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LATTICE QCD AND FLAVOR PHYSICS

Matthew Wingate
Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550

ABSTRACT

Now that lattice QCD simulations are able to include effects of light sea quarks,
the prospects are good for constraining quark flavor phenomenology. This review
talk for particle physics experimentalists begins with an introduction intended to
describe broadly the steps of lattice Monte Carlo simulations. The remainder of the
talk is a brief survey of recent and ongoing calculations relevant for quark flavor
physics.

1

http://arxiv.org/abs/hep-ph/0409099v1


1 Introduction

In principle lattice QCD is an ab initio method for numerically computing the QCD

spectrum and many hadronic matrix elements. In practice there are several diffi-

culties which must be overcome. Getting to the point where all uncertainties in

the calculations can be reduced systematically has taken (at least) 2 decades. Are

we there yet? Possibly. Recently it has been shown that the inclusion of light sea

quark effects, via an improved staggered fermion action, removes the uncontrollable

errors of the quenched approximation. This allows for more accurate investigation

of quark mass extrapolations as well as finite volume and discretization effects.

Given that the dominant uncertainty for most of the constraints on the

CKM parameters ρ and η comes from hadronic transitions [1, 2], little more needs

to be said to motivate lattice QCD calculations. Several speakers at this conference

have already remarked on the importance of lattice results for flavor physics phe-

nomenology, and Lubicz talked at length about the impact that lattice QCD results

have in fits to the CKM parameters at the Lattice Field Theory Symposium this

year[3]. Furthermore, the CLEO-c experiment will make measurements which will

allow for greater tests of lattice phenomenology [4, 5].

Since this is a conference mainly for experimentalists, I will give an intro-

duction to lattice QCD calculations which touches upon important ingredients but

skips many details not related to the rest of the talk. The quenched approximation

and the use of improved staggered quarks to unquench are of particular relevance.

The second half of the talk presents a selection of results, some preliminary, which

are important for high energy phenomenology. Due to time and space constraints,

this presentation is focused by the lens of my interests. A more thorough review of

recent results is in preparation [6].

2 Lattice Monte Carlo Calculations

The goal of this section is to give the nonexpert a broad outline of lattice QCD

simulations and to highlight where recent progress has made a substantial improve-

ment. The interested reader may find more details in reviews such as Ref. [7] (and

the many references therein).

QCD is a strongly coupled theory at energy scales below approximately

1 GeV: processes with 23 gluon exchanges are just as important as a single gluon

exchange. Matrix elements involving low energy hadrons cannot be calculated di-

rectly using a perturbative expansion about small coupling. Instead a nonperturba-

2



JB(x) J
†
B

(y)

b

u

Figure 1: Cartoon of a B− meson propagator. The b and u quarks propagate through
nonperturbative glue.

tive way of evaluating path integrals is needed. Lattice field theory provides this,

and moreover it is the only known way to regulate a quantum field theory nonper-

turbatively. By rotating the time coordinate 90◦ in the complex plane (“going to

Euclidean spacetime”) and working with a discrete and finite spacetime, the path

integral representations of hadronic matrix elements can be computed numerically

by Monte Carlo simulation.

2.1 Generating Important Samples of Glue

Monte Carlo simulations of lattice QCD rely on the same principles used for simula-

tions of classical statistical mechanical models, e.g. the Ising model. Recall that any

quantum observable, like the propagator of some hadron from x to y (e.g. Fig. 1),

can be computed from the path integral,

〈J†(y)J(x)〉 =
1

Z
∫

[dψ][dψ][dU ] J†(y)J(x) eiSM (1)

where ψ represents the quark field and U the glue field, and Z ≡ 〈1〉. J creates (J†

annihilates) the hadron, and all possible paths are included with a phase determined

by the action SM =
∫

d3x′ dt′ LM , where LM is the QCD Lagrangian in Minkowski

spacetime. If we change from physical Minkowski spacetime to Euclidean spacetime

by introducing an imaginary time coordinate τ ≡ it, then

〈J†(y)J(x)〉 =
1

Z

∫

[dψ][dψ][dU ] J†(y)J(x) e−
∫

d3xdτLE . (2)
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Let us compare (2) to the expectation value for the magnetization in the Ising model

〈si〉 =
1

Z ′

∑

si=±1

si e
−H/T . (3)

Z ′ is the corresponding partition function. One can identify the Ising spins with the

fermion and gluon degrees of freedom, and the statistical mechanical Hamiltonian

with the integral of the QCD Lagrangian (viz the action). The role of temperature

in the Ising model is played by the couplings in the QCD Lagrangian, the gauge

coupling and the quark masses. (Recall we are discussing zero temperature QCD

simulations. Finite temperature QCD simulations will not be discussed here.)

The Euclidean path integral still has one peculiarity not present in the

classical statistical system: the fermion fields are anticommuting variables. Formally

integrating out the fermions, we obtain

〈J†(y)J(x)〉 =
1

Z

∫

[dψ][dψ][dU ] J†(y)J(x) exp
(

−ψ (γµDµ +m)ψ − Sg
)

(4)

=
1

Z

∫

[dU ] J†(y)J(x) detQ[U ] e−Sg[U ] (5)

where Q = γµDµ + m is a matrix with spacetime, color, and spin indices, and

it depends on the glue field through the gauge-covariant derivative D. Finally,

assuming we have been lucky or clever enough to ensure that detQ > 0, we can

consider quantum observables like (5) to be equivalent to statistical mechanical

expectation values like (3): the sum over all possible field values, or configurations,

weighted by a positive “Boltzmann” factor.

Now we are ready to use Monte Carlo methods to evaluate path integrals.

Since the Boltzmann weights are exponentials, most configurations give an expo-

nentially small contribution to the integral. Thus, the QCD path integral can be

evaluated by generating an ensemble of “important” glue field configurations, ones

which maximize the Boltzmann weight. One starts with some initial configuration

and uses an algorithm to create successive configurations with a probability

P[U ] = detQ[U ] e−Sg[U ] . (6)

Using a finite number of configurations, N , gives rise to statistical uncertainty which

decreases like
√
N .

The main obstacle lattice QCD calculations face is the difficulty in com-

puting detQ[U ] for realistic quark masses. The fastest algorithms include the de-

terminant by introducing wrong-statistics fermions φ, such that

P[U ] = exp
(

−Sg[U ] − φ∗ Q−1[U ] φ
)

. (7)
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The cost of numerically inverting Q increases (nominally) like the ratio of the largest

eigenvalue to the smallest, and the smallest eigenvalue vanishes as the quark mass is

taken to 0. This, and other complications, make simulations with realistically light

quarks prohibitively expensive.

The valence, or quenched, approximation saves computer time by mutilat-

ing the theory: the determinant is simply neglected in (5) and (6), and configurations

are generated with a weight determined solely from the gluon action. Consequently,

effects of virtual quark loops like those shown in Fig. 1 are omitted. As a phe-

nomenological model, quenched lattice QCD is not a bad one up to the 10–20%

level (look ahead at Fig. 3). However, disagreement between calculation and experi-

ment at this level leads to ambiguities which cannot be removed within the quenched

approximation. In order to obtain the accuracy necessary to be relevant for flavor

physics, lattice simulations have to include sea quark effects.

2.2 Improved Staggered Quarks

The improved staggered fermion discretization is most expedient method to include

light sea quark effects in present lattice QCD simulations. Below a short descrip-

tion of the main ideas behind staggering and improvement is given, followed by an

important caveat and my opinion of its relevance for phenomenology.

If we discretize the fermion Lagrangian by simply replacing the deriva-

tive operator by a finite difference operator, we find that the free massless fermion

propagator,

G(p) =
1

ia
∑

µ γ
µ sin (pµa)

, (8)

has poles not only at p = 0, but also when any component pµ = π/a. (a denotes

the lattice spacing.) The simplest solution, due to Wilson, is to add a term which

gives the extra 15 states, the “doublers,” a mass. This term, however, necessarily

breaks chiral symmetry causing problems such as additive mass renormalizations

which make numerical simulation at small masses intractable.

Instead of solving the doubling problem, the staggered formulation em-

braces the extra fermions. By using a lattice symmetry the 16 species are reduced

to 4 which are interpreted as artificial flavors, called tastes. Quarks of different tastes

can interact by exchanging a gluon which has at least one momentum component

close to π/a (see left diagram of Fig. 2). The effect of this is that a low energy, light

meson propagator contains important contributions not just from valence quarks

with small momentum, but also from valence quarks with large momentum com-

ponents in opposite directions. This mixing breaks the taste symmetry of the free
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Figure 2: Quark-quark scattering by a gluon with a large momentum component.

fermion action and, left untreated, leads to large discretization errors. Based on

quenched studies it appears that without improvement, one would have to simulate

on lattices with spacings less that 0.06 fm to have control over discretization errors

[8]; if one also requires the lattice volume to be bigger than (2 fm)3, simulations with

light staggered sea quarks would not be feasible today. Happily the leading taste-

changing interactions can be suppressed by modifying the lattice action [9, 10]. This

improvement allows one to obtain accurate results with attainable lattice spacings

and sizes, e.g. the coarse set of MILC collaboration lattices which have a = 0.13 fm

and V = (2.5 fm)3.

The news is even better for studies of heavy-light mesons. In these simu-

lations, one uses a non-staggered discretization for the b or c quark: either a nonrel-

ativistic action or a Wilson-like discretization. Since the heavy quark formulation

does get rid of the doublers, the heavy quark in Fig. 2 (right) becomes very energetic

when it absorbs or emits a hard gluon (pµ ≈ π/a). Such high energy effects give

negligible contributions to heavy-light meson propagators [11].

Results using the improved staggered action for light sea quarks look very

promising [12]. Figure 3 shows a series of lattice calculations divided by the cor-

responding observed physical values. The quantities in the plot are some of the

simplest ones to compute cleanly and correctly in lattice QCD. 1 The contrast be-

tween quenched results (left) and unquenched results (right) is striking.

Alas, there is a fly in the ointment. Even while we can tame the taste-

changing interactions, we cannot reduce the number of tastes below 4. Using a

weight given by

detQstag e
−Sg (9)

1“Correctness” here means that we have a valid expectation for the simulation to agree with

experiment. The ρmass is a counterexample: it can be computed very cleanly in lattice simulations;

however, we should have no expectation of obtaining mρ = 770 MeV until the simulated ρ is above

the simulated ππ threshold.
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Figure 3: Comparison of quenched and unquenched results to experiment [12].

produces an ensemble of configurations which include the effects of 4 degenerate

tastes of sea quarks. In order to simulate a theory with 2 light and 1 strange flavor

of sea quark using staggered fermions (improved or not), one takes a square root

and a fourth root of the determinant
(

detQm=mud
stag

)1/2 (

detQm=ms

stag

)1/4
e−Sg . (10)

The problem is that the roots of the determinants cannot be exponentiated to give

a local fermion action. The open question remains, does there exist a matrix Qlocal

which is QCD in the continuum limit (i.e. lima→0 ψQlocalψ = ψ(/D+m)ψ) such that

(detQstag)
1/4 = detQ local ? (11)

If so, then 2+1 flavor staggered fermion simulations are ab initio QCD calculations;

if not, then the simulations merely model QCD.

In my opinion, this open question is an important one to study, but it

should not temper one’s excitement over the success of Fig. 3. We can leave behind

the quenched approximation, a theory which we know is not QCD and disagrees with

experiment, in exchange for light quark simulations which agree with experiment

but may or may not be formally QCD in the continuum limit. Enthusiasm for this

approach is shared by those outside the field (see e.g. [13]).

7



Eventually nonstaggered lattice actions will replace staggered ones. The

beauty of lattice QCD is that, in the continuum limit, it is formally QCD. Presently

the fourth-root trick spoils this beauty. On the other hand, phenomenology dictates

that results be obtained with physical values for the quark masses, so extrapolations

are necessary. Chiral perturbation theory tells us how to extrapolate, but its do-

main of convergence is limited to small quark masses. With current and near-future

resources, nonstaggered simulations barely overlap with the chiral regime. Conse-

quently, the empirical extrapolations that are performed using data at and beyond

the border of the chiral regime are under no better theoretic control than staggered

simulations which use the fourth-root trick.

2.3 Miscellany

Several important parts of lattice calculations for flavor physics could not be ad-

dressed here. Nevertheless the interested reader should be aware of work in these

directions and may wish to consult the following review articles. (1) Heavy quarks

on the lattice cannot be treated the same as light quarks when mQa ≥ 1. There

are several approaches for treating heavy quarks on the lattice, and Kronfeld dis-

cussed these last year [14]. (2) Much effort recently has been invested in fermion

discretizations which preserve the full flavor symmetries of the continuum, namely

overlap and domain wall fermions. These methods require significantly more com-

puter resources, so they presently cannot explore as deeply into the chiral regime

as staggered fermions. Nevertheless, the full flavor symmetry simplifies many anal-

yses and no fourth-root trick is required to simulate with 3 light flavors (e.g. see

Ref. [15] and therein). (3) People are exploring twisted mass fermions, which com-

bine good features of both Wilson and staggered quarks and require no fourth-root

trick. Frezzotti gave a review this year [16].

3 Some Recent Results

Many of the preliminary results reported below were presented at Lattice 2004. Since

several months pass between the conference and submission of proceedings, it is not

uncommon in our field to update results in the interim. For “official” Summer 2004

numbers, readers should consult the authors’ write-ups as they appear or Ref. [6].

3.1 Heavy-light Decay Constants and B0 − B0 Mixing

The Bs and Ds decay constants are relatively straightforward to compute in lattice

QCD since the strange quark mass can be tuned to its physical value. Figure 4
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fBs (MeV)

CP-PACS 2001 (ImpW, msea ≥ ms/2)

JLQCD 2003 (ImpW, msea ≥ 0.7ms)

HPQCD 2004 (ImpS, msea ≥ ms/4)

Figure 4: Summary of unquenched fBs
calculations [17, 18, 19]. I have symmetrized

the CP-PACS central value and averaged to obtain the solid vertical line, 245 MeV.
The dashed vertical lines denote 30 MeV systematic uncertainties. The dashed point
includes my estimate for the JLQCD result taking into account the lattice spacing
ambiguity observed by CP-PACS (see text).

shows 3 results which compute fBs
on unquenched lattices [17, 18, 19]; the first 2

use improved Wilson fermions as light asms/2, and the last uses improved staggered

fermions as light as ms/4. Ref. [17] observed a 10-20% lattice scale ambiguity, which

they include in their error estimate. Ref. [18] did not compute the Υ splittings, but

given the similarity in the sea quark mass range simulated, I suspect that they

will see a similar effect; I indicate my prejudice with the dashed point in Fig. 4.

See Ref. [6] for a more detailed argument. A straight average of the 3 published

results (shifting the CP-PACS central value so that the error bars are symmetric)

gives fBs
= 245 MeV. Since all 3 calculations have similar dominant systematic

errors (due to truncating perturbative expansions) averaging does not reduce this

uncertainty: 30 MeV is the typical estimate of these truncations.

Refs. [17, 18] give unquenched results for fB (and the ratio fBs
/fB which

gives a more restrictive contraint on |Vtd|). However, in my biased opinion, un-

quenched simulations with light quark masses below ms/2 are necessary to have a

trustworthy overlap with chiral perturbation theory. Work using improved staggered

fermions is underway, and progress is reported in Ref. [20].

Figure 5 shows preliminary results for the Ds and D decay constants com-

puted using Fermilab heavy quarks and improved staggered light quarks on the

MILC configurations [21]. Since they have a large set of “partially quenched” data

(where the valence quark mass is allowed to be different than the sea quark mass),
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Figure 5: Preliminary Fermilab/MILC calculation of fDs
(left) and fD/fDs

(right)
[21]. The physical strange quark mass corresponds to ams = 0.04 and r1ms = 0.11.
On the right, the solid line is a fit to chiral perturbation theory which includes finite
lattice spacing effects.

they can do sophisticated global fits to partially quenched chiral perturbation the-

ory, even including leading taste-breaking effects [22]. I will delay quoting results

until Ref. [21] appears, but the dominant uncertainty in fDs
and fD has been esti-

mated to be 10% from the heavy quark matching to QCD. This uncertainty largely

cancels in the ratio, so they anticipate the dominant uncertainty for fDs
/fD to be

5% coming from statistics and the chiral fits.

The ∆B = 2 hadronic matrix elements relevant for the B0 − B0 mass

and lifetime differences can be directly calculated, although the numerics are more

difficult than for the decay constant. JLQCD has calculated these with 2 flavors

of dynamical improved Wilson fermions in [18, 23]. Calculations using improved

staggered fermions are underway [20].

3.2 Semileptonic B, D, and K Decays

Calculations of the semileptonic form factors parameterizing B and D semileptonic

decays have recently been carried out on the unquenched MILC configurations [24,

25]. The form factors f+ and f0 are shown as functions of q2, the momentum carried

away by the lepton pair, in Fig. 6. The dominant uncertainties in these calculations

come from the truncation of the heavy quark effective action.

The data are fit well by the Bećirević-Kaidalov ansatz [26], which is used to

extrapolate (for B) or interpolate (for D) to q2 = 0. Furthermore one can integrate

f+ over 0 ≤ q2 ≤ q2max and combine the result with experimental branching ratio

and lifetime to determine the corresponding CKM matrix element. In the case

of B → πℓν, one cannot presently simulate at small q2 without inducing large
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Figure 6: B → πℓν form factors (left) [24], and D → πℓν and D → Kℓν form
factors (right) [25].

discretization effects. Restricting both the form factor integration and the branching

fractions to decays with q2 ≥ 16 GeV2 [27] reduces the theoretical error in |Vub| but
increases the experimental error [24].

Unprecidented precision is being obtained in lattice calculations of K de-

cays. Figure 7 shows theK → πℓν form factor f+(q
2) in the quenched approximation

(left) [28] and the unquenched K (top right) and π (bottom right) decay constants

[29]. The calculation of f+ is notable for several technical innovations which allow

a signal to be extracted. The calculation of fK/fπ is now precise enough lead to a

value for |Vus| competetive with the semileptonic determination [30, 29].

3.3 Quarkonia and Bc Masses

We have already seen in Fig. 3 the improvement in the bottomonium spectrum

when light sea quark effects are included [12]. Preliminary charmonium results were

presented last year [31]. Work is underway to finalize these results.

The Bc meson mass has been computed using the unquenched MILC con-

figurations [32]. Fig. 8 (left) shows the result as the rightmost point and comes from

computing mBc
− (mJ/ψ +mΥ)/2 on the lattice and using the experimental quarko-

nium masses. Fig. 8 (right, upper points) shows this mass difference vs. sea quark

mass as well as a check using the difference mBc
− (mD +mB) (lower points); only

statistical errors are plotted. The systematic uncertainties are also larger using the
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Figure 7: K semi-leptonic form factor f+ vs. momentum transfer [28] and K decay
constant (upper points) vs. lattice spacing [29].

B and D – about 50 MeV compared to 10 MeV for the mass difference from J/ψ and

Υ – so while the 2 results agree, the more precise one is taken for the preliminary

result. Given the precision of the lattice result compared to experiment, this will be

an interesting prediction to compare to Tevatron Run II data.

4 Conclusions

In my opinion the next few years will be exciting ones for lattice QCD. Having shed

the quenched approximation, lattice calculations can reach enough precision and

accuracy to help constrain the CKM matrix elements. In order to do so, hard work

is still required to reduce uncertainties from extrapolations in quark mass, finite

spacing and size effects, and operator matchings. In the absense of a theoretical

proof, the open question behind the staggered fourth-root trick will hang over our

heads. Even so, the accumulation of empirical agreement between staggered sim-

ulations, experiment, and eventually non-staggered simulations, is enough to have

give important contributions to phenomenology. Finally, there are still classes of

problems which are difficult to address with current techniques – decays with mul-

tiple final-state hadrons, in particular – which will receive much more attention if

the simpler problems can ever be said to be done.
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Figure 8: Left: Bc mass from experiment (far left point), models (2nd and 3rd
points), and lattice (4th point quenched, 5th point unquenched) (see [32] and Refs.
within). Right: Comparison of mBc

computed using two mass differences (see [32]
and the text); results agree within errors.
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