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Abstract

The Lagrange mesh method is a very accurate and simple procedure to compute eigenvalues and

eigenfunctions of nonrelativistic and semirelativistic Hamiltonians. We show here that it can be

used successfully to solve the equations of both the relativistic flux tube model and the rotating
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I. INTRODUCTION

The Lagrange mesh method is a very accurate and simple procedure to compute eigenval-

ues and eigenfunctions of a two-body Schrödinger equation [1, 2, 3]. The trial eigenstates are

developed in a basis of well-chosen functions, the Lagrange functions, and the Hamiltonian

matrix elements are obtained with a Gauss quadrature. This method can be extended to

treat very accurately three-body problems, in nuclear or atomic physics [4]. Recently, it has

also been successfully applied to a two-body spinless Salpeter equation [5]. The idea of this

work is to adapt the Lagrange mesh method to solve the complicated equations of both the

relativistic flux tube and the rotating string models.

The relativistic flux tube (RFT) is a phenomenological model describing the mesons.

It relies on the assumption that the quark and the antiquark are connected by a straight

color flux tube carrying both energy and momentum. The quarks are considered as spinless

particles in the original version of the model [6, 7, 8]. The RFT reproduces the linear

Regge trajectories, and reduces to the usual Schrödinger equation with a linear confinement

potential in the nonrelativistic limit. We will consider here the particular case of mesons

composed of two equal quark masses. The equations of motion of the symmetric RFT model

are given by two coupled nonlinear equations: one defining the Hamiltonian and the other

defining the orbital angular momentum. These equations depend on a quark transverse

velocity operator and their solutions will be obtained by the use of an iterative procedure

similar to the one proposed in Ref. [8].

The rotating string model (RS) also describes the mesons. It is derived from the QCD

Lagrangian and is characterized by the fact that it contains auxiliary fields. The equations

of motion for this model are similar to the equations of motion of the RFT model [9, 10].

In the symmetric case, it has been showed that the RS is classically equivalent to the RFT

if the auxiliary fields are correctly eliminated [11]. This result, extended recently to the

asymmetric case [12], provides a clear physical interpretation for the characteristic variables

of the RS model.

The Lagrange mesh method is explained in Sec. II. In Sec. III, the relativistic flux tube

and the rotating string models are described. Then, it is shown, in Sec. IV, how the Lagrange

mesh method can be applied to solve the equations of motion of these models. After some

remarks, given in Sec. V, about the numerical and physical parameters, the results are
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presented in Sec. VI and the reliability of our numerical method is checked. Finally, some

concluding remarks are given in Sec. VII.

II. LAGRANGE MESH METHOD

A Lagrange mesh is formed on N mesh points xi associated with an orthonormal set of

indefinitely derivable functions fj(x) [1, 2, 3]. A Lagrange function fj(x) vanishes at all

mesh points but one; it satisfies the Lagrange conditions

fj(xi) = λ
−1/2
i δij . (1)

The mesh points xi, the zeros of a particular polynomial, and the λi are connected with a

gauss quadrature formula
∫ b

a

g(x) dx ≈
N
∑

k=1

λk g(xk), (2)

used to compute all the integrals over the interval [a, b].

As we consider only radial equations, this interval is [0,∞[, leading to a Gauss-Laguerre

quadrature. The Gauss formula (2) is exact when g(x) is a polynomial of degree 2N − 1

at most, multiplied by exp(−x). The Lagrange-Laguerre mesh is then based on the zeros

of the Laguerre polynomial LN(x) of degree N [1]. An explicit form can be derived for the

corresponding regularized Lagrange functions

fi(x) = (−1)ix
−1/2
i x(x− xi)

−1LN (x) e
−x/2. (3)

To show how these elements can be applied to a physical problem, let us consider a

Hamiltonian H = T (~p 2)+V (r), where T (~p 2) is the kinetic term and V (r) a radial potential

(h̄ = c = 1). The calculations are performed with trial states |ψ〉 given by

|ψ〉 =
N
∑

k=1

Ck |fk〉 , (4)

where

〈~r |fk〉 =
fk(r/h)√

hr
Yℓm(r̂). (5)

ℓ is the orbital angular momentum quantum number and the coefficients Ck are linear

variational parameters. h is the scale parameter chosen to adjust the mesh to the domain

of physical interest. We define r = h x, with x a dimensionless variable.
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We have now to compute the Hamiltonian matrix elements. Using the properties of the

Lagrange functions and the Gauss quadrature (2), the potential matrix is diagonal. Its

elements are

〈fi|V (r)|fj〉 ≈ V (hxi)δij , (6)

and only involve the value of the potential at the mesh points. As the matrix elements are

computed only approximately, the variational character of the method cannot be guaranteed.

But the accuracy of the method is preserved [13].

The kinetic energy operator is only a function of ~p 2. Let us define the corresponding

matrix,

P 2
ij =

〈

fi|~p 2|fj
〉

. (7)

It is shown in Ref. [3] that, using the Gauss quadrature and the properties of the Lagrange

functions, one obtains

P 2
ij =

1

h2

(

p 2
r ij +

ℓ(ℓ+ 1)

x2i
δij

)

, (8)

where

p2r ij =







(−1)i−j(xixj)
−1/2(xi + xj)(xi − xj)

−2 (i 6= j),

(12x2i )
−1[4 + (4N + 2)xi − x2i ] (i = j).

(9)

Now, the kinetic energy matrix T (P 2) can be computed with the following method [5]:

1. Diagonalization of the matrix P 2. If D2 is the corresponding diagonal matrix, we have

P 2 = SD2S−1, (10)

where S is the transformation matrix.

2. Computation of T (D2) by taking the function T of all diagonal elements of D2.

3. Determination of the matrix elements Tij = 〈fi|T (P 2)|fj〉 in the Lagrange basis by

using the transformation matrix S

T (P 2) = ST (D2)S−1. (11)

This procedure can easily be generalized to the case of an arbitrary function F of any given

matrix M , in order to compute F (M) (provided the calculation is relevant). Note that such

a calculation is not exact because the number of Lagrange functions is finite. However, it

has already given good results in the semirelativistic case, where T (~p 2) =
√

~p 2 +m2 [5].
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The eigenvalue equation reduces to a system of N mesh equations

N
∑

j=1

[Tij + V (hxi)δij −Eδij ]Cj = 0 with Cj =
√

hλju(hxj), (12)

where u(r) is the regularized radial wave function. The coefficients Cj provide the values

of the radial wave function at mesh points. But contrary to some other mesh methods, the

wave function is also known everywhere thanks to Eq. (4).

III. THE MODELS

A. The relativistic flux tube

In the original RFT model [6], the meson is composed by two spinless particles - a quark

and an antiquark - which move being attached with a flux tube. This tube is assumed to

be linear with a uniform constant energy density a and carries angular momentum. A tube

element has only a transverse velocity. The system rotates in a plane with a constant angular

velocity ω around the center of mass, assumed to be stationary. If ri is the distance between

the ith quark and the center of mass, and if we define ṙi = dri/dt the radial velocity oh the

ith quark, then the quark speed is given by v2i = ṙ2i + v2i⊥, where vi⊥ = ωri. We also assume

that the energy density of the extremities of the flux tube is modified of a negative constant

C/2, in order to take into account possible boundary effects due to the contact between the

tube and the quark. Further, we consider that the quarks can interact via V (r) taking into

account a short-range potential (a one-gluon-exchange process, for instance). These two

extra terms are discussed in Ref. [8]. The Lagrangian L of the meson is given by

L = L1 + L2 − V (r), (13)

Li = −miγ
−1
i − a

∫ ri

0

dr
′

i γ
′ −1
i⊥ − C

2
γ−1
i⊥ , (14)

where mi is the constituent mass of the ith quark, γi = (1− v2i )
−1/2 and γi⊥ = (1− v2i⊥)

−1/2.

In the following, we will only consider the symmetric case, m1 = m2 ≡ m. Then, r1 = r2,

r = 2r1, v1⊥ = v2⊥ = v⊥. The corresponding quantized equations of the system are [6, 8]

2
√

ℓ(ℓ+ 1)

r
= {v⊥γ⊥,Wr}+ a{r, f(v⊥)}+ Cv⊥γ⊥, (15)

H = {γ⊥,Wr}+
a

2

{

r,
arcsin v⊥

v⊥

}

+ Cγ⊥ + V (r), (16)
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where ℓ is the orbital angular momentum, {A,B} = AB + BA, 4x2f(x) = arcsin x −
x
√
1− x2, Wr =

√

p2r +m2, and p2r ≡ −1
r

∂2

∂r2
r. The operator v⊥ commutes neither with

r nor with pr operators. These equations reduce to a spinless Salpeter equation with the

potential ar+ V (r)+C when ℓ = 0, and to a Schrödinger equation with the same potential

in the nonrelativistic limit. The general case (m1 6= m2) is detailed in Ref. [7].

B. The rotating string

Starting from the QCD Lagrangian and writing the gauge invariant qq̄ Green function

for confined spinless quarks in the Feynman- Schwinger representation, one can arrive at the

Nambu-Goto Lagrangian, which describes two quarks with masses m1 and m2, attached by

a string of energy density a. With the straight line ansatz and the introduction of auxiliary

fields (einbein fields) to get rid of the square roots appearing in this Lagrangian, one can

obtain the Hamiltonian

H =
1

2

[

p2r +m2
1

µ1
+
p2r +m2

2

µ2
+ µ1 + µ2 + a2r2

∫ 1

0

dβ

ν
+

∫ 1

0

dβν +
L2

a3r2

]

+ V (r), (17)

where

a3 = µ1(1− ζ)2 + µ2ζ
2 +

∫ 1

0

dβ (β − ζ)2 ν. (18)

The potential V (r) takes into account interactions not simulated by the rotating string. We

do not consider here a contribution coming from a constant potential C, as in the RFTmodel.

L =
√

ℓ(ℓ+ 1) and ζ defines the position Rµ of the center of mass: Rµ = ζx1µ + (1− ζ)x2µ,

where xiµ is the coordinate of the ith quark. The auxiliary fields µ1 and µ2 can be seen as

effective masses of the quarks, while the auxiliary field ν can be interpreted as an effective

energy density for the string.

We are interested here in the resolution of the symmetrical case. When m1 = m2 = m,

then ζ = 1/2 and µ1 = µ2 = µ. Defining

y =
L

2a3r
, (19)

one can eliminate ν by a variation of the Hamiltonian. This extremal field ν0 reads

ν0 =
ar

√

1− 4y2(β − 1/2)2
. (20)
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By replacing ν by ν0 in the Hamiltonian (17) and the relation (19), we obtain the following

equations for the symmetrical rotating string [10]

√

ℓ(ℓ+ 1)

ar2
=

µy

ar
+

1

4y2

(

arcsin y − y
√

1− y2
)

, (21)

H =
p2r +m2

µ
+ µ+

ar

y
arcsin y + µy2 + V (r). (22)

It has been shown in Ref. [11] that the extremal value of µ giving δH/δµ = 0 is

µ0 =

√

p2r +m2

1− y2
. (23)

Moreover, the replacement of µ by µ0 in Eqs. (21) and (22) gives exactly the symmetrical

RFT equations (15) and (16), with y equal to v⊥. The RS model with all its auxiliary fields

eliminated is thus equivalent to the RFT model in the classical symmetrical case. This is

also true when (m1 6= m2), as shown in Ref. [12].

Here, we use the RS model with the auxiliary field µ not eliminated, as in Refs. [9, 10]. In

these papers, the parameter µ is considered as a real parameter and not as an operator. But,

to avoid eventual singularities in the value of this auxiliary field when y is classically close

to 1, we introduce explicitly the dependance of µ in y, through the following substitution

µ→ ρ
√

1− y2
, (24)

where ρ is a real number. Such an expression is inspired by the result (23). The quantized

equations of the symmetrical rotating string are thus

√

ℓ(ℓ+ 1)

r
= ρ

y
√

1− y2
+
a

2
{r, f(y)} , (25)

H =
1

2ρ

{

p2r +m2,
√

1− y2
}

+ ρ
1 + y2
√

1− y2
+
a

2

{

r,
arcsin y

y

}

+ V (r), (26)

where 4x2f(x) = arcsin x− x
√
1− x2 like for the RFT model.

A particular solution depends on the value of this parameter ρ. Following Refs. [9, 10], the

physical value of ρ minimizes the mass of the state. The mean value 〈µ〉 = 〈ρ/
√

1− y2〉 can
be considered as a constituent mass for the quark, depending on the state. These equations

reduce to a Schrödinger-like equation with the potential ar + V (r) when ℓ = 0 [11], and to

a true Schrödinger equation with the same potential in the nonrelativistic limit.
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IV. RESOLUTION

A. The relativistic flux tube

The main purpose of our work is the resolution of the symmetrical flux tube equations

(15) and (16) using the Lagrange mesh method. To do this, we have to compute the matrix

elements of the different operators in the Lagrange basis. As we consider a radial problem,

we will use a Gauss-Laguerre quadrature. So, the corresponding Lagrange functions will be

given by Eq. (3). Let us define the different matrix elements we need to know

Aij =

〈

fi

∣

∣

∣

∣

2
√

ℓ(ℓ+1)

r

∣

∣

∣

∣

fj

〉

, Bij = 〈fi|r|fj〉 , Dij = 〈fi|Wr|fj〉 ,

Fij =

〈

fi

∣

∣

∣

∣

arcsin v⊥
4v2

⊥

−
√

1−v2
⊥

4v⊥

∣

∣

∣

∣

fj

〉

, Gij = 〈fi|v⊥γ⊥|fj〉 , Sij =
〈

fi

∣

∣

∣

arcsin v⊥
v⊥

∣

∣

∣
fj

〉

,

Γij = 〈fi|γ⊥|fj〉 , Vij = 〈fi|V (r)|fj〉 .

(27)

With these notations, Eqs. (15) and (16) read

A = {G,D}+ a{B,F}+ CG, (28)

H = {Γ, D}+ a

2
{B, S}+ CΓ + V, (29)

where we have used the approximative closure relation,

N
∑

k=1

|fi〉〈fj| ≈ 11, (30)

to compute a product of two matrices.

The matrix elements Aij, Bij , and Vij are easy to compute, thanks to Eq. (6). Moreover,

Eq. (9) gives us an analytical expression for p2r ij , from which we can deduce the matrix

elements Dij by using the procedure described in Sec. II. The same procedure will allow us to

compute Fij , Gij, Sij and Γij once the matrix elements of v⊥ are known. The determination

of these matrix elements can be achieved by an iterative process, described here:

1. Equation (28) can be rewritten as

G =
1

2
{P,D−1} − C

2
{G,D−1} − 1

2
DGD−1 − 1

2
D−1GD, (31)

where

P = A− a{B,F}. (32)
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This equation is symmetrized to ensure that G is hermitian. It is worth noting that

P = P (G) since F = F (G). Starting from an known matrix Gk at the kth step, P k

can be computed and we obtain a new matrix Gk′ with Eq. (31).

2. This iterative process would diverge if we choose Gk+1 = Gk′. So, we introduce a new

parameter ǫ < 1 and define Gk+1 = ǫGk′ + (1− ǫ)Gk.

3. At each step k, the N eigenvalues
{

v
(k)
⊥ i

}

of the operator v⊥ are computed. The

iteration procedure ends when

1

N

N
∑

i=1

∣

∣

∣

∣

∣

v
(k+1)
⊥ i − v

(k)
⊥ i

v
(k+1)
⊥ i

∣

∣

∣

∣

∣

< η, (33)

where η is a fixed tolerance.

Once we have reached the convergence for G, we are able to compute S and Γ, which are

now seen as functions of the matrix G rather than the matrix elements of the operator v⊥.

The Hamiltonian can then be computed and diagonalized.

Actually, the final matrix G is practically independent of the initial one G0. However,

the faster way to reach the convergence is to develop Eq. (15) at the first order in v⊥ and

to choose the matrix G given by this development. At the first order, v⊥γ⊥ ≈ v⊥, and

G0 ≈
√

ℓ(ℓ+ 1)

(

1

2
{B,D}+ aB2

6
+
C

2
11

)−1

. (34)

Let us note that a relevant starting matrix is obtained even if m = 0.

B. Rotating string

1. Lagrange mesh method

The resolution of the RS with the Lagrange mesh method is similar to that of the RFT.

Indeed, using the previous definitions (27) with y instead of v⊥, and defining

Qij =
〈

fi

∣

∣

∣

√

1− y2
∣

∣

∣
fj

〉

, Yij =

〈

fi

∣

∣

∣

∣

1+y2√
1−y2

∣

∣

∣

∣

fj

〉

, Eij = 〈fi |p2r +m2| fj〉 , (35)

Eqs. (25) and (26) are given by

G =
1

2ρ
(A− a{B,F}) , (36)

H =
1

2ρ
{E,Q}+ ρY +

a

2
{B, S}+ V. (37)
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Like for the RFT, we need to compute the matrix of the operator y to completely know the

Hamiltonian. We will do this by an iterative process on G given directly by Eq. (36), with

an initial value, obtained after a first order development, given by

G0 =
√

ℓ(ℓ+ 1)
(

ρB +
a

6
B2
)−1

. (38)

The last step in the resolution of the RS equations is always to find the value of the real

number ρ realizing the minimum mass of a particular state. This extremal value is different

for each state.

2. WKB method

Contrary to the case of the RFT, the operator p2r appears only in the equation defining

the Hamiltonian for the RS. This makes possible a solution of Eqs. (25) and (26) by a WKB

method.

First, let us examine the case ℓ = 0. The RS equations reduce then to a spinless Salpeter

equation of the form (ρ = µ since y = 0)

H =
~p 2 +m2

ρ
+ ρ+ ar + V (r), (39)

where

~p 2 = p2r +
L2

r2
. (40)

In the WKB method, L = ℓ+ 1/2. Consequently L2 = 1/4 here, and we obtain

p2r = ρM − ρ2 −m2 − ρar − 1

4r2
− ρV (r), (41)

where M is the meson mass. We have then to compute r+ and r− the two physical zeros of

the classical quantity p2r . Finally, the resolution of the Bohr-Sommerfeld condition

∫ r+

r−

pr dr = π

(

n+
1

2

)

, (42)

followed by a minimization ofM with respect to the parameter ρ gives the mass of the state

whose quantum numbers are ℓ and n.
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When ℓ 6= 0, the WKB formulation of the classical RS equations (21) and (22), with the

substitution (24), reads

ℓ+ 1
2

ar2
=

ρy

ar
√

1− y2
+

1

4y2

(

arcsin y − y
√

1− y2
)

, (43)

M =
1

ρ

(

p2r +m2
)

√

1− y2 + ρ
1 + y2
√

1− y2
+
ar

y
arcsin y + V (r). (44)

The first one implicitly defines a function y = ỹ(r, ℓ, ρ), which can be numerically computed.

We can then formally write

p2r =
ρ

√

1− ỹ2
(M − V (r)− ar

ỹ
arcsin ỹ)− ρ2

1 + ỹ2

1− ỹ2
−m2. (45)

The rest of the resolution is now identical to the previous case ℓ = 0.

V. SET OF PARAMETERS

A. Physical parameters

In this paper, we are mainly interested in the capacity of our method to give accurate

solutions of the coupled equations for both RFT and RS models. But, in order to com-

pare our results with previous studies and to use our method with physical parameters in

interesting ranges, we will use the values of physical quantities from the models Ia and Ic

developed in Ref. [8] (see Table I). Both models possess a coulomb term with three values

of the strength, depending on the quark content of the meson: κhl for heavy-light system,

κhh for heavy-heavy system, and κll for light-light system (light quark: u, d, s; heavy quark:

c, b).

B. The scale parameter

The Lagrange mesh method provides us a direct picture of the wave function at the mesh

points. The best results are thus obtained when the mesh covers the main part of the wave

function and the last mesh point is located in the asymptotic tail. That is why we are

interested in an adequate determination of the scale parameter h. Since the method is not

variational, no extremum of the mass can be expected for a defined value of h. A good value

for this quantity is given by h = ra/xN , where xN is Nth zero of the Laguerre polynomial
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(the last point of the mesh), and ra represents a distance for which the asymptotic tail of

the wave function is well defined. If xN is well known, ra is not. We show here how such a

quantity can be estimated.

A typical evolution of the computed masses for different values of h is presented in Fig. 1.

The existence of plateaus shows that the method does not require the knowledge of precise

values of the scale parameter. A simple estimation will be sufficient, even to obtain accurate

results.

For given quantum numbers, a system of two massless quarks is expected to have the

maximal spatial extension, and so it could give an upper bound of the parameter h. First,

we analyze the problem for the RS equations when ℓ = 0. These equations reduce then to

a spinless Salpeter Hamiltonian, which reads

HA =
~p 2

ρ
+ ρ+ ar. (46)

We fix V (r) = 0, since the asymptotic behavior is controlled by the confinement. The

solutions have the following analytical forms (n = 0, 1, . . . ) [11]

En0(ρ) =

(

a2

ρ

)1/3

(−sn) + ρ, (47)

un0(r) = (ρa)1/6
Ai
(

(ρa)1/3r + sn
)

|Ai′(sn)|
, (48)

where Ai(s) is the Airy function and sn its nth zero, given by the approximate formula [14]

sn ≈ −
[

3π

2
(n+

3

4
)

]2/3

. (49)

Replacing ρ by its extremal value ρn0,

ρn0 =
√
a

(−sn
3

)3/4

, (50)

we have

un0(r)÷Ai

(

√
a

(−sn
3

)1/4

r + sn

)

. (51)

When s ≈ 5, Ai(s) is about 0.02% of its maximal value. Consequently, a good estimation

of ra is given by
√
a

(−sn
3

)1/4

ra + sn = 5. (52)
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At this point, we are able to compute a “physical” value for h when ℓ = 0. The extension

of the wave function increases with the angular momentum. The simplest way to simulate

such an increase is to compute ra with the relation

√
a

(−sn+ℓ

3

)1/4

ra + sn+ℓ = 5. (53)

This crude estimation of h is satisfactory because it is always located in the plateau. More-

over, we will use it in both RFT and RS methods, because of the classical equivalence

between these two theories.

C. Numerical parameters

The accuracy of the solutions depends mainly on two parameters: the number N of mesh

points (basis states) and the value of the tolerance η on the eigenvalues of the operator v⊥.

For instance, a relative error on meson masses around 10−5 can be reached with N ≥ 30 and

η ≤ 10−6. The accuracy can be increased by using greater values of N and smaller values

of η.

If the value of the mixing parameters ǫ is too high, the iterative process diverges. The

best value of ǫ is chosen as the largest value for which the process converges. It depends

on the case considered, as shown in Table II. It clearly appears that the iterative process

does not converge easily with the RFT equations, especially when the quarks are massless.

About 700 iterations are needed in this case, and 400 when m/
√
a >∼ 1. However, the RS

solutions converge faster, and one can reach the convergence after about only 40 iterations.

VI. RESULTS

A. Relativistic flux tube

We have computed with the Lagrange mesh method the solutions of the RFT equations

for models Ia and Ic from Ref. [8] (see Table I). All the masses are computed with N = 30,

η = 10−6, the scale parameter h is estimated thanks to Eq. (53), and the parameter ǫ

is taken from Table II. Meson masses are presented in Table III with the corresponding

ones computed with the method developed in Ref. [8], relying on a harmonic oscillator
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basis. Experimental data are given in order to show that the parameters used are physically

relevant.

The results of both methods are compatible. Nevertheless, the masses computed with the

Lagrange mesh method are always smaller than the masses computed with the harmonic

oscillator method, although the Lagrange mesh method is not variational. Our method

provides thus a better convergence of the results. The improvement is especially important

for light quark masses. Differences between the two methods vanish when the quark mass

increases.

It is worth noting that the masses computed with method of Ref. [8] are strongly de-

pendent of the values chosen for the oscillator length. So a supplementary minimization on

this parameter, for each state, is necessary to obtain the optimal value of a mass. This is

not necessary with the Lagrange mesh method since it is nearly independent of the scale

parameter (see Fig. 1).

The small differences between the masses obtained with the Lagrange mesh method and

the harmonic oscillator method are a strong indication that our method works well. But we

want another test. It will be given by the study of the Rotating string model.

B. Rotating string

Solutions of the RS equations computed with the Lagrange mesh method (numerical

parameters as in Sec. VIA) and the WKB approximation are presented in Table IV. The

masses are obtained using the set Ia of parameters (see Table I), for a pure string without

coulomb-like potential.

The two methods to solve the RS equations lead to very close results. This shows that

the semiclassical approximation is efficient in this case, but also that the Lagrange mesh

method works correctly. Fig. 2 shows the existence of a minimal mass for a particular value

ρ0 of the parameter ρ in the RS equations. In our calculations, ρ0 has been determined to

the nearest 10 MeV, and is the same in the two methods with that precision. An accuracy

below 1 MeV is then reached for the masses.
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C. Comparison between RFT and RS

If the RS model is classically equivalent to the RFT model once the auxiliary fields are

correctly eliminated, the two models should not give the same results when a real parameter

ρ is kept in the RS equations. In a previous study [11], some results have been obtained

about the equivalence between a spinless Salpeter Hamiltonian HSS and a corresponding

Hamiltonian with auxiliary field HA: the eigenvalues of HA are upper bound of the eigen-

values of HSS [15] with relative differences around 7% for the lowest states. We know that

the RFT and RS equations reduce respectively to eigenvalues equations for Hamiltonians

HSS and HA for a vanishing angular momentum. It should be interesting to see if there is

the same kind of relation between the masses for the RFT and RS models when ℓ 6= 0.

Another result can be expected: once we know an eigenfunction |ψRS〉 of the RS Hamilto-

nian for the extremal value ρ0, we are able to compute the effective mass µ0 = ρ0〈1/
√

1− y2 〉
for this state. This quantity should be approximately equal to the mean value µRFT =
〈

√

(p2r +m2)/(1− v2⊥)
〉

for the corresponding state |ψRFT 〉, due to the equivalence between

the two models via Eq. (23).

Our results are given in Table V. The masses for both RFT and RS models are computed

with the Lagrange mesh method for the same parameters as in Sec. VIB. The RS masses

are always upper bound of the RFT masses with relative differences around by 7%, as in

the limiting case of vanishing angular momentum. We also see that µRFT ≈ µ0 as expected.

We can finally notice that the results of the two models are closer and closer when the mass

of the constituent quark increases, because the RFT and the RS model posses and common

nonrelativistic limit: the Schrödinger equation with a linear potential.

VII. CONCLUSIONS

We have shown in this paper that the Lagrange mesh method solves successfully the

equations of the relativistic flux tube model in the symmetrical case. The masses obtained

are in good agreement with a previous resolution in a harmonic oscillator basis [8]. But the

Lagrange mesh method is more efficient, due to its independence of the scale parameter used

to fit the size of the trial states. Moreover, a better convergence is reached. This proves the

validity of our method.
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We have also solved the equations of the symmetrical rotating string model with the

Lagrange mesh method and with the WKB approximation. The masses computed with

these two procedures are very close, showing that the Lagrange mesh method correctly

works, and that the WKB approximation is efficient here. If we compare the masses given

by the relativistic flux tube and the rotating string models, we find relative differences around

7% for the lowest states, as expected because the two models are classically equivalent. This

point is a last confirmation of the relevance of the Lagrange mesh method to solve the

relativistic flux tube equations.
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TABLE I: Two sets of physical parameters for the RFT and the RS models, from Ref. [8] (n = u

or d).

Ia Ic

mn (GeV) 0 0.233

ms (GeV) 0.317 0.416

mc (GeV) 1.456 1.658

a (GeV2) 0.151 0.169

C (GeV) 0 −2mn

κll 1.016 0.539

κhl 0.698 0.467

κhh 0.544 0.500

TABLE II: Approximate optimal values for the parameter ǫ in different cases.

ǫ

m/
√
a RFT RS

≈ 0 0.005 0.1

>∼ 1 0.01 0.1
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TABLE III: Meson masses for the RFT model, with two sets Ia and Ic of parameters from Ref. [8],

computed using the Lagrange mesh method (Lag.) and a previous technique relying on an harmonic

oscillator basis (HO) [8]. The experimental masses (Exp.) are given, without error, for information.

Mass (GeV)

(n+ 1)2S+1LJ Exp. HO (Ia) Lag.(Ia) HO (Ic) Lag. (Ic)

nn̄ 13S1 0.771 0.781 0.762 0.774 0.773

13P2 1.318 1.310 1.300 1.320 1.319

13D3 1.691 1.654 1.643 1.689 1.676

23S1 1.465 1.450 1.415 1.427 1.424

23P2 1.810 1.841 1.832 1.797 1.794

ss̄ 13S1 1.019 0.988 0.968 1.010 1.010

13P2 1.525 1.540 1.534 1.517 1.515

13D1 1.854 1.881 1.877 1.867 1.865

23S1 1.680 1.671 1.641 1.644 1.641

23P2 2.011 2.053 2.047 1.994 1.991

cc̄ 13S1 3.097 3.131 3.130 3.116 3.115

13P2 3.556 3.528 3.527 3.542 3.542

13D3 3.770 3.788 3.788 3.820 3.820

23S1 3.686 3.666 3.663 3.664 3.661

23D1 4.159 4.128 4.128 4.165 4.164
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TABLE IV: Meson masses for the RS model computed with the Lagrange mesh method and the

WKB approximation. The interaction Ia from Ref. [8] is used, but without the Coulomb potential.

The extremal value ρ0, to the nearest 10 MeV, of the parameter ρ is given in both cases.

Lagrange mesh WKB

Mass (GeV) ρ0 (GeV) Mass (GeV) ρ0 (GeV)

nn̄ 13S1 1.289 0.32 1.294 0.32

13P2 1.581 0.16 1.589 0.16

23S1 1.960 0.49 1.963 0.49

cc̄ 13S1 3.492 1.55 3.493 1.55

13P2 3.731 1.52 3.730 1.51

23S1 3.916 1.65 3.917 1.65
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TABLE V: Meson masses computed with the Lagrange mesh method within the RFT and the RS

models. The interaction Ia from Ref. [8] is used, but without the Coulomb potential. The values

of the effective masses µ0 and µRFT are given.

Relativistic flux tube Rotating string

Mass (GeV) µRFT (GeV) Mass (GeV) µ0 (GeV)

nn̄ 13S1 1.228 0.308 1.289 0.32

13P2 1.543 0.323 1.581 0.29

13D3 1.825 0.342 1.860 0.32

23S1 1.832 0.460 1.960 0.49

23P2 2.071 0.498 2.155 0.49

ss̄ 13S1 1.507 0.486 1.536 0.49

13P2 1.809 0.523 1.838 0.52

13D3 2.078 0.593 2.103 0.56

23S1 2.070 0.612 2.142 0.62

23P2 2.294 0.647 2.343 0.64

cc̄ 13S1 3.486 1.555 3.492 1.55

13P2 3.723 1.594 3.731 1.58

13D3 3.931 1.625 3.937 1.62

23S1 3.902 1.631 3.916 1.65

23P2 4.081 1.661 4.094 1.66

20



FIG. 1: Typical evolution of meson masses for the RFT model with the scale parameter h: 1S, 1P

and 2S states for the isospin 1 mesons, computed with the parameters Ia from Ref. [8]. Formula (53)

gives h = 0.21 GeV−1 for the 1S state; this value is correctly located in the plateau.

FIG. 2: Meson masses for the RS model, computed with the Lagrange mesh method, versus the

parameter ρ: 1S, 1P and 1D states for the ss̄ system, computed with the interaction Ia from

Ref. [8], but without the Coulomb potential.
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