theoretical description of the expected electron energy spectrum is crucial to the
determination of the neutrino mass; this demand grows as the sensitivity of the experiments increase.
Indeed, future studies expect to probe the neutrino mass at the sub-eV level [5]. It is our purpose to
realize a theoretical form of the requisite accuracy, though we shall begin by describing the form used
in earlier tritium experiments.

With an anti-electron neutrino of mass mν , neglecting neutrino mixing for simplicity, the Fermi
form of the electron energy spectrum for tritium β-decay is [6]

dΓF

dEe
=

G2
F

2π3
|M|2F (Z,Re, Ee)peEe(E

max
e − Ee)

√

(Emax
e − Ee)2 −m2

ν , (1)

where GF is the Fermi constant, pe, Ee, and Emax
e are the momentum, energy, and maximum endpoint

energy, respectively, of the electron, and |M|2 is the absolute square of the nuclear matrix element,
with |M|2 ∼ 5.3. A form of this ilk has been used to bound mν in previous experimental analyses
of molecular tritium β-decay [7, 8, 9, 10, 11, 12, 13, 14]. Following the usual practice, we include a
non-zero neutrino mass in the phase space contribution only. We set ~ = c = 1 throughout. The
Fermi function, F (Z,Re, Ee), captures the correction due to the Coulomb interactions of the electron
with the charge Ze of the daughter nucleus [15]. We adopt the usual expression [16], derived from the
solutions of the Dirac equation for the point-nucleus potential −Zα/r evaluated at the nuclear radius
Re [17]; it differs from unity by a contribution of O(α). The Fermi function includes the dominant
electromagnetic effect, though an accurate extraction, or bound, of the neutrino mass does demand
the inclusion of the remaining O(α) correction. We shall demonstrate this point explicitly. This last
effect, termed the radiative correction, is conventionally separated into an “inner” piece ∆R, which is
absorbed in |M|2, as it is energy independent and thus of no consequence to our current study, and an
“outer” piece δR [18]. The outer radiative correction applied in β-decay studies is due to Sirlin [18]:

dΓ

dEe
=

dΓ0

dEe

(

1 +
α

2π
gS(Ee, E

max
e )

)

, (2)

where dΓ0/dEe = G2
F |M|2peEe(E

max
e − Ee)

2/(2π3), and, noting β = pe/Ee,

gS(Ee, E
max
e ) = 3 ln

(

M

me

)

− 3

4
+ 4

[

tanh−1 β

β
− 1

] [

(Emax
e − Ee)

3Ee
− 3

2
+ ln

{2(Emax
e − Ee)

me

}

]

+
4

β
L

(

2β

1 + β

)

+
tanh−1 β

β

[

2(1 + β2) +
(Emax

e − Ee)
2

6E2
e

− 4 tanh−1 β

]

, (3)

with M and me the proton and electron mass, respectively, and L(x) the Spence function. As in
Ref. [18], we neglect terms of relative order α(Ee/M) ln(M/Ee), αEe/M , and smaller, throughout.
The total O(α) correction is given by F (Z,Re, Ee) − 1 + (α/2π)gS(Ee, E

max
e ). Note that δR results

from averaging (α/2π)gS (Ee, E
max
e ) over the electron energy spectrum. To assess the relative sizes
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of F and gS , we note that in the endpoint region of tritium β-decay, for Ee − me = 18.5 keV, e.g.,
F ∼ 1.19, whereas (α/2π)gS ∼ 0.02.

Since the absolute neutrino mass scale is inferred through the shape of the electron energy spectrum
in the endpoint region, it is crucial to predict the shape of the theoretical spectrum with high accuracy.
To this end, we update the calculation of Ref. [18] to take the energy resolution of the electron detector
into account. To understand the significance of this, we recall that Sirlin’s function contains not only
virtual photon corrections to the β-decay process but also bremsstrahlung contributions, to yield an
additional real photon in the final state. Only their sum is infrared finite; the infrared divergence in
each contribution is regulated by giving the photon a small mass λ, with the λ → 0 limit to be taken
after the sum has been computed and the infrared divergent pieces cancelled. The finite portion of
the bremsstrahlung contribution is sensitive to the precise manner in which the experiment is effected.
In Sirlin’s function the energy resolution of the electron detector is implicitly assumed to be zero;
that is, the e− and γ are always distinguishable. A consequence of this is that Eq. (3) contains a
logarithmic divergence as Ee → Emax

e . This singularity can be removed by including soft photon
contributions to all orders in perturbation theory [19]; however, it can also be removed by taking the
energy resolution of the detector into account, as we consider here. The bremsstrahlung contribution
comes from integrating the photon energy over its entire kinematic range, namely

α

2π

(

dΓ0

dEe

)

gS,b(Ee, E
max
e ) =

∫ Emax
e

−Ee

λ
dEγ

(

d2Γγ(Ee, Eγ)

dEedEγ

)

, (4)

where d2Γγ(Ee, Eγ)/dEedEγ is the doubly differential decay rate for the radiative β-decay process.
Nevertheless, the detector energy resolution ∆E can, in principle, influence the shape of the electron
energy spectrum. That is, for Eγ ≤ ∆E, the electron and photon cannot be distinguished; indeed, this
is precisely why the bremsstrahlung contribution can enter to render an infrared-finite, O(α) radiative
correction to β-decay. In this event the detector records the sum of the electron and photon energies
as the “electron” energy. For Eγ > ∆E, however, the electron and photon energies are distinguishable,
and their energies can be recorded separately. To separate the contributions we note that the total
bremsstrahlung contribution to δR must be insensitive to such experimental details. In passing, we
note related discussions of the impact of the detection threshold for bremsstrahlung photons in the
radiative corrections to ν capture on deuterium [20, 21, 22, 23], as well as to ν− e scattering [24]. The
bremsstrahlung contribution to the total outer radiative correction δR — we retain the photon mass
λ throughout — is

δ̃R,b =

∫ Emax
e

−λ

me

dEe

∫ Emax
e

−Ee

λ
dEγ f(Ee, Eγ) , (5)

where f(Ee, Eγ) ≡ d2Γγ(Ee, Eγ)/dEedEγ . To find δR we must divide δ̃R,b by a normalization factor N ,
determined by integrating Eq. (1) over the allowed phase space with F = 1 andmν = 0. However, if the
detector energy resolution is “infinite,” that is, if the electron detector always records E = Ee+Eγ [20],
the total bremstrahlung contribution can be rewritten as

δ̃R,b =

∫ Emax
e

me+λ
dE
∫ E−me

λ
dEγ f(E − Eγ , Eγ) . (6)

In both Eqs. (5) and (6), the integration over Eγ yields the bremstrahlung correction to the electron
energy spectrum. Although δ̃R,b is universal, the shape correction to the electron energy spectrum
is not. Let us now determine the shape correction for a finite energy resolution ∆E. That is, for
Eγ ≤ ∆E, E = Ee + Eγ is recorded, whereas for Eγ > ∆E, Ee is recorded. We can reorganize the

3



total bremsstrahlung contribution in the following way:

δ̃R,b =

∫ ∆E+me

me+λ
dE
∫ E−me

λ
dEγ f(E − Eγ , Eγ) +

∫ Emax
e

∆E+me

dE
∫ ∆E

λ
dEγ f(E − Eγ , Eγ)

+

∫ Emax
e

−∆E

me

dEe

∫ Emax
e

−Ee

∆E
dEγ f(Ee, Eγ) . (7)

Note that letting ∆E → λ yields Eq. (5), whereas letting ∆E → Emax
e − me yields Eq. (6). If ∆E

has a non-infinitesimal value, then infrared divergences are restricted to the first two terms — in the
third, we may let Eγ =

√
k2 + λ2 → k with impunity. Thus we introduce

α

2π

dΓ0

dE Iλ(kmax, E) =
∫ kmax

λ
dEγ f(E − Eγ , Eγ)

and

α

2π

dΓ0

dEe
I(∆E,Ee) =

∫ Emax
e

−Ee

∆E
dEγ f(Ee, Eγ) →

∫ Emax
e

−Ee

∆E
dk f(Ee, k) (8)

to realize

gb(∆E,Ee, E
max
e ) = Θ(∆E +me − Ee)Iλ(kmax = Ee −me, Ee)

+ Θ(Ee − (∆E +me))Iλ(kmax = ∆E,Ee)

+ Θ(Emax
e −∆E − Ee))I(∆E,Ee) . (9)

With this, we determine that the radiative correction to the electron energy spectrum is

g(∆E,Ee, E
max
e ) = gb(∆E,Ee, E

max
e ) + gv(Ee) , (10)

where the virtual photon contribution gv ≡ 2A− 3/4, with A as reported in Eq. (16) of Ref. [23]. To
compute the integrals of Eq. (8) and thus gb(∆E,Ee, E

max
e ) we adapt the computation of radiative

neutron β-decay in Ref. [25] to this case. In specific, we use the absolute squared matrix elements of
Eqs. (13-16), and Eq. (20), dividing the latter by 8M2, in that work to determine f(Ee, Eγ). In doing
the integrals, we can neglect the recoil corrections to the phase space, so that Eν = Emax

e − Ee − k.
As a result, the dependence on the weak, hadron coupling constants is captured by g2V + 3g2A, which
we replace by |M|2; we also update the mass factors which appear as appropriate. We have verified
that our computation of gb(∆E = 0, Ee, E

max
e ) using this procedure and Eq. (5), in concert with gv of

Ref. [23], yields Sirlin’s result [18], Eq. (3). For finite ∆E we find the following results:

Iλ(kmax, E) = 6− 4

(

1− tanh−1 βε
βε

)

ln

(

2kmax

λ

)

+
2 tanh−1 βε

βε
+

2

βε
L

(

2βε
1 + βε

)

− 2

βε
(tanh−1 βε)

2 +
2

βε
I−1
k − 2

Eβε
I0k +

1

E2βε
I1k − 4

√

(E − kmax)2 −m2
e

√

E2 −m2
e

+4
1

βε
ln

(

E − kmax −
√

(E − kmax)2 −m2
e

E −
√

E2 −m2
e

)

+4 ln

(

E2 −m2
e − Ekmax +

√

E2 −m2
e ·
√

(E − kmax)2 −m2
e

2(E2 −m2
e)

)

, (11)

noting βε =
√

E2 −m2
e/E , and

I−1
k =

∫ kmax

0

dk
1

k
ln

(

1 + βk
1 + βε

· 1− βε
1− βk

)

, Ink =

∫ kmax

0

dk kn ln

(

1 + βk
1− βk

)

with n = 0, 1 , (12)
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where βk =
√

(E − k)2 −m2
e/(E − k). (We note that Ink can be brought to closed form via the

substitution t = βk, though we omit the resulting expressions here.) Moreover,

I(∆E,Ee) = −4 ln

(

Emax
e −Ee

∆E

)

− 4
(Emax

e − Ee −∆E)

Ee
+ 8

(Emax
e −Ee −∆E)

(Emax
e − Ee)

+4
((Emax

e − Ee)
2 − (∆E)2)

Ee(Emax
e − Ee)

− 2
((Emax

e − Ee)
2 − (∆E)2)

(Emax
e − Ee)2

− 4

3

((Emax
e − Ee)

3 − (∆E)3)

Ee(Emax
e − Ee)2

+
2

β
tanh−1 β

[

2 ln

(

Emax
e − Ee

∆E

)

+ 2
(Emax

e − Ee −∆E)

Ee
+

((Emax
e − Ee)

2 − (∆E)2)

2E2
e

−4
(Emax

e − Ee −∆E)

(Emax
e − Ee)

− 2
((Emax

e − Ee)
2 − (∆E)2)

Ee(Emax
e − Ee)

− 2

3

((Emax
e −Ee)

3 − (∆E)3)

E2
e (E

max
e − Ee)

+
((Emax

e − Ee)
2 − (∆E)2)

(Emax
e − Ee)2

+
2

3

((Emax
e − Ee)

3 − (∆E)3)

Ee(Emax
e − Ee)2

+
1

4

((Emax
e − Ee)

4 − (∆E)4)

E2
e (E

max
e − Ee)2

]

. (13)

We note that the lnλ term in Iλ(kmax, E) cancels the concommitant infrared divergent term in gv to
yield a finite result in the λ → 0 limit, irrespective of the detector energy resolution ∆E. Using these
formulae, we find our g(∆E = Emax

e − me, Ee, E
max
e ) is in accord with the result of Vogel, Ref [20].

We report g(∆E,Ee, E
max
e ) in the endpoint region of tritium β-decay, which results from Eqs. (8-

13), in Fig. 1. We have verified that the integration of (dΓ0/dEe)g(∆E,Ee, E
max
e ) over Ee yields a

universal value of δ̃R,b for all ∆E. The inclusion of a finite value of ∆E removes the logarithmic
divergence in Sirlin’s function as Ee → Emax

e . The numerical shifts associated with the inclusion of
the ∆E dependence generally are crudely comparable in size to the leading O(Zα2) correction [26],
−Zα2 ln(M/me), though the latter, of course, contains no Ee dependence.

We can now proceed to evaluate the changes these theoretical corrections make to the shape
assumed in previous experimental assays of the ν mass. For definiteness, we also include the leading-
order recoil corrections to the electron energy spectrum. We may once again adapt the results from
neutron decay to this case. We adopt the notation of Bender et al. in Ref. [27], though the couplings of
the hadronic weak current are now nuclear form factors evaluated at zero momentum transfer. Noting
Ref. [27], we replace the absolute, squared nuclear transition matrix element, which we have taken to
be |M|2 = |M0|2 = g2V + 3g2A, with

|M|2 → |M0|2(1 +R) , (14)

where

R =
1

(g2V + 3g2A)

[

gAf2

(

−4
m2

e

MAEe
− 4

Emax
e

MA
+ 8

Ee

MA

)

+ g2V

(

2
Ee

MA

)

+g2A

(

−2
m2

e

MAEe
− 2

Emax
e

MA
+ 10

Ee

MA

)

+ gV gA

(

−2
m2

e

MAEe
− 2

Emax
e

MA
+ 4

Ee

MA

)

]

. (15)

Note that MA = 2809.4319 MeV [28] is the tritium mass and Emax
e − me = 18.57 keV [14], so that

Emax
e /MA ∼ 1.9 · 10−4. Since |M0|2 can be absorbed into the overall normalization of the decay rate,

the function R represents the first appearance of nuclear-structure effects in the prediction of the
electron-energy spectrum in tritium β-decay. The form factors which enter are largely determined by
the symmetries of the Standard Model (SM), so that the subsequent uncertainty in the predicted recoil
correction, which is itself of small numerical size, is very small. In writing Eq. (15), we have assumed
the validity of the conserved-vector-current (CVC) hypothesis and have neglected the form factors

5



1.03624 1.03628 1.03632

E
e
/m

e

0.0155

0.0160

0.0165

0.0170

0.0175

0.0180

(α
/2

π
)g

(∆
E

,E
e,E

em
ax

)

Figure 1: The “outer” radiative correction g(∆E,Ee, E
max
e ) as a function of the electron detector

resolution ∆E and the electron energy Ee in the endpoint region of tritium β-decay. The solid line
is Sirlin’s result [18], for which ∆E = 0. The dotted line corresponds to Vogel’s result [20], for
which ∆E = Emax

e − me. The remaining curves correspond to ∆E = 1 [5], 6 [11], 100, and 1000
eV, respectively, moving in sequence from the solid line to the dotted one. The chosen values of ∆E
correspond to those of the planned and recent experiments to which we refer.

associated with second-class-current contributions. In the context of the SM, this is tantamount to
neglecting the effects of isospin violation, so that the recoil term is subject to corrections of O(1%).
The vector coupling gV is also unity by the CVC hypothesis; the computed correction due to charge-
symmetry breaking in the overlap of the 3H-3He wave functions, due to Towner, is δc = 0.06% [30];
we note g2V = g′V

2(1 − δc), where g′V
2 absorbs the inner radiative correction ∆R and |Vud|2, with Vud

a CKM matrix element. The CVC hypothesis determines the weak-magnetism coupling f2 from the
measured 3H and 3He magnetic moments [28], to yield f2/g

′
V = −3.0533; we ignore the possibility of

a inner radiative correction idiosyncratic to f2. The
3H half-life determines g2V +3g2A up to corrections

of recoil order; this is sufficient to determine the couplings which appear in the recoil-order expression.
In specific, we have [30] (1 − δc + 3g2A/g

′
V
2)−1 = G2

F g
′
V
2f(1 + δR)t1/2/K with g′V

2 = (1 + ∆R)|Vud|2
and K = 2π3 ln 2/m5

e . We use GF , α, me, and ~ as given in Ref. [31], ∆R = 0.0240, Vud = 0.9740 as
in Ref. [32], and the half-life t1/2 = 12.3 yrs as recommended in Ref. [28]. Finally we use the integral
of F + (α/2π)gS , noting Eq. (4) of Ref. [16] for F , over the allowed phase space to fix f(1 + δR), for
which we find 2.9109 · 10−6 . We use Re = 1.68 fm throughout [29, 28]. This yields gA/g

′
V = 1.22; note

that this ratio of couplings implicitly contains the quenching of the Gamow-Teller matrix element due
to nuclear structure effects.

Armed with these results, we now proceed to evaluate the change in the electron energy spectrum
upon the inclusion of the outer radiative correction, g(∆E,Ee, E

max
e ). We illustrate ∆(dΓ/dEe) =

(dΓ0/dEe)αg(∆E,Ee, E
max
e )/(2π) in Fig. 2, using the energy resolution of the Mainz experiment [14],

∆E = 4.4 eV. In this figure, the inclusion of the ∆E dependence is of little impact; the resulting
curve is hardly distinguishable from that which results from the use of Sirlin’s function, Eq. (3).
The recoil corrections are included as well, so that we employ dΓ/dEe = dΓ0/dEe(1 + R + F +

6



1.03624 1.03628 1.03632

E
e
/m

e

0.0e+00

1.0e-05

2.0e-05

3.0e-05

 τ
  m

e
∆[

dΓ
/d

E
e]

Figure 2: The change in the electron energy spectrum, dΓ/dEe, upon the inclusion of g(∆E,Ee, E
max
e ),

as a function of Ee. The solid line has ∆E = 4.4 eV as per Ref. [14]; the dashed line also includes recoil
corrections as per Eq. (14). For reference the change in the theoretical form of the energy spectrum
assumed in Ref. [14], if m2

ν = 0 → −4 eV2, is shown as the dot-dashed line as well.

α/(2π)g(∆E,Ee , E
max
e )); they are rather small, though they are appreciable. The analysis of Ref. [14]

assumes the theoretical form given in Eq. (1), inferring m2
ν = −3.7 ± 5.3 ± 2.1 eV2 from their exper-

imental data. Thus, for reference, we also show ∆(dΓ/dEe) = dΓF (m
2
ν = −4eV2)/dEe − dΓF (m

2
ν =

0eV2)/dEe in Fig. 2. Note that employing m2
ν > 0 yields a ∆(dΓ/dEe) which differs in sign from that

generated with g(∆E,Ee, E
max
e ). It is apparent that the change in the theoretical energy spectrum

due to the neglected O(α) correction acts to increase the electron energy spectrum; this effect is also
realized through a negative value of m2

ν in Eq. (1). The neglect of the outer radiative correction
generates a negative shift in m2

ν . We emphasize that this shift is a consequence of the change in
shape in the electron energy spectrum induced by the outer radiative correction. We illustrate this
in Fig. 3, in which we show the ratio of the corrected to uncorrected Kurie plots, recalling that the
Kurie plot is K(Ee) ≡ [(dΓ/dEe)(1/FpeEe)]

1/2 versus Ee. This ratio is simply (1 + geff)
1/2 to O(α),

where geff ≡ R+ (α/2π)g(∆E,Ee, E
max
e ).

To estimate the impact of the remaining O(α) correction on the value of the neutrino mass, we
introduce the fit function used in earlier work [14]:

τme
dΓ

dEe
= Am−4

e F (Z,Re, Ee)peEe(E
max
e − Ee)

√

(Emax
e − Ee)2 −m2

ν +B , (16)

where A, Emax
e , m2

ν , and B are all fit to the electron energy spectrum. For our comparison, which
we effect for purposes of illustration, we have neglected the contributions associated with the excited
final states of the daughter 3He+ - T molecule and include the elastic contribution only. Note that
B represents a constant experimental background, so that we set B = 0. Fitting the remaining
parameters in Eq. (16) to the dashed curve in Fig. 2 yields the comparisons shown in Fig. 4. We fit
the last 70 eV of the electron energy spectrum and set ∆E=4.4 eV, in an attempt to simulate the
conditions in Sec. 6.3 of Ref. [14], for which m2

ν = −3.7±5.3±2.1 eV2 was inferred. We fit the quantity
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e
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1.0087
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Figure 3: The ratio of the corrected to uncorrected Kurie plots, namely (1 + geff)
1/2, with geff ≡

R+(α/2π)g(∆E,Ee , E
max
e ), as a function of Ee. The solid line has ∆E = 4.4 eV, the dashed line has

∆E = 1 eV, and the dotted line has ∆E = 0.1 eV.

τmedΓ/dEe, where the lifetime τ is τ = t1/2/ ln 2, noting, for reference, that A = 3.43537 · 105 in our
theoretical curves. Using the MIGRAD minimization program in the CERN package ROOT [33], we
find two different fits of comparable quality, which possess very different values of m2

ν ; apparently a
significant shift in m2

ν can be accommodated by normalizations A which differ by ∼ 2%. In both
cases m2

ν < 0; we cannot successfully fit our curves using a non-negative value of m2
ν in Eq. (16).

In constrast, if we fit Eq. (16) to a curve containing the Fermi function only, these features do not
occur. In this case, we find fits with |m2

ν | < 1 eV2 are consistent with the input curve; m2
ν need not

be negative definite.
The refinements we have introduced, namely, the ∆E dependence to the outer radiative corrections

cum the recoil corrections, shift m2
ν at no larger than the O(1 eV2) level. As Fig. 3 makes clear, this

conclusion is sensitive to the precise value of ∆E, as well as the interval in Ee over which the neutrino
mass is fit. For other choices of these parameters, their relative impact could be more significant.
Given the results shown in Fig. (4), we cannot make a robust conclusion concerning the absolute scale
of the shift in m2

ν our previously neglected theoretical corrections would induce in a more realistic
analysis; nevertheless, we can say that the consequence of neglecting these terms is to push m2

ν < 0 in
an artificial way. We presume that with the replacement of Eq. (16) with a fit function incorporating
the radiative and recoil corrections we have calculated such artificial shifts would disappear. In the
analysis we have effected, this turns out to be the case.

In this letter we have evaluated the O(α) outer radiative correction, g(∆E,Ee, E
max
e ), to the

electron energy spectrum in 3H β-decay, so that (α/2π)g + F − 1, where F is the Fermi function,
constitutes the complete O(α) correction to the electron energy spectrum. We have updated the
calculation of Sirlin [18] to include the dependence of the outer radiative correction on the detector
energy resolution ∆E; as a consequence the O(α) correction we compute to the shape of the electron
energy spectrum is finite as Ee → Emax

e . However, as necessary, it has no impact on the radiative
correction to the total decay rate. Interestingly, the outer radiative correction was omitted all together
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Figure 4: The electron energy spectrum for Emax
e − Ee ≤ 70 eV, as a function of Ee. The solid curve

shows the theoretical spectrum to be fit, which includes g(∆E,Ee, E
max
E ) with ∆E=4.4 eV and recoil

corrections as per Eqs. (14,15). The dashed curve is realized from Eq. (16) using Emax
e = 18.57 keV,

A = 3.55020 · 105, and m2
ν = −67 eV2. In constrast, the dot-dashed curve has A = 3.49446 · 105 and

m2
ν = −0.01 eV2.

in earlier studies of tritium β-decay [7, 8, 9, 10, 11, 12, 13, 14, 5]; we have shown that the shape
correction associated with this ∼ 2% shift mimicks a negative value of m2

ν . We believe it is necessary
to update earlier experimental analyses to take this theoretical correction into account, to realize an
accurate determination of the neutrino mass. A highly accurate theoretical spectrum can be found
by modifying Eq. (1), the form used in earlier experimental analyses of 3H β-decay, through the
substitution F → F ∗ + (α/2π)g(∆E,Ee, E

max
e ) + R, using Eqs. (8-13) and Eq. (15). Our focus

has been on g(∆E,Ee, E
max
e ) and R; theoretical corrections to these terms accrue from i) O(Zα2)

corrections, which are known [26], and ii) O(1%) corrections to the recoil-order term, Eq. (15), but
such corrections would appear beyond the scope of current and planned experiments. The corrected
Fermi function F ∗, which includes corrections such as those due to the finite nuclear size and to charge
screening of the nuclear charge by atomic electrons, is detailed in Ref. [34]; recoil corrections [27] and
outer radiative corrections, as calculated by Sirlin [18], are considered in this reference as well. The
outer radiative corrections are the largest of these corrections [34]. Realistic experimental conditions
demand that Eq. (16), as well as the fit form we advocate, be adapted to include the population of all
the excited final states i of the daughter He+-T molecule; the excitation energies and amplitudes are
computed from atomic theory. As a consequence, the elucidation of the neutrino mass in 3H β-decay
relies on atomic physics input which cannot be wholly subjected to exhaustive, independent empirical
test. Nevertheless, from the viewpoint of the theoretical radiative and recoil corrections, a sub-eV
determination of the neutrino mass should be possible.
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