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Abstract
We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set

of Dyson–Schwinger equations for the fermion and photon propagators. For the fermion-photon

interaction we employ an ansatz which satisfies its Ward–Green–Takahashi identity. We present

self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In

Landau gauge, we find a phase transition at a critical number of flavours of N crit
f ≈ 4. In the

chirally symmetric phase the infrared behaviour of the propagators is described by power laws

with interrelated exponents. For Nf = 1 and Nf = 2 we find small values for the chiral condensate

in accordance with bounds from recent lattice calculations. We investigate the Dyson–Schwinger

equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly

transformed Landau gauge solutions shows that the quenched solutions are approximately gauge

covariant, but reveals a significant amount of violation of gauge covariance for the unquenched

solutions.
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I. INTRODUCTION

Over the years, quantum electrodynamics in (2+1) dimensions (QED3) has been studied
for a variety of reasons. On the one hand it served as a laboratory for investigating nonper-
turbative phenomena such as dynamical mass generation or confinement in a comparatively
simple framework devoid of the technical complications of non-abelian gauge theories (for
reviews see Refs. [1, 2, 3]). On the other hand QED3 has regained recent interest due to pos-
sible applications in condensed matter systems. High-Tc cuprate superconductors possess an
unconventional d-wave symmetry of the pairing condensate. Such a pairing gap has nodes
at the electronic Fermi surface at which the low energy dispersion becomes linear and thus
can be described as massless fermions. Since the electronic motion is mainly confined to the
two-dimensional copper-oxygen planes in these systems an effective low energy description
of the cuprates in terms of a quantum electrodynamics in two spatial dimensions with two
massless fermion flavours has been suggested [4, 5, 6]. In this picture the antiferromagnet-
ically ordered insulating state of the cuprates would correspond to a state of broken chiral
symmetry. For this reason there would be considerable interest in a study of the chiral phase
transition as well as the infrared spectral properties of the fermion propagator in both the
chirally symmetric and in the ordered phase of QED3.

QED in (2+1) dimensions is a super-renormalisable theory and has an intrinsic mass scale
given by the dimensionful coupling constant α = Nf e

2/8. With the help of the photon po-
larisation Π(p) a dimensionless running coupling ᾱ = α/(p[1+Π(p)]) = Nf e

2/(8p[1+Π(p)])
can be defined which separates the nonperturbative infrared momentum regime from the
perturbative ultraviolet behaviour [7]. A nonzero fermion mass would provide a second
mass scale. Various studies of the Dyson–Schwinger equation (DSE) of the fermion propa-
gator suggest that, in the chiral limit, the interactions generate a dynamical fermion mass
M(p2) (at least for a small number of fermion flavours), and that this generated mass
scale M(p2 = 0) is considerably smaller than the scale defined by the coupling constant α
[7, 8, 9, 10, 11, 12, 13, 14, 15].

It is the smallness of this generated mass scale that poses problems in lattice Monte-
Carlo simulations of QED3 [16, 17, 18, 19]. Finite volume effects are large and the relevant
signal to determine the chiral phase transition, the dimensionless chiral condensate, is very
small. Furthermore the presence of an infrared cutoff as such has been shown to reduce the
value of the critical number of flavours, N crit

f [20]. Thus recent studies for the number of
flavours Nf = 2 [18] and Nf = 4 [18, 19] determined bounds on the chiral condensate, but
no definite value for N crit

f could be extracted. A definite signal for chiral symmetry breaking
was obtained only for Nf = 1 [19]. Given these problems it seems evident that a continuum
method is needed to shed light on the infrared properties of QED3.

The DSEs of the propagators of QED3 have long been investigated employing various
levels of approximation. Early investigations of the fermion DSE based on a large Nf

expansion indicated chiral symmetry to be broken only if the number of flavours Nf is
smaller than a critical value of N crit

f = 32/π2 ≈ 3.2 to leading order in Landau gauge [8]

and N crit
f = 4/3(32/π2) including next lo leading order corrections in a nonlinear gauge

[21]. These results have been questioned in Refs. [9, 10, 11], where it was argued that the
1/Nf -expansion is not an appropriate tool to address these nonperturbative phenomena.
Using a slightly different truncation of the fermion DSE, it was found that chiral symmetry
is broken for all values of Nf , although the generated mass scale is exponentially decreasing
for increasing Nf [11]. Subsequent work on the coupled DSEs for the fermion and the photon
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propagator, however, again found chiral symmetry restoration for Nf > N crit
f , with a value

of N crit
f between 3 and 4 [13, 15]. All investigations so far are either quenched or employ a

fermion-photon interaction which manifestly violates gauge symmetry.
Certainly, gauge invariance is a key property of a local quantum field theory and has to

play a vital role in these investigations. Reliable results from DSEs can only be expected
if the fermion-photon vertex respects local gauge symmetry. A necessary (though not suffi-
cient) condition in this respect is given by the Ward–Green–Takahashi identity (WGTI) [22],
which determines the ’longitudinal’ part of the fermion-photon interaction uniquely in terms
of the propagator functions [23]. The remaining transverse part of the vertex is unrestricted
by the WGTI and has to be determined either directly from the vertex DSE or modelled by a
suitable ansatz. As the vertex DSE is considerably more complicated to solve than the ones
for the propagators all work up to now concentrated on the latter strategy. Constraints on
the structure of the transverse part of the vertex have been derived from gauge covariance
[24, 25] and multiplicative renormalisability [26]. Also perturbative vertex corrections put
constraints on the transverse fermion-photon vertex [27, 28, 29, 30, 31, 32] and proposals
for nonperturbative generalisations of these structures have been made [28, 29, 30, 31].

A further important nonperturbative tool to assess the gauge transformation properties
of a given vertex ansatz are the Landau–Khalatnikov–Fradkin transformations (LKFT) [33].
These transformation laws leave the DSEs and the WGTI form invariant and in principle
allow one to test whether a given ansatz for a vertex is gauge covariant. Such an investiga-
tion, however, is hampered by the fact that the transformation law for the vertex is quite
complicated. Therefore an indirect strategy has been applied: one calculates the propagator
with a given vertex ansatz in the fermion and photon DSE in various gauges and compares
with the corresponding results from the LKFT of the propagator [24, 31, 34, 35]. The
success of this strategy has been limited by the problem that the LKFT is formulated in
coordinate space and the necessary Fourier-transform can be carried out analytically only
for very special cases.

Our aim in this paper is to make progress in the direction of a gauge covariant solution
for the propagators of QED3. We investigate the coupled set of DSEs for the fermion and
photon propagator employing a fermion-photon interaction which respects the WGTI. In
addition, it contains a transverse part that has been shown to respect the LKFT properties
in the quenched massless case and is thus a good starting point for unquenched QED3. With
the absence of the fermion mass scale in the symmetric phase, the assumption of a power
law behaviour of the dressing functions in the infrared seems natural. For the same reasons
similar power laws have been found for the ghost and gluon propagators in quenched and
unquenched QCD4 [36, 37, 38, 39]. We will see how far we can get with this assumption
here, given the limitations of the chosen truncation scheme.

The paper is organised as follows: In Sec. II we discuss the DSEs for the fermion and
photon propagator and define our truncation for the fermion-photon interaction. Further-
more, we recall the ultraviolet behaviour of the propagators as known from methods such
as the 1/Nf -expansion, the loop expansion, and the operator product expansion. In Sec. III
we present an analytical determination of the infrared behaviour of the coupled system of
fermion and photon equations in the symmetric phase. We show that, within the limits of
our truncation scheme, the infrared behaviour of the propagators in Landau gauge is given
by simple power laws, confirming a longstanding conjecture from perturbative arguments
[10, 11, 40]. We also calculate the critical number of flavours N crit

f for chiral symmetry
breaking using these analytic solutions in the infrared, and determine the behaviour of the
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fermion scalar self-energy close to N crit
f for a simplified version of our fermion-photon vertex.

Furthermore we investigate the gauge dependence of these power law solutions.
Numerical results in the broken and symmetric phases are presented in Sec. IV. In

passing we re-analyse the quenched fermion and photon DSEs and demonstrate that the
Curtis–Pennington vertex resolves an inconsistency in determining the chiral condensate
from the fermion propagator, noted in Ref. [12]. We then proceed to solve the unquenched
system of photon and fermion DSEs employing various ansätze for the fermion-photon ver-
tex. No further approximations are made. Our results in Landau gauge nicely reproduce
the analytical results in the ultraviolet as well as in the infrared momentum regime. With
our most elaborate vertex ansatz the critical number of flavours is N crit

f ≈ 4. The order

parameter of the phase transition, the dimensionless chiral condensate (−〈Ψ̄Ψ〉)/e4 is very
small, of the order of 10−3 even in the quenched limit, and decreases exponentially as one
approaches the phase transition. For Nf = 1 and Nf = 2 we find values of the condensate
in agreement with the lattice bounds [18, 19]. We conclude with a discussion of our results
in Sec. V.

II. THE DYSON–SCHWINGER EQUATIONS IN QED3

We consider QED3 with a four-component spinor representation for the Dirac algebra
and Nf fermions. This allows a definition of chiral symmetry similar to the cases of QED4

and QCD4. With massless fermions, the Lagrangian has a U(2Nf ) “chiral” symmetry, which
is broken to SU(Nf )× SU(Nf )× U(1)× U(1) if the fermions become massive1. The order
parameter for this symmetry breaking is the chiral condensate. The question is: is this
chiral symmetry broken dynamically? We use the set of DSEs to investigate this question.

A. The fermion and photon propagators

The DSEs for the photon and fermion propagators in Euclidean space are given by

D−1
µν (p) = D−1

0,µν(p)− Z1Nfe
2

∫
d3q

(2π)3
Tr [γµ S(q) Γν(q, k)S(k)] , (1)

S−1(p) = S−1
0 (p) + Z1e

2

∫
d3q

(2π)3
γµ S(q) Γν(q, p)Dµν(k) , (2)

with the momentum routing kµ = qµ − pµ. A diagrammatic notation of these equations is
given in Fig. 1.

The general form of the dressed fermion propagator S(p, ξ) and the photon propagator
Dµν(p, ξ) is given by

S(p, ξ) =
ip/A(p2, ξ) +B(p2, ξ)

p2A2(p2, ξ) +B2(p2, ξ)
, (3)

Dµν(p, ξ) =

(
δµν −

pµpν
p2

)
1

p2(1 + Π(p2))
+ ξ

pµpν
p4

. (4)

1 Note that in this formalism a fermion mass term is even under parity. It is also possible to formulate

QED
3
with two-component spinors; however, in such a formulation there is no “chiral” symmetry, and a

fermion mass terms breaks parity [41].
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FIG. 1: The Dyson–Schwinger equations of the photon and fermion propagators in diagrammatic

notation.

Here ξ is the gauge parameter in linear covariant gauges, with ξ = 0 denoting Landau gauge.
The fermion functions A, B, and M depend on the gauge parameter ξ. On the other hand,
the vacuum polarisation Π is independent of ξ. Physical quantities such as the fermion pole
mass and the chiral condensate are also independent of the gauge parameter. In order to
keep the notation as clear as possible, we will treat all dependence of the dressing functions
on ξ implicitly from now on.

The vertex normalisation constant Z1 is related to the fermion wave function normalisa-
tion Z2 by a WGTI, Z1 = Z2. Since QED3 is free of ultraviolet divergences, there is no need
for any renormalisation, though finite renormalisations of the fermion and photon fields are
possible and leave the physical content of the theory invariant. In our numerical procedure
we set A(µ2) = 1 at a large normalisation point µ2 and determine Z2 self-consistently.

B. The fermion-photon vertex

In general there are several possible strategies to choose an appropriate approximation
for the fermion-photon vertex Γν(q, p) in Eqs. (1) and (2). The simplest option would be
to replace the dressed vertex by the bare vertex γν . However, this violates, among other
things, gauge invariance and the renormalisation properties of the theory. If one wants to
preserve these symmetries, one has to use a suitably dressed vertex Γν(q, p).

One way to dress the vertex would be to solve its corresponding DSE. However, the
vertex DSE contains an unknown four-point function, the fermion-antifermion scattering
kernel; one has to truncate the infinite set of DSEs somewhere in order to obtain a tractable
set of equations, and this would only shift the problem up the hierarchy. Furthermore, one
faces the technical difficulties involved in solving an integral equation in two independent
momenta, i.e. in three independent variables.

A different strategy, which we adopt in this paper, is to employ an ansatz for the vertex,
which has to satisfy at least two requirements:

(a) it must approach the perturbative form of the vertex for large momenta;
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(b) it must satisfy the WGTI

i(q − p)νΓν(p, q) = S−1(p)− S−1(q) . (5)

Condition (a) reflects the fact that QED3 is an asymptotically free theory as explained in
the introduction. This condition furthermore implicitly specifies the symmetry properties
of the vertex, i.e. its behaviour under charge conjugation and Lorenz transformations.
Condition (b) is dictated by gauge invariance and determines the longitudinal part of the
vertex. Furthermore, it uniquely fixes the vertex when the two fermion momenta are equal

Γν(p, p) = i
∂S−1(p)

∂pν
. (6)

The two conditions (a) and (b) are necessary but not sufficient to ensure gauge covariance
of the propagators. We will come back to this point frequently later on.

Any vertex satisfying condition (b) leads to the following interesting property of the
fermion equation: With the explicit form, see Eq. (4), of the photon propagator in the
fermion DSE, the integral on the right hand side can be split into two pieces,

S−1(p) = S−1
0 (p) + Z1 e

2

∫
d3q

(2π)3
γµ S(q)

1

k2 (1 + Π(k2))

(
δµν −

kµkν
k2

)
Γν(q, p)

+ Z1 e
2 ξ

∫
d3q

(2π)3
γµ S(q)

kµkν
k4

Γν(q, p) , (7)

with the momentum convention kµ = qµ − pµ for the photon momentum. Due to the
appearance of the longitudinal projection kνΓν(q, p) in the second line of this equation, each
vertex truncation satisfying the WGTI treats this piece exactly. This will be important later
on in our infrared analysis.

A suitable basis to construct a vertex ansatz satisfying the requirements (a) and (b) has
been given in Ref. [23]. It consists of twelve tensor structures, which can be split up in
a set of four components, ΓBC

ν , completely determined by the WGTI and eight transverse
components, ΓT

ν

Γν(p, q) = ΓBC
ν (p, q) + ΓT

ν (p, q) . (8)

The WGTI is solved by the Ball–Chiu (BC) construction

ΓBC
ν (p, q) =

A(p2) + A(q2)

2
γν + i

B(p2)− B(q2)

p2 − q2
(p+ q)ν

+
A(p2)− A(q2)

2(p2 − q2)
(p/ + q/ )(p+ q)ν . (9)

The WGTI furthermore constrains the σµν(pµ+qµ)-component of the vertex to be zero. The
eight transverse components satisfy

kνΓ
T
ν (p, q) = 0, ΓT

ν (p, p) = 0 , (10)

and are otherwise constrained by condition (a). Much work has been invested to determine
ΓT
ν (q, p) in the perturbative region [26, 27, 28, 29, 30, 31, 32, 42] to constrain possible

nonperturbative ansätze, but so far without conclusive results.
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A minimal ansatz for ΓT
ν (q, p) ensuring multiplicative renormalisability in four-dimen-

sional quenched QED has been given by Curtis and Pennington [26]

ΓT,CP
ν (p, q) =

A(p2)−A(q2)

2

[(p2 − q2)γν − (p/ − q/ )(p+ q)ν ] (p
2 + q2)

(p2 − q2)2 + (M2(p2) +M2(q2))2
. (11)

Burden and Roberts [24] discovered another favourable property of the Curtis–Pennington
(CP) vertex ΓCP

ν (q, p) = ΓBC
ν (q, p) + ΓT,CP

ν (q, p), which holds in quenched massless QED in
both three and four dimensions: with the help of the LKFT [33] for the propagators they
showed that the CP-vertex indeed preserves gauge covariance in these special cases. More
sophisticated ansätze for the transverse parts of the vertex have been given in Refs. [25,
28, 29, 30, 31]. Contrary to early expectations, it has been noted [30] that ΓT

ν (p, q) does
not vanish in Landau gauge and contains terms that have to be explicitly dependent on the
gauge parameter ξ.

C. The truncated Dyson–Schwinger equations

A numerical investigation of all these ansätze, though highly desirable, is a formidable
task. Up to now the quenched fermion DSE and the photon DSE of QED3 have been studied
employing a bare fermion photon vertex as well as the BC construction [12, 24] and the CP-
vertex [43]. Partly unquenched calculations can be found in Refs. [7, 8, 9, 10, 11, 44] where
the photon propagator has been approximated by its 1/Nf -expression. Fully unquenched
dynamical solutions employing the bare as well as the first part of the BC-vertex have been
reported in Refs. [13, 15]. In our work we will extend these investigations and solve the
unquenched equations employing the CP construction in the fermion DSE and the BC-
vertex in the photon equation. The reason for this hybrid choice is the following: The
transverse term in the CP-vertex has been constructed for quenched QED, i.e. its structure
is adapted to the kinematical situation in the fermion DSE and it is believed to approximate
some parts of the real fermion-photon vertex that are important in the fermion DSE. In the
photon DSE, however, a different kinematical region of the vertex is probed. The ΓT,CP -term
leads to divergences here [46] and is thus not a good approximation to the important parts
of the real vertex in the photon DSE.

Substituting the CP-vertex into the fermion DSE and taking appropriate traces we arrive
at

B(p2) = Z2 e
2

∫
d3q

(2π)3
1

k2 (q2A2(q2) +B2(q2))
×

{
1

1 + Π(k2)

[
A(p2) + A(q2)

2
2B(q2) +

(
A(p2)−A(q2)

)
B(q2) Ω(p2, q2)

+
(
∆A B(q2)−∆BA(q2)

)(
−
k2

2
+ (p2 + q2)−

(p2 − q2)2

2k2

)]

+ ξ

[
A(p2) + A(q2)

2
B(q2) + ∆AB(q2)

(p2 − q2)2

2k2
−∆B A(q2)

(
(p2 − q2)2

2k2
+

q2 − p2

2

)]}

(12)
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A(p2) = Z2 + Z2 e
2

∫
d3q

(2π)3
A(q2)

p2 k2 (q2A2(q2) +B2(q2))

{
1

1 + Π(k2)
×

[
A(p2) + A(q2)

2

(
−
k2

2
+

(p2 − q2)2

2k2

)
+
(
A(p2)−A(q2)

)
Ω(p2, q2)

(
p2 + q2 − k2

2

)

−

(
∆A

p2 + q2

2
+ ∆BM(q2)

)(
−
k2

2
+ (p2 + q2)−

(p2 − q2)2

2k2

)]

+ ξ

[
A(p2) + A(q2)

2

(
p2 + q2

2
−

(p2 − q2)2

2k2

)

+∆A
(p2 − q2)

2

(
p2 − q2

2
+

q4 − p4

2k2

)
−∆B M(q2)

(
(p2 − q2)

2
+

(q2 − p2)2

2k2

)]}

(13)

Here we used the abbreviations

∆A =
A(p2)− A(q2)

p2 − q2
,

∆B =
B(p2)− B(q2)

p2 − q2
,

Ω(p2, q2) =
p4 − q4

(p2 − q2)2 + (M2(p2) +M2(q2))2
.

Furthermore we have used the WGTI Z1 = Z2 for the vertex and wave function renormali-
sation constants.

In the photon equation we contract the Lorenz indices with the general tensor [47, 48]

P(ζ)
µν (p) = δµν − ζ

pµpν
p2

. (14)

Inserting the BC-vertex in the general expression for the vacuum polarisation, we obtain

Π(p2) = −Z2 e
2Nf

∫
d3q

(2π)3
1

q2A2(q2) +B2(q2)

1

k2A2(k2) +B2(k2)
×

{
A(q2) + A(k2)

2

(
W1(p

2, q2, k2)A(q2)A(k2) +W2(p
2, q2, k2)B(q2)B(k2)

)

+
A(q2)−A(k2)

2(q2 − k2)

(
W3(p

2, q2, k2)A(q2)A(k2) +W4(p
2, q2, k2)B(q2)B(k2)

)

+
B(q2)−B(k2)

q2 − k2

(
W5(p

2, q2, k2)A(q2)B(k2) +W6(p
2, q2, k2)B(q2)A(k2)

)
}
.

(15)

The general form of the kernels Wi as well as a discussion of the (weak) dependence of the
photon equation on the parameter ζ of the projector (14) can be found in Appendix A.
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Here we give the kernels for the special value ζ = 3, suggested in Ref. [47] to avoid spurious
divergences

W1(p
2, q2, k2) =

3k4

p4
− k2

(
2

p2
+

6q2

p4

)
− 1−

2q2

p2
+

3q4

p4
, (16)

W2(p
2, q2, k2) = 0 , (17)

W3(p
2, q2, k2) =

3k6

p4
− k4

(
4

p2
+

3q2

p4

)
+ k2

(
1−

3q4

p4

)
+ q2 −

4q4

p2
+

3q6

p4
, (18)

W4(p
2, q2, k2) =

−6k4

p4
+ k2

(
4

p2
+

12q2

p4

)
− 2 +

4q2

p2
−

6q4

p4
, (19)

W5(p
2, q2, k2) =

3k4

p4
− k2

(
4

p2
+

6q2

p4

)
+ 1 +

3q4

p4
, (20)

W6(p
2, q2, k2) =

3k4

p4
− k2

(
6q2

p4

)
+ 1−

4q2

p2
+

3q4

p4
. (21)

D. 1/Nf -expansion and asymptotic behaviour

Several previous studies of QED3 have used the 1/Nf -expansion
2 to justify truncations or

to calculate the asymptotic behaviour of the dressing functions. Our approach does not rely
on this expansion, but it is interesting to compare our results with the ones obtained in this
way. We therefore shortly summarise the anticipated behaviour of the dressing functions
based on the 1/Nf -expansion.

For the vacuum polarisation, one finds for Nf massless fermion flavours to leading order
in a 1/Nf -expansion [7]

Π(p2) =
Nf e2

8p
=

α

p
, (22)

independently of the value for the gauge parameter ξ. In the full theory, this expression
remains valid in the ultraviolet asymptotic limit, as has been demonstrated in quenched
approximation employing a BC-vertex in the fermion loop [49]. Our numerical results show
that this is also the case in the unquenched case. In the infrared we will find a modified
power law for the photon.

The asymptotic behaviour of the vector self energy to two loop order in quenched approx-

imation is given by [29]

A(p2 → ∞) = 1 +
ξe2

16p
+

e4ξ2

64π2p2
+

3e4

64π2p2

(
π2

4
−

7

3

)
+O(α3) (23)

Note that to this order the vector dressing function A receives positive corrections in all
gauges, i.e. A(p2) ↓ 1 for p2 → ∞. Furthermore, these corrections to its asymptotic value
A = 1 behave like inverse powers of the momentum.

2 This is equivalent to a perturbative expansion for small e2 while keeping α = Nfe
2/8 fixed. As QED

3
is

an asymptotically free theory this expansion will provide correct answers in the ultraviolet.
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On the other hand, from an unquenched 1/Nf -expansion in Landau gauge, employing a
bare vertex and the 1/Nf photon propagator given in Eq. (22), one obtains for p < α

A(p2) = 1 +
8

3Nfπ2
ln(p/α) , (24)

up to terms that are regular for p → 0. Certainly this expression cannot be valid in the
ultraviolet region (as A(p2) → 1 for large momenta), nor in the (far) infrared region, re-
flecting the inconsistency of ignoring vertex corrections. Nevertheless, it has been argued
[10, 11, 40] that it could be the first term in the build up of an anomalous dimension

A(p2) =

(
p2

α2

)η

, (25)

with

η =
4

3π2Nf
≈

0.135

Nf
, (26)

in the infrared region. We will come back to this possibility in our infrared analysis in the
next section.

Finally, the analysis of the asymptotic behaviour of the scalar dressing function B(p2)
in the chirally broken phase of massless QED3 is outlined in [12]. Since we are interested
in dynamical chiral symmetry breaking, which is a purely nonperturbative phenomenon,
we cannot rely on the 1/Nf -expansion to obtain an expression for B. Using the operator
product expansion however, one finds that asymptotically

B(p2 → ∞) =
2 + ξ

4

〈Ψ̄Ψ〉

p2
, (27)

with A(p2 → ∞) → 1. Thus the chiral condensate 〈Ψ̄Ψ〉 can be obtained from the fermion
propagator in two ways: on the one hand it can be read off from the asymptotic behaviour of
the B-function and on the other hand it is given by the trace of the propagator in coordinate
space. In Ref. [12] slight deviations between these two methods have been found. We will
demonstrate that these deviations do not occur in our truncation. The asymptotic form,
Eq. (27), is reproduced to very good accuracy for a range of values of the gauge parameter
ξ in our numerical analysis.

III. INFRARED ASYMPTOTIC BEHAVIOUR

Unlike the situation in a perturbative analysis, where one has a definite starting point
to work out results order by order, an analysis of the nonperturbative momentum regime
of QED3 is based solely on self-consistency and relies therefore on a physically motivated
ansatz to start with. Inspired by the conjecture of the previous subsection and guided by our
numerical analysis, our working hypothesis will be that at least in Landau gauge the infrared
behaviour of QED3 in the symmetric phase is given by power laws. We will investigate this
assumption employing different vertex truncations and see how far we can get. Finally we
will investigate whether our results are gauge covariant.
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A. Infrared analysis in Landau gauge

1. The symmetric phase

For the following analysis we will not use the full CP or BC vertex constructions but only
the term proportional to γµ, denoted 1BC,

Γ1BC
µ (p, q, k) =

A(p2) + A(q2)

2
γµ . (28)

This choice has the advantage that the equations are simplified significantly and it already
contains all qualitative features of the solution employing the full CP/BC-vertex in the
infrared region, as will be demonstrated by our numerical calculations given in Sec. IV.
Furthermore, it has the merit that we can solve the DSEs in the infrared analytically. This
vertex has been considered before in Ref. [15], though no attempt was made there to solve
the DSEs analytically.

The starting point of our investigation is a power law ansatz for the vector dressing
function

A(p2) = c p2κ , (29)

with the constant c and the power κ to be determined self-consistently. We expect this
ansatz to be valid in the infrared, i.e. in the momentum region p ≪ α; for p > α the
function A(p2) rapidly approaches its free form, A(p2) = 1. The integrals on the right hand
side of the DSEs are dominated by the infrared contributions, coming from the region p < α.
Thus one can safely substitute the power law for A(p2) and cut off the integrals at p = α.
Alternatively, one can substitute the power law over the entire momentum range in the
integrals, provided one keeps track of possible ultraviolet divergences. After integration, the
resulting power behaviour on the right hand side of the equations then has to match the
power law on the left hand side.

Given the ansatz, Eq. (29), we first have to derive the corresponding power law of the
photon polarisation. After substituting the ansatz (29) into the right hand side of the photon
equation, Eq. (15), the integral can be carried out with the help of Eq. (B6). We arrive at

Π1BC(p
2) = Z2

α

c

4

π

Γ(3/2− κ)Γ(1/2 + κ)

Γ(3− κ)Γ(1 + κ)
p−1−2κ , (30)

=: Z2
α

c
w1BC p−1−2κ ,

where we have introduced the dimensionless function w1BC(κ)

w1BC(κ) =:
4

π

Γ(3/2− κ)Γ(1/2 + κ)

Γ(3− κ)Γ(1 + κ)
. (31)

For the analysis of the fermion DSE, Eq. (13), we assume that κ > −1/2, as κ ≤ −1/2
only admits the trivial solution A ≡ 1, cf. Sec. III B below. With p ≪ α the photon dressing
is given by

1

1 + Π1BC(p2)
≈

c

αw1BC
p1+2κ . (32)

11



Together with the power law Eq. (29) we then obtain

c p2κ = Z2 +
c

w1BC Nf π3

∫
d3q

{
k−1+2κ

p2 q2+2κ

p2κ + q2κ

2

(
−
k2

2
+

(p2 − q2)2

2k2

)}
. (33)

The treatment of this type of equation has been discussed in detail in Refs. [50, 51] for the
system of ghost and gluon DSEs in QCD4. To proceed one has to distinguish two cases, κ < 0
and κ > 0. In the first case the left hand side of the equation becomes singular for p2 → 0
and has to be matched by a corresponding singularity in the integral on the right hand side.
In this case the constant term, Z2, stemming from the bare propagator is suppressed and can
simply be discarded. (This case is analogous to the gluon equation in QCD4). On the other
hand, if κ > 0 the left hand side goes to zero. The renormalisation constant Z2 thus has to
be cancelled by a constant term generated by the integral. A straightforward way to deal
with this situation is to discard the constant term Z2 and at the same time to eliminate the
constant term hiding in the integral by employing dimensional regularisation. Furthermore
we have to eliminate a spurious divergence introduced by employing the power law ansatz
over the whole momentum range. We are then left with

p2κ =
p2κ

w1BC Nf π2

(
1

2κ(1− 2κ)
+

π

(3 + 2κ)

Γ(κ)Γ(1− κ)

Γ(3/2− κ)Γ(1/2 + κ)

)
. (34)

Note that the normalisation factor Z2 as well as the coefficient c of the power law has been
dropped out of the equation as expected. The powers of momentum match on both sides
of the equation thus confirming that the power law is indeed a self-consistent solution of
the DSEs in the chirally symmetric phase. Equations (31) and (34) together determine
the exponent κ and therefore completely describe the behaviour of the photon and fermion
propagators in the infrared in the given truncation scheme.

From our analysis we find a possible explanation, why the authors of Refs. [10, 11, 44] did
not find a phase transition in their truncation scheme: as the feedback from the function A
onto the vacuum polarisation is not taken into account in their approach, i.e. Π(p2) ∼ 1/p,
the right hand side of the DSE for A is proportional to p0, which only matches the left hand
side iff the A-function becomes a (trivial) constant in the infrared. Thus there is no self-
consistent power law solution in this truncation scheme. This feedback was first considered
in Refs. [13, 14, 15].

An explicit numerical solution of the Eqs. (31) and (34) is shown in Fig. 2. For the sake
of comparison we also display the solution for the case of a bare fermion-photon vertex,
which can be obtained from a similar analysis. Both results are very well fitted by a series
of powers of 1/Nf :

κbare =
0.135

Nf
+

0.090

N2
f

+O(1/N3
f ) , (35)

κ1BC =
0.115

Nf

+
0.044

N2
f

+O(1/N3
f ) , (36)

which suggests a connection to the 1/Nf -expansion. Comparing the first term of our result
for the bare vertex with Eq. (25) we find that the 1/Nf -result is indeed the first term in
the build up of an anomalous dimension. The additional 1/N2

f -term in our fit indicates that
also loop corrections to the next order in a 1/Nf -expansion sum up and contribute to the

12
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FIG. 2: Here we display the anomalous dimension of the fermion vector dressing function obtained

from our infrared analysis, κ(Nf ), compared with the conjecture from perturbation theory, η(Nf ).

anomalous dimension. However, one should keep in mind that our calculation is not a 1/Nf

expansion of the DSEs. It is therefore not surprising that our result for the order 1/N2
f

contribution to the anomalous dimension deviates from that obtained in a 1/Nf expansion
[45]

κ1/Nf
=

4

3π2Nf
−

8(32− 3π2)

9π4N2
f

+O(1/N3
f ) (37)

≈
0.135

Nf

−
0.022

N2
f

+O(1/N3
f ) . (38)

Furthermore, the vertex dressing of the 1BC-vertex modifies κ(Nf) to quite some extent.
The infrared powers presented in Fig. 2 are not the only solutions of the Eqs. (31) and

(34). In the range −1/2 < κ < 1 we found a second solution which is excellently fitted by

κ1BC = 0.5−
0.050

Nf

−
0.006

N2
f

−
0.028

N3
f

. (39)

However, contrary to the solution (36), this solution does depend very heavily on the pro-
jection method in the photon equation, i.e. it depends on the parameter ζ introduced in
Eq. (14). Furthermore, it does not connect to the ultraviolet behaviour of the dressing func-
tions, i.e. we do not find numerical solutions of the DSEs interpolating between the infrared
behaviour, Eq. (39), and the ultraviolet asymptotic behaviour given in subsection IID. We
therefore discard the solution (39) in the following.

We have shown so far that in the symmetric phase the power law (29) leads to a self-
consistent solution of the fermion and photon DSEs, assuming that the vertex is dominated
by its γµ-part. The crucial question is, of course, whether the power law survives when
additional structure of the vertex is taken into account. That this is indeed the case for
our choice of the fermion-photon vertex can be shown by a simple dimensional analysis.
Plugging the power law into the CP-vertex, Eqs. (9) and (11), we find that with a vanishing
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B-function all terms in the vertex depend on combinations of momenta which are of the
same order p2κ as the leading term. Thus after integration the CP-vertex will only change
the coefficients of the right hand sides of the fermion and photon DSEs, Eqs. (30) and (34),
but not the general power law behaviour. We thus expect a modified function κCP (Nf) as
compared to κ1BC(Nf) and κbare(Nf). That these modifications are small will be confirmed
by our numerical analysis in Sec. IV below. Further modifications have to be expected
from including other transverse parts of the fermion-photon vertex and it is by no means
excluded that κ finally becomes negative. We will further discuss this possibility later on in
Sec. III B 2.

2. The chirally broken phase close to N crit
f

Next we investigate the chirally broken phase close to the critical value N crit
f of the phase

transition (assuming for now that there is a chirally broken phase, and a critical value of Nf).
In this region the dynamically generated fermion mass will be extremely small compared to
α. The momentum range B(0) ≪ p ≪ α will dominate the integral on the right hand side
of the DSE for the B-function, Eq. (12), and therefore the chirally symmetric solutions for
the photon polarisation and the dressing function A

A(p2) = cp2κ (40)

Π(p2) = Z2
α

c
w(κ) p−1−2κ , (41)

determined in the last subsection, can be substituted in the integral on the right hand side
for all momenta. Choosing again the case of the 1BC-vertex for simplicity we obtain

B(p2) = Z2
α

Nf π3

∫
d3q

1

k2 + Z2
αw1BC (κ)

c
k1−2κ

2B(q)

c2q2+4κ +B(q)2
c(p2κ + q2κ)

2
. (42)

The angular integrals are easily performed, and we obtain

B(p2) =
2 Z2 c α

p Nf π2

1

1 + 2κ

∞∫

0

dq q
B(q) (p2κ + q2κ)

c2q2+4κ +B2(q)
ln

(
Z2

α w1BC(κ)
c

+ (p+ q)1+2κ

Z2
αw1BC (κ)

c
+ |p− q|1+2κ

)
. (43)

As we are interested in the momenta p, q ≪ α the scale α cuts off the integral and the
logarithm can safely be expanded. Furthermore close to the phase transition the interesting
region is the one with B2(q) ≪ c2q2+4κ, therefore the equation can be linearised. Thus we
arrive at

B(p) =
4

w1BC(κ)Nf π2

α∫

0

dq
B(q)(p2κ + q2κ)

q4κ
[max(p, q)]2κ−1 . (44)

The analysis of this type of equation is well known [8, 52]. The integral equation can be
solved directly by substituting the power law B(p) ∼ pb and comparing coefficients on both
sides. On the other hand, by converting the (nonlinear) integral equation into a differential
equation one obtains the boundary condition

[
p
dB(p)

dp
+B(p)

]

p=α

= 0 , (45)
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which has to be satisfied by the power law solution. Therefore a nontrivial exponent b has
to be either complex or b = −1.

From the integral equation, Eq. (44), we obtain both the chirally symmetric solution
B(p) ≡ 0 and the nontrivial solution

b = −
1

2
+ 2κ

±
1

2

√√√√(1− 4κ+ 8κ2)−
16(1− 2κ)

ω(κ)
− 4

√
κ2(1− 2κ)2 −

16 κ2 (1− 2κ)

ω(κ)
+

16 (1− 2κ)2

(ω(κ))2
,

(46)

where we have used the abbreviation ω(κ) := w1BC(κ)π
2Nf . Above a critical value N crit

f

both solutions of the exponent b are in the interval −1 < b < 0 and not compatible with the
boundary condition Eq. (45): The system is in the symmetric phase. Setting the discriminant
of the outer root in Eq. (46) equal to zero and using Eq. (30) we find a critical number of
flavours of

N crit, 1BC
f ≈ 3.56 , (47)

for the case of the 1BC-vertex. For the sake of comparison we also give the result in the
bare vertex truncation

N crit, bare
f ≈ 3.96 . (48)

Note that for κ = 0 we have A = 1, Π(p2) = α/p and w1BC ≡ 1, and consequently recover
the well-known result from the 1/Nf -expansion [8]

b = −
1

2
±

1

2

√
1−

32

π2Nf
, (49)

which gives

N
crit, 1/Nf

f = 32/π2 ≈ 3.24 . (50)

(This limit also serves to determine the correct sign in front of the inner root of Eq. (46).)
Although the critical number of flavours is not too far away from the old 1/Nf result

there is a clear qualitative difference between solutions from the full (coupled) set of DSEs
and the one from an 1/Nf -expansion: The nonperturbative nature of the DSEs manifests
itself in the power law solution of the vector dressing function A(p2), i.e. in κ 6= 0. Such a
behaviour can never be obtained in a perturbative expansion and is in marked contrast to
the assumption A = 1 employed in the leading order 1/Nf -expansion. Similar criticism has
been raised in Refs. [9, 10, 11, 44], and is at the origin of a longstanding controversy.

Having determined the location of the phase transition we now investigate the behaviour
of the B-function for Nf → N crit

f from below. Abbreviating

b = −
1

2
+ 2κ±

1

2
f1BC(Nf , κ) , (51)

the oscillatory solution of the linearised equation, Eq. (44), can be written in the form

B(p) = p−1/2+2κ sin

[
1

2
f1BC(Nf , κ) (ln(p/B(0)) + δ)

]
(52)
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with a phase δ and the relevant scale for mass generation, B(0), in the logarithm. Plugging
this solution into the boundary condition Eq. (45) we take the limit Nf → N crit

f and arrive
at the condition

1

2
f1BC(Nf , κ) (ln(p/B(0)) + δ) = nπ −

1

1 + 4κ
f1BC(Nf , κ) . (53)

It can be shown [7, 8] that the value n = 1 gives the lowest vacuum energy. Therefore

B(0) = α e(
2

1+4κ
+δ) exp

[
−2π

f1BC(Nf , κ)

]
. (54)

We find an exponentially decreasing mass M(0) = B(0)/A(0) at zero momentum close to the
chiral phase transition. This is in agreement with the numerical findings of Ref. [15], where
the same 1BC-vertex was used in both the fermion and the photon DSE. A similar expression
describes the B-function in the bare vertex truncation and in the 1/Nf -expansion [7, 8, 21].
Our numerical study in Sec. IV will demonstrate that an exponential decrease of B(0) with
a modified function f(Nf , κ) will also emerge when the CP-vertex is employed. This type of
exponential behaviour near N crit

f , which is different from the usual first or second order phase
transition, is reminiscent of a conformal phase transition [53]. Strictly speaking however, it
is not a conformal phase transition, because QED3 is a super-renormalisable theory with a
dimensionful coupling constant, and the conformal symmetry is broken in both the chirally
symmetric and the broken phase.

B. Infrared analysis in general linear covariant gauges

Having determined the infrared behaviour of the photon polarisation and the fermion
dressing functions in Landau gauge we now turn to general linear covariant gauges. In
the following we will investigate whether our ansatz for the fermion-photon interaction is
sophisticated enough to generate gauge covariance of the photon polarisation and the fermion
propagator in the symmetric phase. To this end we will follow the strategy to first re-
analyse the DSEs in general linear covariant gauges and then compare our findings with
the corresponding ones from performing a LKFT of our Landau gauge solutions. We will
investigate whether our truncation allows for power law solutions in general linear covariant
gauges and whether the LKFT is consistent with such a scenario.

1. The photon and fermion DSEs

In QED the photon polarisation is a gauge invariant object. This is evident from its
LKFT, given below in Eq. (63). Thus in general a subtle interplay of the fermion propagators
and the fermion-photon interaction has to guarantee the invariance of the photon polarisation
in its DSE. On the perturbative one-loop level, it has been shown recently [30], that at least
in the symmetric phase there have to be terms in the transverse part of the vertex that
are explicitly dependent on the gauge parameter ξ. These terms are not constraint by the
WGTI, and are missing in the vertex truncation investigated in this work. For general
gauges these terms will be important in the photon DSE and we therefore cannot expect
the photon polarisation to be gauge invariant at our level of truncation.
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Assuming a ξ-dependent power law for the vector dressing function of the fermions

A(p2) = c(ξ) p2κ(ξ) , (55)

and employing the BC-vertex in the photon DSE we end up with the same expression for
Π(p2) as in Landau gauge,

Π(p2) =: Z2
α

c(ξ)
(w1BC(κ(ξ)) + w2BC(κ(ξ))) p−1−2κ(ξ) . (56)

where w1BC has been given in Eq. (31) and w2BC abbreviates contributions from the remain-
ing term of the BC-vertex. The detailed form of w2BC can be calculated analytically, but
will not be given here as it is not important in the following. We note that on this level of
truncation gauge invariance of the photon polarisation in the infrared requires the exponent
κ to be independent of the gauge parameter ξ. It is somewhat surprising that as a result,
also the infrared behaviour of the vector fermion dressing function A is gauge independent,
since it is governed by the same exponent κ. This may or may not be an inconsistency in
our truncation as this function A is in general a gauge dependent object. At this stage of the
investigation one may hope that the dependence of κ on ξ is weak, leading to qualitatively
similar results at least in the vicinity of Landau gauge.

Next we analyse the fermion DSE, Eq. (7), with the CP-vertex. In the ξ-part of the
equation the vertex is replaced by the inverse fermion propagator according to the WGTI.
We then obtain

A(p2) = Z2 +
Z2 α

Nf π3

∫
d3q

{
1

1 + Π(k2)

1

p2 k2 q2A(q2)

(
−
k2

2
+

(p2 − q2)2

2k2

)
×

(
A(p2) + A(q2)

2
+

A(p2)− A(q2)

p2 − q2
p2 + q2

2

)

+
ξ

p2 k2 q2

[
A(p2)

A(q2)

(
p2 q2

2k2
−

p4

2k2
+

p2

2

)
+

(
p2 q2

2k2
−

q4

2k2
+

q2

2

)]}
. (57)

As has been noted in Ref. [24] the CP-vertex leads to gauge covariant DSEs in the quenched
massless case. Indeed in this limit, Π(k2) = 0, and we have the gauge covariant solution

1

A(p2)
= 1−

e2 ξ

8 π p
arctan

(
8πp

e2ξ

)
, (58)

of Eq. (57). In Landau gauge, this solution reduces to the trivial solution A(p2) = 1. The
question is: is there a self-consistent power law solution for the unquenched case?

Substituting the power laws, Eqs. (55) and (56), in Eq. (57), we have to distinguish
several cases:

(a) κ > −1/2:
In this case the photon propagator contributes as

1

1 + Π1BC(k2)
≈

c

Z2αw1BC
k1+2κ , (59)
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and with substituted power laws the integration of the right hand side of Eq. (57)
leads to

c p2κ = Z2
1

Nfπ2

{
c p2κ

Z2 (w1BC + w2BC)
h(κ) +

1

p
ξ
Γ(3/2− κ)Γ(1/2 + κ)

Γ(1 + κ)Γ(1− κ)

}
, (60)

where h(κ) abbreviates a combination of Γ-functions and hypergeometric functions,
which need not to be specified here. The longitudinal 1/p-term dominates the right
hand side for all gauges except Landau gauge and again we do not find a self-consistent
power law to this level of truncation. The only way to obtain such a solution with
κ > −1/2 is the presence of a ξ-dependent transverse term in the vertex cancelling
the ξ-dependent longitudinal piece3. Then the precise value of κ is again determined
by the coefficients of the remaining terms.

(b) κ ≤ −1/2, κ 6= −1:
In this case the vacuum polarisation vanishes for k → 0 and the photon propagator is
proportional to 1/k2 in the infrared region. Integrating the right hand side of Eq. (57),
the ξ-independent part vanishes, and we obtain

c p2κ =
1

p
ξ
Z2 α

Nf π

Γ(3/2− κ)Γ(1/2 + κ)

Γ(1 + κ)Γ(1− κ)
. (61)

Note that this remaining ξ-dependent expression is exact (cf. the comments below
Eq. (7)). Matching the coefficients (naively) gives κ = −1/2, but due to the divergence
of the coefficient on the right hand side this is not a solution. There might exist a
potential solution with κ = −1, which we will consider separately below. Here we
conclude that there is no nontrivial self-consistent power law solution with −1 < κ ≤
−1/2 within our truncation. Any possible nontrivial solutions in this range have to be
generated by other transverse parts of the vertex. For example, a term proportional
to p2κ after integration with appropriate coefficients would be more singular in the
infrared than the ξ-piece and lead to a self-consistent nontrivial solution.

(c) κ = −1
As in case (b), the vacuum polarisation vanishes for k → 0 and thus Eq. (57) becomes
effectively quenched. In this case there is at least one solution, namely Eq. (58).
Certainly, this trivial solution will not survive when further parts of the transverse
vertex will be taken into account, but it serves well in the following to illustrate an
important point: interestingly, the infrared behaviour of this solution is

A(p2) = 3

(
e2ξ

8π

)2
1

p2
+O(p4) , (62)

for p ≪ e2ξ/(8π) and thus κ = −1. Nevertheless the corresponding pure power law
is not a self-consistent solution, as can be seen from Eq. (61): the right hand side
vanishes for κ = −1. The reason for this behaviour is to be found in the appearance of
the new scale e2ξ/(8π) introduced by the gauge transformation from Landau gauge to
general linear covariant gauges. For small values of the gauge parameter this new scale
divides the momentum range 0 < p < α into two regions and in general we cannot
expect the pure power law to describe the physics in this whole region.

3 Based on a less rigorous analysis of the infrared a similar conjecture has already been made in [44].
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In all cases considered so far we do not find a self-consistent power law solution in non-
Landau gauges. Two possible reasons for this behaviour have been identified. Missing
transverse parts of the fermion-photon vertex could play an important role in these gauges.
Furthermore the appearance of the new scale e2ξ/(8π) may invalidate a simple power law
ansatz in the infrared region. In the next subsection we will investigate, whether one can
derive additional information from the LKFT.

2. Landau–Khalatnikov–Fradkin transformation of the Landau gauge solution

Assuming for the moment that the power law for the vector dressing function is qualita-
tively correct in Landau gauge, we will now use the LKFT to determine the corresponding
solutions in other gauges. The transformation laws for the photon and fermion propagators
are most easily specified in coordinate space and we give the transformation rules for the
propagators in Euclidean space. The photon propagator Dµν(x,∆) in general gauges can be
obtained from its transverse Landau gauge form Dµν(x, 0) by the transformation law

Dµν(x,∆) = Dµν(x, 0) + ∂µ∂ν∆(x) , (63)

with the arbitrary function ∆. The corresponding transformation law for the fermion prop-
agator is

S(x,∆) = S(x, 0) e(∆(x)−∆(0))e2 . (64)

These transformation laws leave the DSE and the WGTI form invariant. In linear covariant
gauges and in general dimension d the function ∆(x) is given by

∆(x) = −ξ

∫
ddq

(2π)d
e−iq·x

q4
, (65)

which leads to the familiar form of the photon propagator in linear covariant gauges

Dµν(p, ξ) =

(
δµν −

pµpν
p2

)
1

p2(1 + Π(p2))
+ ξ

pµpν
p4

, (66)

in momentum space with the gauge invariant photon polarisation Π(p2). Furthermore for
QED3 one obtains the transformation law

S(x, ξ) = S(x, 0) e−xξe2/(8π) , (67)

for the fermion propagator in coordinate space.
In the symmetric phase of Landau gauge QED3 we found the power law solution

S(p, 0) =
ip/

p2
1

c p2κ
, (68)

which leads to the corresponding expression

S(x, 0) =

∫
d3p

(2π)3
e−ip·x ip/

p2
1

c p2κ
,

=
Γ(1− 2κ) sin(κπ)

c 4π2

1− 2κ

κ

γixi

x3−2κ
, (69)
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in coordinate space (all integration formulae used in this subsection are given in Appendix
B). Applying the transformation (67) we transform the propagator to general gauges and
perform the inverse Fourier-transform

S(p, ξ) =
Γ(1− 2κ) sin(κπ)

c 4π2

1− 2κ

κ

∫
d3xeip·x

γixi

x3−2κ
e−xξe2/(8π) (70)

=
ip/

p2
1

c cos(κπ)

2κ− 1

2κ

[
cos[2κ arctan(p8π/(ξe2))]

[p2 + (ξe2/(8π))2]κ

−
sin[(2κ− 1) arctan(p8π/(ξe2))]

[p2 + (ξe2/(8π))2]κ−1/2 p (2κ− 1)

]
. (71)

Note that in performing the LKFT with the infrared power law alone we have implicitly
assumed that contributions from p > α = Nfe

2/8 have no significant influence on the
behaviour of the transformed propagator for p ≪ α. Furthermore note that the LKFT has
introduced a new scale, ξe2/(8π). In order to be consistent with the previous assumption
we have to restrict the gauge parameter to small values, i.e. 0 ≪ ξe2/(8π) ≪ α. We then
obtain two momentum regions of interest where we can expand our solution:

A(p, ξ) =

{
c (p2)−1 cos(κπ) 3

1−4κ2

(
ξe2

8π

)2κ+2

for p ≪ ξe2

8π

c (p2)κ for p ≫ ξe2

8π

(72)

As expected this expression smoothly connects to the Landau gauge power law when ξ → 0.
In all other linear covariant gauges we obtain the Landau gauge power law for momenta

p ≫ ξe2

8π
. Below this scale we find surprising agreement with the LKFT of the trivial

solution, Eq. (61), i.e. a power κ = −1.

3. Self-consistent power law solutions in covariant gauges

If we take the LKFT result based on the power law solution in Landau gauge, Eq. (72),
at face value and combine it with the information we extracted from the infrared analysis of
the coupled fermion and photon DSEs, Eqs. (56) (which implicitly defines wINC and w2BC),
(60), and (61), two consistent scenarios of massless QED3 with power law behaviour in the
infrared are possible:

I) Landau gauge behaves differently in the extreme infrared than any other linear co-
variant gauge. In Landau gauge we have a power law with small positive or negative
values of the exponent κ (dependent on the details of the vertex truncation). In other

gauges we essentially obtain the free solution with κ = −1 for p ≪ ξe2

8
and the same

power law as in the Landau gauge for momenta ξe2

8π
≪ p ≪ α. As the region p ≪ ξe2

8π
can always be gauged away, all interesting infrared physics is already contained in the
Landau gauge power law. In the DSE this scenario could be realised by a transverse
term in the vertex which is proportional to the gauge parameter ξ and leads to a term
of the order 1/p2 in the infrared after integration of the fermion DSE. A subtle can-
cellation of terms in the photon equation has to guarantee a gauge invariant photon
polarisation.
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II) Landau gauge behaves similar to other linear covariant gauges. This entails that the
solutions with small positive values for κ found in Sec. IIIA are artifacts of the trun-
cation scheme, and the true solution is a power law in the infrared with an exponent
κ = −1 for all values of the gauge parameter ξ including Landau gauge. Then the

gauge dependent scale ξe2

8π
does not distinguish two momentum regions with different

behaviour of the propagator. In the DSE this scenario requires a transverse term in
the vertex which does not explicitly contain the gauge parameter ξ and leads to a term
of the order 1/p2 in the infrared after integration. Then the dressing function A and
subsequently the photon polarisation would be gauge invariant in the infrared. The
fermion and photon DSEs would effectively decouple for momenta p ≪ α.

Both possibilities are consistent with our findings from the LKFT and only a detailed analysis
of the transverse parts of the fermion-photon vertex can decide which one is realised in QED3.

IV. NUMERICAL RESULTS

In the previous section we performed in some detail an analytical determination of the
infrared behaviour of QED3 close to and above the phase transition assuming a power law
behaviour of the fermion vector dressing function. Here we present our numerical solutions
of the unquenched system of DSEs in both the massive and the massless phase, deferring
the presentation of our results in quenched QED3 to appendix C.

A. Unquenched results and phase transition in Landau gauge

Our results for the fermion mass function M(p2), the wave function renormalisation
Zf(p

2) and the photon polarisation Π(p2) in unquenched Landau gauge are shown in Fig. 3.
On the left panel we display results obtained with the first term of the BC-vertex (1BC)
only. On the right panel we give the results obtained with the CP-vertex in the fermion DSE
and the BC construction in the photon DSE. All results in this section are obtained with the
Brown–Pennington projection ζ = 3 in the photon equation, other choices lead only to minor
modifications. As expected, in the ultraviolet all curves follow their respective asymptotic
limits, given in Eqs. (27) and (22). In the infrared we find finite, nonzero dressing functions
throughout the dynamically broken phase. Furthermore, we can clearly see two distinct
mass scales: The fermion dressing functions have a kink near p = e2 and a second kink at
p ∼ M(0). Close to the phase transition, these scales are several orders of magnitude apart,
which makes lattice simulations extremely difficult.

Above N crit
f the functions turn into power laws thus justifying the basic assumption in

our IR-analysis of Sec. III. The values of the exponents κ determined in the analytical

−〈Ψ̄Ψ〉/e4

Nf 1.0 2.0 2.8 3.0 3.1 3.3 3.4 3.5

1BC-vertex 7 · 10−4 3.5 · 10−5 2.5 · 10−8 3.9 · 10−10 1.5 · 10−11

CP-vertex 1.2 · 10−3 1.3 · 10−4 1.7 · 10−6 2.6 · 10−7 8.9 · 10−8 5.0 · 10−9 7.4 · 10−10 6.6 · 10−11

TABLE I: The chiral condensate (calculated via Eq. (73)) obtained in the 1BC-vertex model and

employing the CP-vertex in the fermion-DSE and the BC-vertex in the photon-DSE.
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FIG. 3: Shown are the variation of the mass function, the wave function renormalisation and

the polarisation with the number of flavours in Landau gauge, ξ = 0. On the left hand side we

employed the first term of the BC-vertex (1BC) in both the photon and the fermion DSEs. On the

right hand side we display the same functions calculated with the CP-vertex in the fermion DSE

and the BC-vertex in the photon DSE. The scale is set by choosing e2 = 1.
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FIG. 4: The phase transition: Analytical vs. numerical results for the scalar fermion dressing

function, B(p2 = 0), as function of Nf . Shown are results for four different truncation schemes:

The 1/Nf -expansion of Ref. [8], and three different vertex truncations of the coupled photon and

fermion DSEs. The scale is set by choosing e2 = 1.

calculation are reproduced on the 10% level by the numerical results. In the CP/BC-vertex
case we find κ = 0.0315 at Nf = 4.5, which is much closer to the value obtained with a bare
vertex, κbare = 0.0343, than to the corresponding value κ1BC = 0.0278 obtained with the
1BC-vertex piece. Furthermore, notice that for these unquenched calculations, Zf(p

2) ≥ 1,
at least for Nf ≥ 2, in contrast to our findings in the quenched case (cf appendix C).

The dynamical mass generation close to the phase transition is studied in Fig. 4. Shown
are results in four different truncation schemes: The leading order 1/Nf -expansion of Ref. [8]
employs the perturbative expression, Eq. (22), for the photon polarisation and chooses
A(p2) ≡ 1 together with a bare fermion photon vertex. This is compared to our results from
the fully unquenched system of DSEs with three different truncations for the vertex: bare,
1BC and the CP/BC combination. As can be seen from the figure, the numerical results
follow nicely the corresponding analytical results from Sec. IIIA, and are in qualitative
agreement with the findings of Ref. [15]. Our most sophisticated vertex truncation, the
CP/BC-combination, tends toward a critical value of the number of flavours of N crit

f ≈ 4.
Finally we list our results for the chiral condensate in two different truncation schemes

for a range of values of Nf in Table I. For the CP-vertex, there is no discrepancy between
the condensate as obtained from the trace of the fermion propagator

〈Ψ̄Ψ〉 = −Tr[S(0)] = −4

∫
d3q

(2π)3
B(q2)

q2A2(q2) +B2(q2)
, (73)

and that extracted from the asymptotic behaviour, Eq. (27); for the 1BC-vertex there is
about 5% to 10% difference between the two methods. Listed are the condensates calculated
from the trace of the fermion propagator. In accordance with the simple estimate given in
Ref. [54], we find small condensates well below the phase transition. For Nf = 1 and Nf = 2
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FIG. 5: Shown are our results for the dressing functions for three different values of the gauge

parameter ξ and Nf = 1. The scale is set by choosing e2 = 1.

recent lattice simulations provide upper bounds of the O(10−3)e4 and O(10−4)e4, respectively
[18, 19]. These bounds are certainly consistent with our values. Thus the combined evidence
of the DSEs and the lattice Monte-Carlo simulations indicate the presence of dynamical
chiral symmetry breaking at Nf = 1 and Nf = 2.

B. Unquenched results in general linear covariant gauges

Here we present numerical solutions for unquenched QED3 in linear covariant gauges in
the CP/BC-vertex truncation scheme. According to our previous discussion in Sec. III B and
the numerical results in the quenched approximation in Appendix C, we expect artifacts from
violating gauge invariance. The results presented in Fig. 5 for the case of Nf = 1 flavours
indicate that this is indeed the case. The photon polarisation functions clearly depend on
the gauge parameter ξ. On a quantitative level this can also be seen from the values of the
chiral condensate displayed in Table II. Induced by the feedback of the photon propagator
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FIG. 6: Shown are the variation of the mass function, the wave function renormalisation and the

polarisation with the number of flavours in Feynman gauge, ξ = 1. The scale is set by choosing

e2 = 1.

on the fermion, the variation of the condensate with the gauge parameter is much larger for
the unquenched than for the quenched theory. Only the Landau gauge results are consistent
with the bounds from lattice simulations.

As expected from the infrared analysis of Sec. III B there is no chirally symmetric self-
consistent power law solution for ξ 6= 0. In fact we did not find any self-consistent solution
in the symmetric phase for ξ 6= 0, and consequently the system stays in the chirally broken
phase at least for values of Nf as large as 7, which is the largest Nf we have investigated. For
larger values of Nf the numerical analysis becomes increasingly tedious. The corresponding
dressing functions in Feynman gauge are presented in Fig. 6. An interesting difference with
the Landau gauge solutions is that now 0 < Zf(p

2) ≤ 1 on the entire momentum range, in
contrast to the unquenched Landau gauge solutions, for which Zf(p

2) ≥ 1 on part (Nf = 1)
or all (Nf ≥ 2) of the momentum range. Also note that now there appears to be only one
scale at which the generated fermion mass function function M(p2) has a kink.
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gauge parameter −〈Ψ̄Ψ〉/(10−5e4)

Nf = 0 Nf = 1 Nf = 2 Nf = 3 Nf = 4 Nf = 5 Nf = 6

ξ = 0 333 121 13 0.026 ? 0 0

ξ = 0.5 340 165 79 39 23 15 11

ξ = 1 351 202 108 74 55 37 29

ξ = 2 356 259 189 143 107 92 77

TABLE II: The chiral condensate (calculated via Eq. (73)) obtained in the CP/BC-vertex trun-

cation in different gauges.

V. SUMMARY AND CONCLUSIONS

In this work we have investigated the chiral phase transition of QED3 in the Green’s
functions approach. Employing different ansätze for the fermion-photon vertex we have
solved the coupled set of Dyson–Schwinger equations for the fermion and photon propaga-
tors. No other approximations have been made in our numerical calculations. In addition,
the infrared behaviour of the propagators close to the phase transition and in the sym-
metric phase has been investigated employing methods that have been successfully used
previously in four-dimensional QCD [36, 37, 38, 39, 50] and QED [52]. Special care has
been taken to preserve gauge invariance as much as possible. The chosen vertex ansatz
satisfies the Ward–Green–Takahashi identity. Furthermore it has the correct properties un-
der Landau–Khalatnikov–Fradkin transformations in the special case of massless quenched
QED. Nevertheless, our results indicate that this is not enough: the resulting vacuum po-
larisation is not gauge invariant, nor is the chiral condensate. Clearly, further structure in
the transverse part of the vertex is needed to properly ensure gauge covariance.

In Landau gauge we find a self-consistent power law solution for the photon polarisation
and the vector fermion dressing function in the infrared region in the symmetric phase. With
a bare fermion-photon vertex the anomalous dimension κ is directly related to the coeffi-
cients of a well known result from the 1/Nf -expansion. We thus confirmed a longstanding
conjecture from the renormalisation group [10, 11, 40]. We would like to emphasise, how-
ever, that such a power law solution is genuinely nonperturbative in nature and cannot be
obtained to any finite order in perturbation theory or the 1/Nf -expansion. The dependence
of κ on the number of flavours is modified by nonperturbative contributions in the vertex
dressing. We find small positive values of κ for all vertex dressings considered so far, in-
dicating a vanishing propagator function A(p2) for p2 → 0. This is not what one would
expect on physical grounds [4]. It remains to be seen whether further contributions from
the transverse part of the fermion-photon vertex are capable to drive κ to negative values.

In the chirally broken phase, the power law behaviour gets modified by the (dynamically
generated) fermion mass, which effectively acts as an infrared cutoff. We have determined the
dependence of the chiral condensate and of the scalar fermion dressing function B(p2 = 0)
on the number of flavours and found an exponential decrease close to the phase transition.
If this behaviour turns out to be correct in the full theory, one can hardly hope to be able
to determine the critical number of flavours from lattice Monte-Carlo simulations. A sign
pointing in this direction is found for small Nf : The chiral condensate is very small compared
to the natural mass scale e2. Furthermore it agrees with the values recently determined on
the lattice [18, 19]. The qualitative behaviour of the B-function and the condensate does
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not depend on our choice for the vertex ansatz, though there are quantitative differences, in
particular near the critical number of flavours, N crit

f . The results with our most sophisticated

vertex suggest a critical number of flavours N crit
f ≈ 4.

In other linear covariant gauges we find a completely different picture. No indications
for a phase transition are seen in our numerical analysis. The value of the condensate
becomes heavily dependent on the gauge parameter, and for ξ 6= 0 our results exceed the
bounds set by lattice simulations. It appears as if no self-consistent power law solutions
exist in the symmetric phase. A possible explanation for this fact can be found with the
help of the Landau–Kalatnikov–Fradkin transformation laws. We find that, given a power
law solution in Landau gauge with exponent κ, the gauge transformed propagator has the

same anomalous dimension only for momenta ξe2

8π
≪ p ≪ α, whereas below this scale it

has an anomalous dimension κ = −1. Such a solution cannot be found from the Dyson–
Schwinger equations with our vertex truncation. We thus conclude that further transverse
structure in the vertex is mandatory to obtain gauge covariant solutions for the propagators
of QED3. These extra terms could allow for three possible scenarios in the symmetric phase
of QED3: (a) terms explicitly proportional to the gauge parameter ξ could lead to solutions
in accordance with the Landau–Khalatnikov–Fradkin transformation of the Landau gauge
solutions; or (b) they could invalidate all Landau gauge solutions found so far; or (c) they
could allow for solutions in the symmetric phase that are not power laws in the infrared
region. Although we do believe that the scenario (a) is most likely to be realised we cannot
exclude the other possibilities so far. A thorough investigation of all existing proposals for
the transverse structure of the fermion-photon vertex in this respect seems desirable and
will be carried out in future work.
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APPENDIX A: REGULARISATION OF THE PHOTON DSE

The aim here is to provide a formulation for the photon equation that can be used not
only in combination with the Brown–Pennington projector, ζ = 3 (cf. Eq. (14)), but with
general values of ζ . The dependence of the Landau gauge vacuum polarisation on ζ then
provides a measure of the violation of transversality in the photon equation.

To see the problems arising with ζ 6= 3 we analyse the ultraviolet behaviour of the photon
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DSE, Eq. (15). The kernels Wi are then given by

W1(p
2, q2, k2) =

ζk4

p4
+ k2

(
1− ζ

p2
−

2ζq2

p4

)
− 1 +

(1− ζ)q2

p2
+

ζq4

p4
, (A1)

W2(p
2, q2, k2) =

2(3− ζ)

p2
, (A2)

W3(p
2, q2, k2) =

ζk6

p4
− k4

(
1 + ζ

p2
+

ζq2

p4

)
+ k2

(
1 +

2(ζ − 3)q2

p2
−

ζq4

p4

)

+q2 −
(ζ + 1)q4

p2
+

ζq6

p4
, (A3)

W4(p
2, q2, k2) =

−2ζk4

p4
+ k2

(
4

p2
+

4ζq2

p4

)
− 2 +

4q2

p2
−

2ζq4

p4
, (A4)

W5(p
2, q2, k2) =

ζk4

p4
− k2

(
1 + ζ

p2
+

2ζq2

p4

)
+ 1 +

(ζ − 3)q2

p2
+

ζq4

p4
, (A5)

W6(p
2, q2, k2) =

ζk4

p4
− k2

(
3− ζ

p2
+

2ζq2

p4

)
+ 1 +

(−ζ − 1)q2

p2
+

ζq4

p4
. (A6)

Let us first concentrate on the term proportional to the kernel W1. In the ultraviolet we
can use the angular approximation A(q2) = A(k2) = 1, furthermore the momenta q2 and k2

are larger than all fermion masses. One angular integral yields a trivial factor 2π and the
integral is dominated by the part q2 > p2

ΠUV 1(p2) = −
g2Nf

(2π)2

∞∫

p

dqq2
π∫

0

dθ sin(θ)
1

q2k2
×

[
ζk4

p4
+ k2

(
1− ζ

p2
−

2ζq2

p4

)
− 1 +

(1− ζ)q2

p2
+

ζq4

p4

]
. (A7)

Now we perform the angular integrals according to Eqs. (B1) through (B5) and expand the
resulting logarithm for momenta q2 ≫ p2. To leading order we obtain

ΠUV 1(p2) = −
g2Nf

(2π)2

∞∫

p

dq

{
2(3− ζ)

3p2
+

(−10− 2ζ)

15q2
+O(p2/q4)

}
, (A8)

which is convergent iff ζ = 3 but contains a linear divergence for all other values. Treating
all other terms in the fermion loop in the same way we arrive at the expression

ΠUV (p2) = −
g2Nf

(2π)2

∞∫

p

dq

{
2(3− ζ)

3p2
+

(−10− 2ζ)

15q2
+ · · ·+B(q2)2

(
2(3− ζ)

p2q2
+

2(3− ζ)

3q4

)

+
A′(q2)

2

[
−
4q2(3− ζ)

3p2
+

5− ζ

15
+ · · ·+B(q2)2

(
4(3− ζ)

3p2
−

5 + 3ζ

15q2
+ · · ·

)]

+ B′(q2)A(q2)B(q2)

[
−
8(3 − ζ)

3p2
+

10 + 6ζ

15q2
+ · · ·

]}
. (A9)
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which contains linear divergences proportional to (3 − ζ) at various places. In order to
eliminate these terms we subtract appropriate expressions from the kernels Wi given in
Eqs. (16) through (21). This results in the modified kernels

W̃1(p
2, q2, k2) = W1(p

2, q2, k2)−
2k2(3− ζ)

3p2
, (A10)

W̃2(p
2, q2, k2) = 0 , (A11)

W̃3(p
2, q2, k2) = W3(p

2, q2, k2) +
8q2k2(3− ζ)

3p2
, (A12)

W̃4(p
2, q2, k2) = W4(p

2, q2, k2)−
8k2(3− ζ)

3p2
, (A13)

W̃5(p
2, q2, k2) = W5(p

2, q2, k2) +
4k2(3− ζ)

3p2
, (A14)

W̃6(p
2, q2, k2) = W6(p

2, q2, k2) +
4k2(3− ζ)

3p2
. (A15)

Based on our analytical infrared calculus as well as on our numerical calculations we inves-
tigated the dependence of the solutions on the projection parameter ζ and found very small
effects not affecting any of our conclusions in the main body of this work.

APPENDIX B: ANGULAR AND RADIAL INTEGRALS

In d = 3 dimensions the following angular integrals are needed for the UV-analysis of the
photon equation

π∫

0

dθ
sin(θ)

k4
=

2

(q2 − p2)2
, (B1)

π∫

0

dθ
sin(θ)

k2
=

1

pq
ln

(
p+ q

|p− q|

)
, (B2)

π∫

0

dθ sin(θ) = 2 , (B3)

π∫

0

dθ sin(θ) k2 = 2(p2 + q2) , (B4)

π∫

0

dθ sin(θ) k4 = 2p4 + 2q4 +
20

3
p2q2 , (B5)

where k2 = (q − p)2 = p2 + q2 − 2pq cos(θ). For the IR-analysis of the coupled system we
need the following integrals

∫
ddq

1

(q2)a(k2)b
= πd−d/2(p2)d/2−a−bΓ(d/2− a)Γ(d/2− b)Γ(a + b− d/2)

Γ(a)Γ(b)Γ(d− a− b)
, (B6)
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and for the Fourier-transforms necessary for the LKFT we need

π∫

0

dθ sin θ cos θ e±i px cos θ = ∓2i

(
cos(px)

px
−

sin(px)

(px)2

)
, (B7)

∞∫

0

dx xb sin(ax) =
Γ(1 + b)

a1+b
sin
[
(1 + b)

π

2

]
, 0 < |b+ 1| < 1 , [3.761(4)] (B8)

∞∫

0

dx xb cos(ax) =
Γ(1 + b)

a1+b
cos
[
(1 + b)

π

2

]
, 0 < (b+ 1) < 1 , [3.761(9)](B9)

∞∫

0

dx xb sin(ax) e−cx =
Γ(1 + b)

(a2 + c2)(1+b)/2
sin
[
(1 + b) arctan

(a
c

)]
, b > −2, c > 0 ,

[3.944(5)] (B10)
∞∫

0

dx xb cos(ax) e−cx =
Γ(1 + b)

(a2 + c2)(1+b)/2
cos
[
(1 + b) arctan

(a
c

)]
, b > −1, c > 0, ,

[3.944(6)] (B11)

where the numbers in square brackets refer to the corresponding equations in Ref. [55].

APPENDIX C: NUMERICAL RESULTS IN QUENCHED APPROXIMATION

QED3 in quenched approximation employing the BC-vertex in the fermion and photon
equation has been investigated in detail in Refs. [12, 49] (for recent work see Ref. [35]
and references therein). In the chirally broken phase, the gauge dependence of the photon
polarisation as well as the chiral condensate was found to be rather weak for the condensate
and uncomfortably large for the photon polarisation. For the condensate a discrepancy
between the value extracted from the asymptotic form of the scalar fermion self-energy, see
Eq. (27), and the value obtained from the trace of the fermion propagator, see Eq. (73), has
been found. All we have to add to these investigations is an answer to this last problem.
As can be seen from Table III, adding the CP term to the BC-vertex in the fermion DSE
removes this discrepancy and slightly reduces the gauge dependence of the condensate.

(−〈Ψ̄Ψ〉)/(10−3e4) ξ = 0 ξ = 0.5 ξ = 1

asympt. -Tr[S(0)] asympt. -Tr[S(0)] asympt. -Tr[S(0)]

BC-vertex 3.34 3.24 3.54 3.25 3.67 3.26

CP-vertex 3.29 3.29 3.34 3.35 3.46 3.46

TABLE III: The chiral condensate extracted from the asymptotics of the fermion mass function,

see Eq. (27), and obtained by taking the trace of the propagator, for different values of the gauge

parameter ξ, all in the quenched (Nf = 0) approximation. The units are 10−3e4.
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FIG. 7: Here we display the fermion mass function, M(p2), and the wave function renormalisation,

Zf (p
2) = 1/A(p2) in quenched approximation for three different values of the gauge parameter ξ.

The scale is set by choosing e2 = 1.
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FIG. 8: Here we display the photon polarisation Π(p2) as calculated from the photon DSE using

Nf = 1 and the quenched fermion propagator functions without back-coupling for three different

values of the gauge parameter ξ. The scale is set by choosing e2 = 1.

The corresponding numerical solutions are displayed in Figs. 7 and 8. For the fermion
propagator, no qualitative difference between Landau gauge and gauges with non-vanishing
gauge parameter is found. Notice that 0 < Zf(p

2) ≤ 1 on the entire momentum range, as
one would expect from quenched perturbative theory, eq.(23). For the photon polarisation
we find sizable violations of gauge invariance employing the BC-vertex in accordance with
Ref. [49]. Adding the CP term also in the photon DSE does not help in this respect and
furthermore introduces spurious divergences.
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