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Abstract. We extend the method of infrared regularization to spin-1 fields. As applications, we discuss the
chiral extrapolation of the rho meson mass from lattice QCD data and the pion-rho sigma term.
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1 Introduction

Chiral perturbation theory (CHPT) is the effective field
theory of the Standard Model at low energy [1, 2]. It is
based on the spontaneously broken approximate chiral
symmetry of QCD. The pions, kaons and the eta can be
identified with the Goldstone bosons of chiral symmetry
breaking. Their interactions are weak and vanish in the
chiral limit of zero quark masses when the energy goes to
zero. This is a consequence of Goldstone’s theorem and
allows for a consistent power counting. Consequently, any
amplitude can be written as sum of terms with increasing
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powers in external momenta and quark masses, symboli-
cally

A = pD f (p/µ, g) , (1.1)

where f is a function of order one, p collects the small
parameters, D is the chiral dimension, µ a regularization
scale (related to the UV divergences in loop graphs) and g
a collection of coupling constants, the so-called low-energy
constants (LECs). Weinberg [3] first established this power
counting, in particular, the expansion in p (the chiral ex-
pansion) can be mapped onto an expansion in terms of
tree and loop graphs, with n loop graphs being parametri-
cally suppressed by powers of p2n compared to the leading
trees. The explicit expression for D reads:

D(A) =
∑

N

Vn(n− 2) + 2L+ 2 , (1.2)

with L the number of Goldstone boson loops and Vn a ver-
tex of order O(pn). In essence, this power counting works
because the pion mass vanishes in the chiral limit and
thus the only dimensionfull scale in this limit is the pion
decay constant Fπ (more precisely, its value in the chi-
ral limit). Utilizing a symmetry preserving regularization
scheme like e.g. dimensional regularization leads to homo-
geneous functions in the small parameters (for more de-
tails, see the reviews [4–8]). The precise relation between
this effective field theory (EFT) and the chiral Ward iden-
tities of QCD was firmly established in Refs. [9, 10].

The active degrees of freedom in CHPT are the Gold-
stone bosons, chirally coupled to external sources. It is,
however, known since long that vector and axial-vector
mesons also play an important role in low energy hadron
physics, as one example we mention the fairly success-
ful description of the pion charge form factor in terms of
the (extended) vector dominance approach (for more de-
tails, see e.g. the reviews [11, 12]). These heavy degrees
of freedom decouple in the chiral limit and at low en-
ergy from the Goldstone bosons. Nevertheless, they leave
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their imprint in the low-energy EFT of QCD by saturat-
ing the LECs, which has been termed resonance satura-
tion [13–15]. We will discuss this issue briefly in Sect. 2.
Here, we are interested in an extension of CHPT where
these spin-1 fields are accounted for explicitly. While it is
straightforward to construct the corresponding chiral ef-
fective Lagrangian (as briefly reviewed also in Sect. 2), the
computation of loop diagrams is not. This is related to the
appearance of a large mass scale in this EFT, namely the
non-vanishing chiral limit mass of the spin-1 fields. This
scale destroys the one-to-one mapping between the chiral
expansion and the loop expansion, as discussed in more
detail in Sect. 3. To be able to proceed in a systematic
fashion, one has to be able to separate the contributions
to loop diagrams originating from this large mass scale
in a controllable and symmetry-preserving fashion. This
problem also appears in the EFT when nucleons (baryons)
are included (in fact, it has been analyzed first in this
context [16]), and various solutions have been suggested,
like heavy baryon CHPT [17,18], subtraction schemes for
the hard momenta [19], infrared regularization [20] or ex-
tended on-mass shell regularization [21]. For the case of
the vector mesons considered here an additional compli-
cation arises - these particles can decay into Goldstone
bosons and thus appear in loops without appearing in
external lines. Here, we will present an extension of in-
frared regularization that allows to treat such diagrams.
In Sect. 4, we briefly review the intuitive approach of
Ref. [19] how the contributions from the hard scale can
be tamed. The more elegant infrared regularization [20]
is introduced in Sect. 5. In Sect. 6, we discuss the new
contributions to the Goldstone boson self-energy graph
when the heavy particle only appears in the loop. The
singularity structure of these loop graphs is analyzed in
Sect. 7. Based on that, we show how the infrared singular
part can be obtained for such type of one-loop diagrams
in Sect. 8. The method is then applied to the self-energy
graph where the spin-1 field only appears inside the loop,
see Sect. 9. The corresponding triangle graph is discussed
in Sect. 10. Section 11 contains the analysis of the vector
meson self-energy diagram with a pure Goldstone boson
loop, which does not only involve soft momenta. As an
application, we discuss the chiral extrapolation of lattice
QCD data for the rho meson mass and related topics in
Sect. 12. A brief summary is given in Sect. 13. Some tech-
nicalities are relegated to the appendices. For other works
on the problem of vector mesons in chiral EFT, we refer
to [22–28].

2 Prelude: Vector mesons in trees

In this section we show how vector mesons can be treated
in chiral perturbation theory when only tree graphs are
considered. This material is not new, but is needed to set
up the formalism and to set the stage for the discussion
of vector mesons in loops. The reader familiar with this
material might skip this section. Also, our considerations
are more general, they really refer to the coupling of heavy

degrees of freedom to the Goldstone boson fields. Further-
more, when talking about vector mesons, we really mean
vector and axial-vector mesons (spin-1 fields).

Our aim is to write down an effective Lagrangian con-
taining the vector meson resonances explicitly. The word
’explicitly’ refers to the fact that the vector meson reso-
nances are present implicitly in the Goldstone boson effec-
tive Lagrangians through their contributions to (some of)
the pertinent low-energy constants, see Refs. [13–15]. We
want to state this on a more formal level. Assume that we
have constructed a Lagrangian LRes(R,U, v, a, s, p) where
R are some resonance fields which might be the vector
mesons for example. U collects the Goldstone bosons and
v, a, s, p are vector, axial-vector, pseudoscalar and scalar
sources. The latter also include the quark masses, s(x) =
M, with M = diag(mu,md,ms) the quark mass matrix.
The resonances are all very much heavier than the Gold-
stone bosons (e.g. Mρ ∼ 770 MeV), and therefore it is a
consistent procedure for a low-energy effective theory to
integrate out these heavy degrees of freedom by means of
a path integration over R:

∫

[dR]ei
∫

d4xLRes(R,U,v,a,s,p) = eiZind(U,v,a,s,p). (2.1)

By doing the path integral, a Goldstone boson theory
(containing only U and the external fields) is recovered.
Zind(U, v, a, s, p) may be called the generating functional
induced by LRes(R,U, v, a, s, p) through the path integra-
tion. Such a step may be visualized in a Feynman graph
by shrinking the lines symbolizing the R-propagators to a
point, and attaching contact terms (interactions between
the remaining fields) to these points.

What is the physical content of all this? Computing
the R-induced Goldstone boson field theory means that
some interaction terms between the Goldstone (and exter-
nal) fields are computed by the path integration over R
and are therefore expressed through couplings of the res-
onance to these fields and the resonance mass MR, which
can be measured in processes where the resonance occurs
as an external state. The interactions generated in this
way can be compared with the couplings determined by
the LECs of the original Goldstone boson field theory. This
will show us how important the resonance contributions
to the processes under consideration are. We get a micro-
scopic information on these processes which we could not
achieve with the theory of the light fields alone.

Numerically, however, one could as well work with the
original effective field theory and simply include higher
and higher orders. As should be clear by now, the reso-
nance contributions are implicitly present in this theory,
influencing the values of the LECs. This can be illustrated
by considering a diagram with a resonance line through
which a small (O(p)) momentum flows. The resonance
propagator can be expanded in this case using

1

p2 −M2
R

= − 1

M2
R

(

1 +
p2

M2
R

+ . . .

)

, (2.2)

leading to an infinite series generating terms of an arbi-
trary high order. Including the resonance field explicitly,
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one takes care of all terms in this series and not just the
first few terms of it. This can be advantageous. A nice ex-
ample can be found in [29], where the inclusion of vector
mesons substantially improves the results for the nucleon
form factors computed in that work.

With this motivation, let us now concentrate on the
vector mesons. Following [13], we will (first) use an anti-
symmetric Lorentz tensor-field Wµν = −Wνµ to describe
the vector meson. This has six degrees of freedom, but we
can dispose of three of them in a systematic way, for de-
tails see App. A and Ref. [13]. The spin-1 fields transform
as any matter field under the non-linearly realized chiral
symmetry,

Wµν(x) → hWµν(x)h
† , (2.3)

where the compensator field h is defined via

u(x) → gRu(x)h
† = hu(x)g†L (2.4)

with gI is an element of SU(3)I , I = L,R and u2 = U .
The kinetic and mass term of the effective Lagrangian for
vector mesons has the form

Lkin
W = −1

2
〈∇µWµν∇ρW

ρν〉+ 1

4
M2

V 〈WµνW
µν〉 , (2.5)

where

Wµν =
1√
2
W a

µνT
a (2.6)

for an octet of vector mesons, and summation over the
flavor index a = 1, . . . , 8 is implied, and 〈 〉 denotes the
trace in flavor space. The pertinent covariant derivative is

∇µR = ∂µR+ [Γµ, R] . (2.7)

It transforms as Wµν under the chiral group. Here, Γµ is
the connection,

Γµ =
1

2
(u†[∂µ−i(vµ+aµ)]u+u[∂µ−i(vµ−aµ)]u†) . (2.8)

For the SU(3) case we consider here, the T a are the usual
Gell-Mann-matrices which obey 〈T aT b〉 = 2δab as well as
[T a, T b] = 2ifabcT c, where fabc are the totally antisym-
metric structure constants of SU(3). The mass MV ap-
pearing in Eq.(2.5) is strictly speaking the vector meson
mass in the chiral limit.

The vector meson octet we consider here may be given
in matrix form:

W =







ρ0

√
2
+ ω8√

6
ρ+ K∗+

ρ− − ρ0

√
2
+ ω8√

6
K∗0

K∗− K̄∗0 − 2ω8√
6






. (2.9)

From the above Lagrangian, one can derive the propaga-
tor,

〈0 | T (W a
µν(x)W

b
ρσ(y)) | 0〉 =

iδab

M2
V

∫

d4k

(2π)4
eik(x−y)

M2
V − k2 − iǫ

×[gµρgνσ(M
2
V − k2) + gµρkνkσ − gµσkνkρ − (µ ↔ ν)] .

(2.10)

Now we examine the interaction of the vector meson field
with the other fields of the theory, especially the Goldstone
boson fields. We actually already have interaction terms
coming from the covariant derivative, but they are bilinear
in Wµν . For the simplest diagrams we want to consider,
we need vertices with only one vector meson line attached
to them, i.e. couplings linear in Wµν . Therefore we neglect
the ’connection terms’ in the following. From the philos-
ophy of effective field theories, we are required to con-
struct the most general interaction terms consistent with
Lorentz invariance, chiral symmetry, parity, charge con-
jugation and hermiticity. The building blocks with which
this can be done are, in principle, at hand: the Goldstone
boson fields (collected in U or its square root u), the co-
variant derivative Dµ acting on U , the object χ which
contains the scalar and pseudoscalar fields (in particular,
the quark mass matrix), the field Wµν (and the pertinent
covariant derivative∇µ acting on it) and the field strength
tensor Fµν for the external fields vµ and aµ. For our pur-
poses, it is more convenient to collect these blocks in the
combinations

uµ = iu†DµUu† = u†
µ ,

uµν = iu†DµDνUu† ,

χ± = u†χu† ± uχ†u ,

F±
µν = uFL

µνu
† ± u†FR

µνu .

This is better from a practical point of view because the
so-defined objects all transform likeWµν under chiral trans-
formations. This makes it easy to find chirally invariant
expressions: Just take some of the above objects and put
them inside a trace 〈. . .〉. This will then be invariant by
the cyclicity property of the trace. Of course, one can fur-
ther reduce these possibilities by imposing the other sym-
metries mentioned above, and using the antisymmetry of
Wµν .

What concerns power counting, it is clear that uµ is a
quantity of order O(p) due to the covariant derivative Dµ

giving one factor of momentum or external (axial-)vector
source. Similarly, the other objects in the list are of O(p2).

At order O(1), there is no term linear in W because
Wαα = 0. The lowest order interaction terms turn out to
be of order O(p2) and read [13]

Lint
W =

FV

2
√
2
〈F+

µνW
µν〉+ iGV

2
√
2
〈[uµ, uν ]W

µν〉. (2.11)

This is more complicated than it looks, because both terms
contain interactions with an arbitrary high (even) number
of Goldstone boson fields. One must carefully expand the
objects F±

µν and uµ to obtain the vertex for a particular
amplitude. It is now clear why vector meson singlets can
be neglected: The sources to which they would be allowed
to couple are 〈F±

µν 〉 and 〈[uµ, uν ]〉, but both traces are
zero.

Note that a discussion of the numerical values of FV

and GV is given in Refs. [13,15]. Furthermore, the vector
field formulation is summarized in App. B.



4 Peter C. Bruns, Ulf-G. Meißner: Infrared regularization for spin-1 fields

3 Vector mesons in loops: Statement of the

problem

Difficulties arise when in a Feynman diagram lines rep-
resenting a heavy matter field are part of a loop. The
corresponding amplitude will in general not be of the chi-
ral order expected from power counting. This has been
noted many years ago when the nucleon was incorpo-
rated in CHPT [16]. We already saw in the last chapter
that power counting in CHPT is not as straightforward
as in the purely Goldstone bosonic sector, and we already
noted the reason for this, namely, the presence of a new
large scale: The mass of the heavy matter field. In [16], it
was shown that the parameters of the lowest order pion-
nucleon Lagrangian already were (infinitely) renormalized
by loop graphs in the chiral limit. There exists a mismatch
between the loop expansion in ~ and the chiral expan-
sion in small parameters of order O(p). The loop graphs
in general generate power counting violating terms, con-
fusing the perturbative scheme suggested by CHPT. For
example, a graph with dozens of loops might give a con-
tribution as low as O(p2). Clearly, we will have to get rid
of these power counting violating terms if we want to keep
this scheme when including heavy matter fields.

For graphs where the heavy field only shows up in in-
ternal tree lines, the problem concerning power counting
was not urgent, because the chiral expansion of the ampli-
tude corresponding to such a graph at least started with
the correct order. We saw this in the last chapter: We
counted the vector meson propagator as O(1), and in the
low-energy region, the momentum transfer variable t was
much smaller than the square of the heavy mass, allowing
an expansion of the propagator in the small dimensionless
variable t/M2

V , which starts at O(1).

4 Soft and hard poles

If the heavy particle line belongs to a loop, an integration
over the four-momentum flowing through this line takes
place. Due to the pole structure of the propagator, the
integral will pick up a large contribution from the region
where the line momentum squared k2 ≈ M2

V , with MV

the heavy mass (we keep the index V to remind us that
we will concentrate on vector mesons, but the present dis-
cussion is more general). This is the region of the ’hard
poles’ in the terminology of [19]. These contributions are
of high-energy origin and clearly do not fit in a low-energy
effective theory - they must be identified as generating the
part of the loop integral which violates the power count-
ing scheme, because this scheme would clearly be valid if
these ’hard poles’ were missing. The only hard-momentum
effects for loop integrals in the Goldstone boson sector are
the ultraviolet divergences, which are handled by dimen-
sional regularization.

Before discussing the infrared regularization method,
for illustrative purposes we will shortly present the idea
of [19]. We remarked that that the power counting vio-
lating terms stem from the region k2 ≈ M2

V . Far off that

region, for k2 ≪ M2
V , it would be allowed to expand the

propagator in the small variable k2/M2
V , as we did for

tree lines in the last section. Of course, this is not allowed
under a momentum integral which extends to arbitrary
high momenta kµ. But it is too much of a temptation to
do so, because in this way one destroys the ’hard poles’
responsible for the power counting violating terms. Doing
the expansion, treating the loop-momentum kµ over which
one integrates as a small quantity, and interchanging in-
tegration and summation of this expansion, one ends up
with an expression which obeys power counting, because
the hard poles are not present in any individual term of
the series which one integrates term by term. Only the soft
poles from the Goldstone boson (or perhaps also photon)
propagators will be present in the individual integrals.

Clearly, this is not the old integral any more, but a
certain part of it, collecting only the contributions from
the ’soft poles’ - it is called the ’soft part’ of the full inte-
gral in the terminology of [19]. The remaining part, which
was dropped by this procedure, collects the contributions
from the ’hard poles’ and stems from the high-energy-
momentum region. It is argued that this part is expand-
able in the small chiral parameters and, truncated at a
sufficiently high order (depending on the order to which
one calculates) it is a local polynomial in these small pa-
rameters and can be taken care of by a renormalization of
the parameters of the most general effective Lagrangian.
The power counting violating terms are then hidden in
the renormalization of the LECs, and the ’soft part’, with
subtracted residual high-energy divergences, is taken as
the renormalized amplitude appearing as a part of the
perturbation series. If this argument is correct, and the
part of the full integral which is dropped is indeed ex-
pandable in the small parameters, the ’soft part’ contains
all the terms of the full integral which are non-analytic in
the expansion parameters, like terms of the typical form
lnMφ/µ, the so-called ’chiral log’-terms where Mφ is the
Goldstone boson mass, and µ is the renormalization scale
(we will use dimensional regularization throughout). This
becomes large if one lets the Goldstone boson mass go to
zero. The physical interpretation is that in this limit the
range of the interaction mediated by the Goldstone bosons
becomes infinite, so that, for example, the scalar radius of
the pion (or other hadrons) is infrared divergent in the
chiral limit, which makes sense because it measures the
spatial extension of the Goldstone boson cloud.

We keep in mind that the ’soft poles’ in the region
where the loop momentum k ∼ O(p) are responsible for
the terms non-analytic in the small parameters, like chiral
log terms, and that all these terms obey a simple power
counting. This follows from the argument given by [19].
If one ever encounters a power counting violating term
non-analytic in the quark masses, for example, this would
invalidate the above argument - such terms can not be
hidden in the renormalization of the parameters of an ef-
fective Lagrangian.

We would like to demonstrate that arguments such as
the one cited above are indeed more than just wishful
thinking. The basic features of the argument can be ex-
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hibited by a toy model loop integral (it is straightforward
to generalize it - the formulas would only look a bit more
complicated).

Consider the integral

I =

∮

C

dk

2πi

f(k)

(k − a)(k − b)
(4.1)

where C is some contour in C \ {a, b} (enclosing the poles
or not) and f(k) is an analytic function. Such an integral
might e.g. be the k0-integration over a full loop integral.
The soft pole is called a and is of O(p) while the hard pole
is b. In fact, we will only need |a| < |b|. In the spirit of the
argument of [19], we destroy the hard pole in two steps

I →
∮

C

dk

2πi

f(k)

(k − a)

(

−1

b

)(

1 +
k

b
+

k2

b2
+ . . .

)

→ −1

b

∞
∑

n=0

∮

C

dk

2πi

f(k)

(k − a)

kn

bn
≡ Isoft .

Depending on the form of f(k), this will be ultraviolet
divergent if the contour extends to infinity, but this diver-
gence has nothing directly to do with the pole structure
and can be handled by a regularization scheme. By the
method of residues, Isoft is computed to be

Isoft =
f(a)

(a− b)

∮

C

dk

2πi

1

(k − a)
. (4.2)

We were allowed to sum the geometric series because |a| <
|b|. Therefore Isoft is just the first summand in the decom-
position

I =

∮

C

dk

2πi

f(k)

(k − a)(k − b)
=

=
1

a− b

(
∮

C

dk

2πi

f(a)

(k − a)
−
∮

C

dk

2πi

f(b)

(k − b)

)

= Isoft + Ihard , (4.3)

which clearly separates the contributions from the soft and
the hard pole, respectively. We have thus demonstrated
that the expansion of the hard pole structures followed by
an interchange of summation and integration indeed gives
exactly the contribution from the soft pole. Note that the
above argument can be iteratively used for multiple poles.

A complementary approach would be to treat k as
large, expand the soft pole structure in the small vari-
able a and again interchange summation and integration,
thereby isolating the hard pole contribution which is by
construction analytic in the small parameter a. This may
be called the ’regular’ part of the loop integral. Again,
divergences can show up which have nothing to do with
the details of the pole structure (infrared divergences if
the contour C encloses k = 0), but apart from this, the
calculation analogous to the preceding one will give noth-
ing but Ihard. In this sense, the approaches of [19] and [21]
can be said to be complementary to each other.

We will see in the next section that the arguments
of [19] can be refined or, as one should say, modified in a

rather elegant way. In particular, the method described in
this section does not always work because not all integrals
converge in the low energy region, for more details on that
issue, see e.g. [20].

5 Infrared regularization

In order to find a more elegant way to separate the low-
energy part of the loop integrals, we will examine a loop
consisting of one ’heavy’ propagator and one Goldstone
propagator. We use dimensional regularization to handle
the ultraviolet divergence of such an integral, i.e. we give
a meaning for the notion of an integral in d dimensions,
where d might be fractional, negative , etc. .

We consider the scalar loop integral

IV φ(q) = i

∫

ddk

(2π)d
1

((k − q)2 −M2
φ)(k

2 −M2
V )

. (5.1)

Here q denotes an external momentum flowing into the
loop, Mφ is the Goldstone boson mass and MV is the
mass of the heavy particle. The ’iǫ’-prescription, giving
the masses a small negative imaginary part, should be
understood here. We leave it out because it will play no
role in the following discussion.

There are two cases which have to be distinguished:
1) the momentum q belongs to the heavy particle line
of the loop, in the sense that this line is connected to
external heavy particle lines (this would necessarily be the
case if the heavy particle is a baryon, because of baryon
number conservation). For the soft processes we consider,
this would mean that

q2 −M2
V = O(p).

The second case is that 2) the loop is connected only to
Goldstone boson lines, which is the case for the vector
meson contribution to the Goldstone boson self energy
(Fig. 1b). This can not happen if the heavy particle line
represents a baryon. Then

q2 = O(p2).

We first investigate case 1). To this end we use a Feynman
representation

1

ab
=

∫ 1

0

dz
1

(a(1− z) + bz)2

to write

IV φ =

i

∫

ddk

(2π)d

∫ 1

0

dz
1

[((k − q)2 −M2
φ)(1− z) + (k2 −M2

V )z]
2

(5.2)

Note from this expression that, for z = 0, the integrand is
a pure ’soft pole’, while for z = 1 it is a ’hard pole’. We
see that the soft pole structure which we want to extract
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a b
Fig. 1. Self-energy graphs. Solid and dashed lines denote vec-
tor mesons (heavy particles) and Goldstone bosons, respec-
tively. While a) can be treated by the IR method of Ref. [20],
to deal with graphs of type b), the method developed here has
to be used.

is associated with the region z → 0. After a shift k →
k + q(1 − z),the denominator of the integrand becomes

[k2 −A(z)]2

where

A(z) = M2
V C(z),

C(z) = bz2 − (b+ a− 1)z + a,

a =
M2

φ

M2
V

, b =
q2

M2
V

, (5.3)

and the d−dimensional k−integral can be done in a stan-
dard way to give

IV φ = −Md−4
V

(4π)
d
2

Γ

(

2− d

2

)∫ 1

0

dz(C(z))
d
2
−2. (5.4)

This will develop an infrared singularity as Mφ → 0 for
negative enough dimension d. From the expression for
C(z), we see that this singularity is located at z = 0,
because in that region we will have

(C(z))
d
2
−2 →

(

Mφ

MV

)d−4

generating a part non-analytic in the Goldstone boson
mass (remember that d can also be fractional). These find-
ings are consistent with the above observation that the
region z → 0 is to be associated with the soft pole struc-
ture, coming from the Goldstone boson propagator. We
come to the conclusion that to extract the soft pole con-
tribution, we should extract the part of the loop integral
proportional to noninteger powers of the Goldstone boson
mass (for noninteger d).

Becher and Leutwyler have proposed a way to achieve
this [20]. They find that the decomposition of the loop
integral into a part non-analytic in a (and therefore Mφ)
and a part regular in a is given by

IV φ = I +R,

where

I = −Md−4
V

(4π)
d
2

Γ

(

2− d

2

)∫ ∞

0

(C(z))
d
2
−2dz

R = +
Md−4

V

(4π)
d
2

Γ

(

2− d

2

)∫ ∞

1

(C(z))
d
2
−2dz. (5.5)

From the above remarks it is clear that R, which contains
the parameter integral starting at z = 1, will not produce
infrared singular terms for any value of the dimension pa-
rameter d. It will therefore be analytic in the Goldstone
boson mass. On the other hand, the so-called ’infrared
singular part’ I is exactly the part proportional to nonin-
teger powers of the Goldstone boson mass, for noninteger
dimension d. Moreover, it is shown in [20] that this part
of the loop integral fulfills power counting (as we would
have by now expected for the part associated with the soft
pole structure, see the discussion of the last section). We
will not repeat the proof for these assertions here, because
we are going to do a very similar calculation in the next
section.

The parameter integrals for I and R do not converge
for d = 4. To give them an unambiguous value, a partial
integration is performed to express them through conver-
gent integrals and a part that is divergent for d = 4, but
can be left away by an analytic continuation argument
(analytic continuation from negative values of the param-
eter d). For details, see Ref. [20]. This leads to an explicit
representation of I and R for the case of four dimensions.

The infrared regularization (IR) scheme can now be
implemented by simply dropping the regular part R, ar-
gueing that it can be taken care of by an appropriate
renormalization of the most general effective Lagrangian.
This can be done because it is analytic in the small pa-
rameter Mφ (and in external momenta). The regular part
contains the power counting violating terms originating
from the ’hard pole’ of the loop integral, which have now
been abandoned with the dropping of R. We are left with
the infrared singular part I which obeys power counting. It
still contains a pole in (d−4), which can be dealt with us-
ing e.g. the (modified) minimal subtraction scheme. Hav-
ing done this, we have achieved the goal of a finite loop
correction where power counting allows to compute cor-
rectly the order with which this correction will appear in
the perturbation series.

The method as presented here strongly relies on di-
mensional regularization. In particular, the separation of
the loop integrals into two parts with fractional versus
integer powers of Mφ for a fractional dimension parame-
ter d allows the argument that chiral symmetry (or more
specifically, the Ward identities) have to be obeyed by
both parts separately. Therefore dropping one part of it
(the regular part) is a chirally symmetric procedure be-
cause it leaves us with a regularized amplitude that is
again chirally symmetric for itself. It is important here
that the scheme of dimensional regularization leaves chi-
ral symmetry untouched, because the validity of the Ward
identities does not depend on the space–time dimension
parameter. Of course one must deal with all loop inte-
grals occurring in the perturbation series in the same way
to keep the physical content of the theory unchanged. The
regular part of any loop integral that one computes will
have to be dropped.
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If one lets d → integer n, we will get terms proportional
to

(

Mφ

MV

)n+ǫ

=

(

Mφ

MV

)n(

1 + ǫ ln

(

Mφ

MV

)

+ . . .

)

.

In the complete expression, one will leave out terms of
O(ǫ), so that for an integer dimension, the expression for
the infrared part I (up to O(ǫ)) may well contain a piece
analytic in the Goldstone boson mass. Only after the sep-
aration in the two pieces of different analyticity character
has been done, it is allowed to let d approach an integer
value. This is why dimensional regularization, permitting
noninteger valued dimension parameters, is essential for
this approach. Note that an elegant extension of infrared
regularization to multi-loop graphs is given in Ref. [30].

6 Another case of IR regularization

The last section, where the infrared regularization scheme
has been introduced, dealt with the case that the momen-
tum squared q2, coming from outside the loop, was of the
same order as M2

V . This is the case, for example, for a
diagram contributing to the self-energy of a nearly on-
shell baryon with a Goldstone boson loop. This was the
case considered in [20]. However, we have seen in the last
chapter that vector mesons can occur as strongly virtual
resonance states in processes where only soft Goldstone
bosons or photons appear as external particles. If the same
loop we considered in the last section is connected only to
Goldstone boson lines, the momentum flowing into the
loop will then be small. Since this is a Goldstone boson
momentum, we must require that the ’regular part’ which
we want to drop from the regularized amplitude is analytic
also in this parameter.

Becher and Leutwyler introduce in their original paper
the variable

Ω =
q2 −M2

φ −M2
V

2MφMV

(6.1)

which is O(1) for the processes they examine, which corre-
spond to the first of the two cases we distinguished in the
last section. They consider the chiral expansion for fixed
Ω. But if

|q2| ≪ M2
V , q2 = O(p2),

the variable Ω will be O(p−1) ! This already signals that
this case will probably have to be treated differently.

Let us first evaluate the integral directly, for d = 4− ǫ.
We find (omitting terms of O(ǫ))

IV φ = −Md−4
V

(4π)
d
2

Γ

(

2− d

2

)∫ 1

0

dz[b(z − x1)(z − x2)]
d
2
−2

= 2λ+
1

16π2
+

1

16π2

∫ 1

0

dz ln(b(z − x1)(z − x2))

= 2λ− 1

16π2

+
1

16π2

(

x1 ln

(

x1

x1 − 1

)

+ x2 ln

(

x2

x2 − 1

))

.

Here we have introduced the zeroes of C(z),

x1,2 =
b+ a− 1

2b
±
√

(b + a− 1)2 − 4ab

4b2
(6.2)

and the standard notation

λ =
Md−4

V

16π2

(

1

d− 4
− 1

2
(ln(4π)− γ + 1)

)

.

We have selected the mass of the heavy particle as a nat-
ural choice for the renormalization scale µ here (this par-
ticular choice also leads to suppression of higher order
divergences that appear in the loop integrals and should
thus be made). Furthermore we have used C(z = 1) =
b(1 − x1)(1 − x2) = 1 . To examine this further we write
the expansions

x1 = − a

1− a
− ab

(1− a)3
− . . . , (6.3)

1

x2
= − b

1− a
− b2

(1− a)3
− . . . , (6.4)

showing that, for b → 0, x2 behaves like

x2 → b+ a− 1

b
.

Remember that in the case we consider now, a and b are
both small variables from their definition, of chiral order
O(p2). Using these expansions, and the relation

C(z = 0) = a = bx1x2,

we see that IV φ contains a term non-analytic in the Gold-
stone boson mass

IV φ =
1

16π2
x1 ln(a) + . . . ,

and that it is analytic in the second small variable b (for
|b| ≪ 1 ).

We want to check the power counting for this case: The
non-analytic terms are proportional to x1, whose expan-
sion in a and b starts at order O(p2). This is the expected
chiral order for the integral: The loop integration in 4
dimensions gives 4 powers of small momentum, whereas
the Goldstone boson propagator gives −2. The hard pole
structure is of order O(1) here, because the vector meson
appears just as an internal resonance line. So the power
counting for the non-analytic terms is fine, as expected.

We remark that these non-analytic terms are also pro-
duced when one proceeds after the prescription of [19]:
Expanding the hard pole structure and integrating term
by term, one gets x1 as the coefficient of the ln a-terms,
order by order.

Now we want to do infrared regularization. But now
we remark an important point: We can not simply take
over the formulas of the last section. We note that the
expression for I and R will contain pieces non-analytic
in the other small variable b, which is not small in the
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case treated in the last section. But the original integral
does not contain such a non-analyticity in b. We conclude
that the extension of the parameter integrals to z ≫ 1
is responsible for this non-analyticity: Somewhere in that
region, we must catch up a pole for b → 0. So we have
the problem that, loosely speaking, the ’regular part’ is
not regular. We will have to modify the method of [20]
somehow, and find a way to separate off the terms non-
analytic in the small variable b. To do this, we will have to
examine the nature of the singularity we encounter here.
This will be done in the next section.

7 Singularities in parameter space

We will consider an integral which has exactly the same
features as the one we need, but is a bit simpler. Let

Ĩ =

∫ 1

0

dz (z + a)−
3

2 (1 + bz)−
3

2 (7.1)

where a and b are again small parameters in the sense
that |a|, |b| ≪ 1. This will develop a singularity at z = 0 if
a → 0. What if we extend the integration to infinity? To
examine this we first change variables,

z =
1

u
,

and compute

Ĩ =

∫ ∞

1

u du (1 + au)−
3

2 (u+ b)−
3

2 . (7.2)

This shows the close similarity between the ’a-singularity’
at z = 0 and the ’b-singularity’ at u = 0. If we extend
the integration to z → ∞, we will pick up a non-analytic
contribution from u = 0. A ’regular part’ defined as

R̃ = −
∫ ∞

1

dz (z + a)−
3

2 (1 + bz)−
3

2 (7.3)

will be analytic in a, but not in b. This is the situation
encountered in the last section, for a slightly different in-
tegral. How do we get rid of this non-analyticity?

Remembering what we have learned so far, we know
how we can get rid of certain non-analytic terms: We must
’destroy the poles’ by expanding the pole structures and
integrating term by term. Let us do this:

Ĩ =

∫ 1

0

dz(z + a)−
3

2

(

1− 3

2
bz +

15

8
(bz)2 ± . . .

)

=

∫ 1

0

dz(z + a)−
3

2

∞
∑

m=0

Γ (− 1
2 )

Γ (− 1
2 −m)

(bz)m

m!

=
∞
∑

m=0

Γ (− 1
2 )

Γ (− 1
2 −m)

bm

m!

∫ 1

0

dz(z + a)−
3

2 zm.

Here we were allowed to interchange summation and in-
tegration without changing the value of the integral, be-
cause in the interval of integration the expansion of the

integrand is absolutely convergent when a, b are smaller
than 1.

The dependence on a now resides in the simpler inte-
grals of the coefficients in the expansion. The idea is now
to find the ’infrared singular part’ of each of these coef-
ficients. If the sum of these infrared singular parts con-
verges, it must be the infrared singular part of the full
integral Ĩ, because the expansion of the pole structure
that we have performed did not change the integral.

To find the infrared singular part of

Im =

∫ 1

0

dz(z + a)dzm (7.4)

with an arbitrary parameter d (possibly negative) and an
integer m, we follow the method of [20] and scale z = ay
to find

Im = ad+m+1

∫ 1

a

0

dy (1 + y)dym. (7.5)

We would now like to take the upper limit of the integra-
tion to infinity. Whenever the extended integral converges,
it gives

∫ ∞

0

dy (1 + y)dym =
Γ (m+ 1)Γ (−d− (m+ 1))

Γ (−d)
.

There will be a convergence problem if m is large enough.
But the divergence comes from large values of z and has
nothing to do with the infrared singular part. To see this
in detail, let K ≫ 1 , m > 0, and do a partial integration:

∫ K

0

dz (z + a)dzm = Km (K + a)d+1

d+ 1

−
∫ K

0

m

d+ 1
(z + a)d+1zm−1dz .

Doing this m times, and dropping all terms proportional
to (K + a)d+n with n ∈ N , because these are clearly
expandable around a = 0 and will therefore not contribute
to the piece non-analytic in a, we end up with the same
result as above, namely, the ’infrared singular part’ of Im
is always

Im,IR = ad+m+1Γ (m+ 1)Γ (−d− (m+ 1))

Γ (−d)
. (7.6)

This form clearly shows the character of the infrared sin-
gular part as being proportional to noninteger powers of
a for noninteger parameter d.

We have now performed the relevant step to find the
infrared singular part of each coefficient in the expansion
of Ĩ. We insert this in the series, setting d = − 3

2 for defi-
niteness:

Ĩ =

∞
∑

m=0

Γ (− 1
2 )

Γ (− 1
2 −m)

bm

m!

∫ 1

0

dz (z + a)−
3

2 zm

→
∞
∑

m=0

Γ (− 1
2 )

Γ (− 1
2 −m)

Γ (m+ 1)Γ (12 −m)

Γ (32 )

(ab)ma−
1

2

m!

= ĨIR.
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One can easily sum the series,

ĨIR =
4√
a

∞
∑

m=0

(ab)m
(

(m+ 1)− 1

2

)

=
4√
a

(

1

(1 − ab)2
− 1

2(1− ab)

)

=
2√
a

1 + ab

(1 − ab)2
.

The reason why we have selected the value d = − 3
2 is that

it is very easy to compute the integral Ĩ directly. The part
non-analytic at a → 0 can be read off and is the same
as the result just given. We have checked this for various
other values of the parameter d.

In a ’naive’ application of the IR method, one would
be tempted to simply take

ĨBL =

∫ ∞

0

dz (z + a)−
3

2 (1 + bz)−
3

2

=
2

(1− ab)2

(

1 + ab√
a

− 2
√
b

)

,

which contains a part non–analytic in the second small
variable b. This is the part we have separated off by our
procedure.

We note that this ’b-singular’ part can be extracted by
proceeding in exact analogy to the steps just performed:
Expand the other pole structure, proportional to a power
of (z+ a), in the integral R̃, Eq.(7.3). The expansion is in
powers of a/z, which is smaller than one in the pertinent
interval of integration.

We can now give the result for arbitrary d. The general
’a-singular part’ is

ĨIR =

∞
∑

m=0

Γ (d+ 1)Γ (−d− (m+ 1))

Γ (−d)Γ (d+ 1−m)
(ab)mad+1, (7.7)

while the ’b-singular part’ is

Ĩb =

∞
∑

m=0

Γ (d+ 1)Γ (m− 2d− 1)

Γ (−d)

(ab)m

m!
b−(d+1). (7.8)

In the case d = − 3
2 , the last expression yields indeed

Ĩb =
∞
∑

m=0

Γ (− 1
2 )

Γ (32 )
(m+ 1)(ab)m

√
b =

−4
√
b

(1− ab)2
,

which is confirmed by the result of the direct calculation.
We have

ĨBL = ĨIR + Ĩb, (7.9)

where the second part is the one we do not want in a
genuine regular part (it will appear in R̃ because the non-
analytic behaviour for b → 0 is not present in the original
integral Ĩ, with which we started).

What we will need in the next section is the result for
d = −ǫ, where, as always, ǫ is considered as sufficiently

small to allow for the neglecting of terms O(ǫ2). In this
case,

ĨIR =

∞
∑

m=0

Γ (1− ǫ)Γ (−(m+ 1) + ǫ)

Γ (ǫ)Γ (1−m− ǫ)
(ab)ma1−ǫ . (7.10)

After some Γ -function algebra, one gets for the sum

ĨIR = a1−ǫ(−1− ǫ)− ǫ

∞
∑

m=1

a(ab)m

m(m+ 1)
+O(ǫ2)

= a(−1− ǫ+ ǫ ln(a))− ǫa

∞
∑

m=1

(

1

m
− 1

m+ 1

)

(ab)m

+O(ǫ2).

The series can easily be summed

ĨIR = −a− 2ǫa+ ǫa ln(a) + ǫ

(

ab− 1

b

)

ln(1− ab). (7.11)

Please note that the last term is expandable in b, and that
we have left out terms of O(ǫ2).

With the very same method, we can also compute the
’b-singular part’ for the case d = −ǫ. The result is

Ĩb =
1

2

(

a− 1

b

)

+
1

2
ǫ

(

a− 1

b

)

ln(b)

+ ǫ

(

1− ab

b

)

(ln(1− ab)− 1). (7.12)

We have checked that ĨBL, calculated with the method of
Becher and Leutwyler, is again the sum of the ’a-singular
part’ and the ’b-singular part’, like it was the case for
d = − 3

2 .
We have now achieved a method which allows to split

integrals of the form of ĨBL into an ’infrared singular part’,
behaving non-analytically as a → 0, and a part showing
such behaviour for b → 0. Note that this decomposition is
unique, and that both parts are of a different analyticity
character (for fractional d), concerning the small parame-
ters a and b, respectively. In the next section, we will see
how this method can be applied to the scalar loop integral
IV φ.

8 Corrected infrared singular part

The integral we need for the calculation of IV φ is

I =

∫ 1

0

dz (b(z − x1)(z − x2))
d
2
−2.

Extracting a factor

(−bx2)
d
2
−2 = (1− (a+ b) + . . .)

d
2
−2 ,

from the integral, which is expandable in a and b, the
remainder is of the form of Ĩ treated in the last section,
because x1 and x−1

2 are small parameters of O(p2) :

I = (−bx2)
d
2
−2Ĩ ′
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where

Ĩ ′ =

∫ 1

0

dz (z + (−x1))
d
2
−2(1 + (−x2)

−1z)
d
2
−2.

Doing the appropriate substitutions in Eq.(7.12), the in-
frared singular part of I becomes

IIR = x1+ǫx1−
ǫ

2
x1 ln(a)−

ǫ

2
(x1−x2) ln

(

1− x1

x2

)

, (8.1)

where we have used a = bx1x2. For completeness, we also
rewrite the ’b-singular part’:

Ib =
x2 − x1

2
− ǫ

4
(x2 − x1) ln(bx

2
2)

+
ǫ

2
(x2 − x1)

(

1− ln

(

1− x1

x2

))

. (8.2)

As a check, we add it to the infrared singular part:

IIR+Ib = z0

(

1+ǫ− ǫ

2
ln(a)

)

− ǫ

4
(x1−x2) ln

(

x1

x2

)

. (8.3)

Here we have used the notation

z0 =
x1 + x2

2

as in Ref. [20]. Again, the sum of the ’a-singular part’
and the ’b-singular part’ is the result for the integral

∫ ∞

0

dz(b(z − x1)(z − x2))
− ǫ

2

when computing it utilizing standard IR. But the correct
infrared singular part for our case is only a certain part of
it, namely, IIR.

The part which must be split off here, Ib, vanishes if

x1 = x2 ⇒ (b+ a− 1)2 − 4ab = 0,

(see Eq.(6.2)), which is the case for

q2 = (MV ±Mφ)
2 ≡ q2±.

We cannot trust our procedure for q2 > M2
V . Therefore

the value q2− should be considered as the point where the
standard infrared singular part of [20] and the represen-
tation given here, i.e. IIR, can be joined together.

We emphasize that the kind of argument we have given
here is completely in the spirit of the method of Becher
and Leutwyler, in that we examined the analyticity prop-
erties of the parameter integrals for a general dimension
parameter d.

The calculation of the infrared singular part of the
scalar loop integral IV φ can now be completed:

IIRV φ = −Md−4
V

(4π)
d
2

Γ

(

2− d

2

)

IIR

= 2x1λ− 1

16π2

(

x1 − x1 ln(a)

−(x1 − x2) ln

(

1− x1

x2

))

. (8.4)

Terms of O(ǫ) have been omitted. We claim that the dif-
ference

R′ ≡ IV φ − IIRV φ

is the appropriate regular part. This means that it is ex-
pandable in the small parameters a and b around zero.
The proof consists of two observations:

1) Both IV φ and IIRV φ contain the same terms non-
analytic in a, namely,

1

16π2
x1 ln(a).

The difference is therefore expandable in a.
2) IV φ was expandable in b from the start, whereas IIRV φ

is expandable in b by construction. Therefore the difference
is of course also expandable in b.

Moreover, R′ is unique, because we extracted exactly
the part of IV φ proportional to fractional powers of a for
fractional dimension parameter d. We conclude that R′ is
a well-defined regular part, and that it can be absorbed in
a renormalization of the LECs of the effective Lagrangian.

We add the remark that the expansion of Eq.(8.4) is
reproduced by using the procedure of [19], i.e. expanding
the ’hard pole structure’ and interchanging summation
and integration. We have checked this to order O(p8), but
a formal proof that it will give the same result to all orders
is still missing. It seems that both procedures are indeed
consistent (remember, however, the remarks made at the
end of Sect. 4). This means that the ’low-energy-portion’
of loop integrals is, in this sense, unambiguous. This result
is not really surprising: From the arguments of Sect. 4, it
is seen that an integral like Isoft (see eq.(4.2)) is a pure
’soft pole’ integral, i.e. only involving the pole structure
associated with the Goldstone boson propagator, and thus
having no regular part, while an integral like Ihard is reg-
ular in the Goldstone boson mass, and does not contain
fractional powers of Mφ for any choice of the dimension
parameter d.

9 Goldstone boson self-energy

We are now ready to compute the vector meson contri-
bution of the Goldstone boson self-energy. We consider
first the novel type of diagrams where the heavy mass line
appears in the loop, see Fig. 1b. We get for this amplitude

12iG2
V

F 4
δabIΣ , (9.1)

using the notation

IΣ(q) = i

∫

ddk

(2π)d
q2k2 − (q · k)2

(k2 −M2
V + iǫ)((k − q)2 −M2

φ + iǫ)
.

(9.2)
This integral may be decomposed in a linear combination
of scalar loop integrals by standard techniques:

IΣ = cφIφ + cV IV + cV φIV φ, (9.3)
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where the coefficients ci are given by

cφ =
q2 +M2

φ −M2
V

4
,

cV =
q2 −M2

φ +M2
V

4
,

cV φ =
4q2M2

V − (q2 −M2
φ +M2

V )
2

4
, (9.4)

while the scalar loop integrals are defined as

Iφ = i
∫

ddk
(2π)d

1
k2−M2

φ
+iǫ

= 2M2
φλ+

M2
φ

16π2
ln(a), (9.5)

IV = i
∫

ddk
(2π)d

1
k2−M2

V
+iǫ

= 2M2
V λ, (9.6)

and the scalar loop integral IV φ is defined in Eq.(5.1). We
repeat the remark that we use µ = MV for the renormal-
ization scale.

What power would we like to have for this self-energy
amplitude ? We have one loop integration, two vertices
of order O(p2) and one Goldstone boson propagator. The
vector meson propagator is counted as O(1) here, since the
vector meson line is not connected to any external heavy
particle lines. So we end up with the ’expected’ power

D(Σ) = 4 + 2× 2− (2 + 0) = 6 ,

using Eq.(1.2). The word ’expected’ was used from a naive
point of view, because we are already sophisticated enough
to expect that the ’hard pole structure’ associated with
the vector meson propagator will give the loop integral a
high energy contribution that spoils the power counting.

Indeed, using the decomposition in scalar loop inte-
grals and the expansions of the variables x1 and x2 given
in eq.(3.10) and (3.11), respectively, it is straightforward
to see that IΣ contains the following terms which violate
the power counting:

IΣ =
1

4
M4

V

(

λ(6b−2b2+6ab)+
1

16π2

(

b

2
+
ab

2
−5

6
b2
))

+. . . ,

where the dots stand for terms satisfying the power count-
ing, i.e. they are of order O(p6) or higher.

To find the ’infrared singular part’ of IΣ , it is sufficient
to find the infrared singular part of each of the scalar loop
integrals. This is because the coefficients ci do not contain
any fractional powers of Mφ for any dimension parameter
d.

The infrared singular part of IV φ has been computed
in the last section. The integrand of IV is a pure hard pole
structure without any dependence on a small parameter
like a or b, and will therefore not have an infrared singular
part. Finally, the integral Iφ is proportional to a fractional
power of Mφ, as a direct calculation using dimensional
regularization shows, so it has no regular part (it does not
contain a hard pole structure which could be expanded).
The ’infrared regularized’ self-energy amplitude is thus

IIRΣ =
12iG2

V

F 4
δab(cφIφ + cV φI

IR
V φ), (9.7)

where IIRV φ is given in eq.(8.4). Using the expansions of the

xi and ln(1− y) = −y− y2/2− . . . (|y| < 1), it can easily
be checked that the ’infrared regularized’ amplitude obeys
power counting.

Before we go on and apply our modified version of
infrared regularization to other graphs, we want to men-
tion one more thing. Using the vector field approach, cf.
App. B, the self-energy graph leads to the expression

12iG2
V

M2
V F

4
δabI ′Σ ,

where now

I ′Σ = i

∫

ddk

(2π)d
k2(k2q2 − (k · q)2)

(k2 −M2
V + iǫ)((k − q)2 −M2

φ + iǫ)
.

Subtracting the amplitude computed in the vector field
approach from the amplitude computed in the tensor field
approach, we get

A(W )−A(V ) =
12iG2

V

M2
V F

4
δabi

×
∫

ddk

(2π)d
(M2

V − k2)(k2q2 − (k · q)2)
(k2 −M2

V + iǫ)((k − q)2 −M2
φ + iǫ)

=
12G2

V

M2
V F

4
δab
∫

ddk

(2π)d
k2q2 − (k · q)2

(k − q)2 −M2
φ + iǫ

But this is the same result as one would get for a self-
energy diagram where the vector meson line is replaced
by a contact term interaction

G2
V

8M2
V

〈[uµ, uν ][u
µ, uν ]〉,

leading to a four-φ interaction

− G2
V

M2
V F

4
fabkf cdk∂µφ

a∂νφ
b∂µφc∂νφd.

This confirms the ’duality’ between the vector and the
tensor field approach [15]. Note that this result does not
depend on the regularization scheme - it was derived with-
out even computing the integrals. Since the difference of
the amplitudes is a pure ’soft pole’ Goldstone boson loop
diagram, we see that the ’hard part’ (i.e. the regular part)
is representation independent. In particular, both descrip-
tions produce the same power counting violating terms.

10 Triangle graph

There is one more one-loop diagram of O(p6) where the
vector meson line shows up as a loop line: the triangle
diagram of Fig. 2. One gets the following expression for
the triangle graph:

A∆ =
6G2

V

F 4

(

fab3 +
1√
3
fab8

)

Iτ∆, (10.1)
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Fig. 2. Triangle graph as it contributes e.g. to the pion vec-
tor form factor. Solid, dashed and wiggly lines denote vec-
tor mesons (heavy particles), Goldstone bosons and external
sources (fields), respectively.

where the integral is

−i Iτ∆(p, p+ k) =

∫

ddq

(2π)d

× ((2p+ k)− 2q)τ (p · (p+ k)q2 − (p · q)((p+ k) · q))
(q2 −M2

V )((q − p)2 −M2
φ)((q − p− k)2 −M2

φ)
.

(10.2)

A decomposition of Iτ∆ as a linear combination of scalar
loop integrals is given in App. D (for the Goldstone boson
momenta on mass shell). What concerns us here is the
question how the infrared singular part of this integral can
be obtained. The decomposition in scalar loop integrals
contains an integral we have not yet treated, namely

IV φφ(p, p+ k) ≡
∫

ddq

(2π)d

× i

(q2 −M2
V )((q − p)2 −M2

φ)((q − (p+ k))2 −M2
φ)

.

(10.3)

Fortunately, it is possible to reduce the problem of finding
the infrared singular part of this integral to the case we
have already examined. The procedure can in full gener-
ality be found in section 6.1 of [20]. We show how this
works in the above example: Introducing one more Feyn-
man parametrization, we write IV φφ as
∫

ddq

(2π)d
i

q2 −M2
V

∫ 1

0

dw ×

∂

∂M2
φ

1

(1− w)((q − p)2 −M2
φ) + w((q − (p+ k))2 −M2

φ)

=

∫

ddq

(2π)d
i

q2 −M2
V

∫ 1

0

dw ×

∂

∂M2
φ

1

(q − (p+ wk))2 − (M2
φ − k2w(1 − w))

.

The momentum integral is now of the form of IV φ, with
the operator

∆(. . .) ≡
∫ 1

0

dw
∂

∂M2
φ

(. . .) (10.4)

acting on it. We can insert our result for IIRV φ, with the
substitutions

a =
M2

φ

M2
V

→
M2

φ − k2w(1 − w)

M2
V

= a′ , (10.5)

b =
p2

M2
V

→ (p+ wk)2

M2
V

= b′ . (10.6)

Please note that the external Goldstone boson momentum
is now called p instead of q. Also note that the new vari-
ables a′ and b′ are also of O(p2), which allows to take over
the treatment of infrared regularization presented in the
foregoing sections.

We must show that the operator ∆ does not disturb
the properties of infrared singularity and power counting.
The ’dangerous’ part of this operator is the derivative with
respect to M2

φ, since it changes the chiral order. It is clear

from the above definitions that (for fixed k2)

M2
V

∂

∂M2
φ

=
∂

∂a
=

∂

∂a′
.

We know from the derivation of the infrared singular part
that it can be written in the general form

IIRV φ(a
′, b′) = (a′)

d
2
−1

∞
∑

m=0

∞
∑

n=0

cmna
′mb′n

with some numerical coefficients cmn that depend only
on the dimension d. For d → 4, this gives the correct
order O(p2) for IIRV φ. Letting the operator ∆ act on this
expression, we get

IIRV φφ = ∆IIRV φ(a
′, b′)

=

∫ 1

0

dw
1

M2
V

∂

∂a′

(

(a′)
d
2
−1

∞
∑

m=0

∞
∑

n=0

cmna
′mb′n

)

=

∫ 1

0

dw (a′)
d
2
−2

∞
∑

m=0

∞
∑

n=0

(

d

2
− 1 +m

)

cmna
′mb′n .

(10.7)

This shows that the expansion of the thus defined infrared
singular part of IV φφ starts with Md−4

φ , as one expects
for such an integral by simple power counting. We learn
from the last expression that, in principle, it is sufficient
to know the chiral expansion of IIRV φ to arrive at the chiral

expansion of IIRV φφ. The only problem for practical calcula-
tions is that the parameter integrals over w are not at all
of a simple form, because a′,b′ and therefore also x′

1 and
x′
2, defined in analogy to Eq.(3.9), are nontrivial functions

of w.
For d → 4, IIRV φφ is

∫ 1

0 dw 1
M2

V

∂
∂a′

(

2x′
1λ− 1

16π2

(

x′
1 − x′

1 ln(a
′)

−(x′
1 − x′

2) ln(1−
x′

1

x′

2

)

))

=

∫ 1

0
dw
M2

V

(

2y1λ− 1
16π2

(

y1 − y1 ln(a
′)

−x′

1

a′
− (y1 − y2) ln(1 − x′

1

x′

2

)− y1x
′

2
−y2x

′

1

x′

2

))

,

where we defined

y1,2 =
∂

∂a′
x′
1,2 =

1

2b′

(

1± b′ − a′ − 1
√

(b′ + a′ − 1)2 − 4a′b′

)

.
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The singularity structure of IV φφ is richer than the one
of IV φ because by the definition of a′, a term like ln(a′)
not only contains the infrared singularity for Mφ → 0, but
also a cut for k2 = t > 4M2

φ, which is associated with the
two-Goldstone boson production threshold.

The important point is that, having the prescription
for IV φ, we can find the infrared singular part of any loop
integral where a small momentum of order O(p) flows
through the heavy particle line(s) (this is the case we
have treated in this paper) or where a nearly on-mass-
shell heavy particle is involved (in which case the results
of [20] can be used directly). The principle is now well-
understood, but practical calculations will be difficult for
complicated diagrams, because one needs a parameter in-
tegration for every pair of propagators which are combined
to one (parameter-dependent) pole structure. An exam-
ple for this has been shown in the treatment of IV φφ. As
another point, the decomposition of a complicated loop
integral involving a lot of vertices in a decomposition in
scalar loop integrals will be lengthy and complicated. But
these are no conceptual problems any more. The concep-
tual problem of the power-counting violating terms has
been solved by dropping the regular parts of all loop in-
tegrals, retaining the infrared singular parts that stem
from the region where the loop momentum is O(p). As a
further consequence, many diagrams, namely those where
the loops are formed of heavy particle lines only, can be
dropped from the start because the respective loop inte-
grals will only contain ’hard pole’ structures and do not
lead to an infrared singular part. Using this scheme, we
can proceed and treat all kinds of diagrams where heavy
resonances (not only vector mesons) occur in loops, and
whose momenta are to be counted as either nearly on-shell
or O(p) by the perturbative scheme of power counting. We
finally remark that the treatment of the vector meson loop
graphs in the analysis of the nucleon electromagnetic form
factors performed in [29] is consistent with the procedure
we have established.

11 Vector meson self-energy graph

In the last section we have considered diagrams where the
vector meson shows up as a strongly virtual intermediate
state, with a small momentum flowing through the vector
meson line. We found the ’infrared singular’ part of the
corresponding amplitude, and we saw that it was neces-
sary to modify the method of [20], where all particles in
the intermediate state where considered as being close to
their respective mass shell. It is now natural to ask: What
happens if the ’light’ particles (the Goldstone bosons) are
far from their mass shell ? In principle, the ’hard mo-
mentum part’ of the pionic intermediate states has been
integrated out in the effective theory. But in analogy to
the case of the treatment of the ’heavy’ vector meson in
the last chapter, it might be useful to take these degrees
of freedom into account in a systematic fashion, because
in this way one sums up (infinitely many) higher order
graphs. We will encounter such a situation in the follow-
ing section.

11.1 One more case of IR regularization

In Fig. 3 we show a graph contributing to the vector me-
son self energy. In the case where there is a ’small’ (O(p))
momentum flowing through the vector meson line, the
corresponding amplitude would be a homogeneous func-
tion of small parameters (external momentum and quark
masses), since the large scale (in this case, the vector me-
son mass) does not show up in the loop line propagators
and thus cannot produce a ’hard pole’ contribution. The
loop integral is the same as in the Goldstone boson sec-
tor, and therefore has no ’regular part’. When computing

P

P − k

k

Fig. 3. The vector meson self-energy diagram with a pure
Goldstone boson loop. Solid (dashed) lines denote vector
mesons (Goldstone bosons).

self-energy contributions, one is usually interested in the
case where the external momentum P is close to the mass
shell of the corresponding particle. This leads to the ap-
pearance of the large scale in the denominator of the inte-
grand of the loop integral, and we expect a power-counting
violating contribution stemming from a ’hard pole’ of the
integrand. The integral will develop a regular part in the
terminology of Becher and Leutwyler.

We start our analysis for the case P 2 ≫ M2
φ with the

question: What is the ’soft part’ of a diagram like Fig.4.1?
That is, which region of the loop momentum integration
produces the infrared singular part? Obviously, the case
where both Goldstone boson propagators are of O(p−2)
is excluded by four-momentum conservation at the two
vertices. The region where both Goldstone boson lines are
far from their mass shell is a pure ’hard-momentum effect’
and thus belongs to the ’regular part’. The soft part can
only come from the region of the loop integration where
one line is soft (i.e. it carries an O(p)-momentum), and the
other Goldstone boson line carries the large momentum P
and is thus far from its mass shell.

As an illustration of this argument, let us first try to
extract the ’soft pole contribution’ following the method
of [19]. We examine the scalar loop integral

I = i

∫

ddk

(2π)d
1

(k2 −M2
φ)((k − P )2 −M2

φ)
. (11.1)

Following the above reflections and the receipt of [19], we
treat the momentum of one line as ’soft’ and expand the
propagator associated with the other line. Then we inter-
change integration and summation of the series, thereby
’destroying the hard pole’:

I → i

∫

ddk

(2π)d
1

k2 −M2
φ

1

P 2

∞
∑

n=0

(2P · k +M2
φ − k2)n

(P 2)n
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= i

∫

ddk

(2π)d
1

k2 −M2
φ

1

P 2

∞
∑

n=0

(2P · k)n
(P 2)n

→
∞
∑

n=0

i

(P 2)n+1

∫

ddk

(2π)d
(2P · k)n
k2 −M2

φ

=
1

2
Isoft.

The factor of 1
2 appears due to the fact that the full soft

part also includes the part where the other line (with mo-
mentum P − k) is considered as ’soft’. Of course this part
is equal to the above result due to the symmetry of the
graph. We note further that it is not legitimate to resum
the series in the above result to get

I ′ = i

∫

ddk

(2π)d
1

(k2 −M2
φ)(P

2 − 2k · P )

= i

∫

ddk

(2π)d

∫ ∞

0

dz

× 1

[(k2 −M2
φ)(1− z) + z((k − P )2 −M2

φ)]
2

= −i

∫

ddk

(2π)d

∫ ∞

1

dz

× 1

[(k2 −M2
φ)(1− z) + z((k − P )2 −M2

φ)]
2
.

This contains a ’hard pole’ contribution and will not sat-
isfy the power counting scheme, which requires the scalar
loop integral to be O(pd−2), because only one Goldstone
boson propagator is booked as O(p−2), while the other
Goldstone boson must be far off its mass shell (its mo-
mentum must be of the order of P by momentum con-
servation). To repeat, this power counting is strictly valid
only for the ’soft pole’ part of the integral, which we have
identified as Isoft.

The alert reader will note that the result Isoft corre-
sponds to a series of tadpole graphs, involving only one
Goldstone boson propagator. This can of course not be
the whole story, because the amplitude of Fig. 3 has an
imaginary part due to the production of two Goldstone
bosons in the intermediate state, while the tadpole sum
does not have such an imaginary part. In order to take
only Isoft as the regularized amplitude, one would have
to write complex coefficients in the effective Lagrangian,
which we do not want. A direct calculation of the full
scalar loop integral shows that the imaginary part does
not satisfy the power counting mentioned above. This is
related to the fact that for large P 2 of the heavy external
particle, the Goldstone bosons produced in the decay of
this particle are not to be considered as ’soft’. Below the
threshold, we have P 2 < 4M2

φ, so P 2 can not be consid-

ered as being very large compared to the scale M2
φ in that

region, and we would have to take the full integral I as the
soft part, and not Isoft. This phenomenon of the ’missing
imaginary part’ is consistent with the findings of Ref. [25],
where this was noted using the Heavy Vector Meson ap-
proach. We will not discuss this further at this point and

turn to the scheme of infrared regularization. Doing the
usual steps, we obtain

I = −Γ (2− d
2 )

(4π)
d
2

(P 2)
d
2
−2

∫ 1

0

dz(D(z))
d
2
−2, (11.2)

where

D(z) = z2 − z +
M2

φ

P 2
. (11.3)

Motivated by the remarks made in the last paragraph, we
will consider the case that P 2 > 4M2

φ. This is fulfilled

for the case we are interested in, where P 2 is close to the
physical vector meson mass squared, and Mφ is the mass
of the particles we consider as Goldstone bosons.

Obviously, fractional powers ofMφ are produced in the
parameter regions where

z2 − z = 0 ⇒ z = 0 or z = 1,

corresponding to the fact that either one or the other
Goldstone boson line in the loop carries soft momentum.
In accord with the procedure of Sect. 6 (cf. Eq. (6.2)), we
introduce the zeroes of D(z),

d1,2 =
1

2
(1 ∓ σ),

σ =

√

1−
4M2

φ

P 2
. (11.4)

Note that σ ∈ R and

0 < d2 − d1 = σ ≤ 1.

We can simplify our analysis by ’folding’ the parameter
interval symmetrically,

∫ 1

0

dz(D(z))
d
2
−2 = 2

∫ 1

2

0

dz(D(z))
d
2
−2,

allowing us to expand the pole due to the zero d2 > 1
2 :

∫ 1

0

dz(D(z))
d
2
−2 =

∫ 1

0

dz(z − d1)
d
2
−2(z − d2)

d
2
−2

= 2

∞
∑

m=0

(−d2)
d
2
−2−m 1

m!

Γ (d2 − 1)

Γ (d2 − 1−m)

×
∫ 1

2

0

(z − d1)
d
2
−2zmdz.

We did not yet change the value of the parameter inte-
gral. To find the ’infrared singular’ part of the parameter
integral in the last line, we note that d1 is proportional
to M2

φ and of O(p2), and shift the integration variable to
write

∫ 1

2

0

(z − d1)
d
2
−2zmdz =

∫ 0

−d1

z
d
2
−2(z + d1)

mdz

+

∫ 1

2
−d1

0

z
d
2
−2(z + d1)

mdz.
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Terms proportional to d
d
2

1 will only be produced by the
first term on the right-hand side (remember m ∈ N).
Scaling the variable of integration with d1, it takes the
form

∫ 0

−d1

z
d
2
−2(z + d1)

mdz

= (−1)m+1(−d1)
d
2
−1+m

∫ 1

0

t
d
2
−2(1− t)mdt

= (−1)m+1(−d1)
d
2
−1+m

Γ (d2 − 1)Γ (m+ 1)

Γ (d2 +m)
,

where we substituted z = −td1.
The ’infrared singular part’ of I is thus

IIR = −2Γ (2− d
2 )(P

2)
d
2
−2

(4π)
d
2

(11.5)

×
∞
∑

m=0

(−1)m(d1)
d
2
−1+m(d2)

d
2
−2−m(Γ (d2 − 1))2

Γ (d2 − 1−m)Γ (d2 +m)
.

This expansion starts with d
d
2
−1

1 ∼ Md−2
φ and obeys low-

energy power counting. The series could be summed up,
but this is not necessary. Reviewing what we have done so
far, it becomes clear that we have just selected a certain
range of integration which produces the fractional powers
of Mφ. This step may be symbolized by

I =

∫ 1

0

dz(. . .) →
∫ d1

0

dz(. . .) +

∫ 1

d2

dz(. . .)

= 2

∫ d1

0

dz(. . .) = IIR. (11.6)

Applying this to I with d = 4− ǫ, we find

IIR = 4d1λ+
1

16π2

(

−2d1+ln(a)+σ ln

(

1 + σ

1− σ

)

−2σ ln(σ)

)

,

(11.7)
while the ’regular part’ is

I−IIR = (2−4d1)λ+
1

16π2

(

−(1−2d1)+2σ ln(σ)−iπσ

)

,

(11.8)
which is indeed expandable in M2

φ for P 2 > 4M2
φ. We

have again used MV for the renormalization scale, and
the variable a defined in Eq. (5.3).

It may be checked by expanding d1 and σ in powers
of M2

φ that the infrared singular part indeed satisfies the
power counting rules, and also that

IIR = Isoft.

We have already remarked in the last chapter that the low-
energy part of a loop integral is unambiguously defined in
this sense.

The imaginary part of the scalar loop integral I is

−iσ

16π
,

whose chiral expansion starts O(1) and therefore does not
obey the power counting rules. But it cannot be sub-
tracted from the full amplitude since it is not real. The
corresponding width of the vector meson due to its possi-
ble decay into a pair of Goldstone bosons cannot simply
be neglected. In principle, one should give the denomina-
tor of the vector meson propagator an imaginary part to
deal with this fact.

The result of Eq. (11.7) is valid above the two-Goldstone-
boson threshold. At P 2 = 4M2

φ, the ’regular part’, Eq. (11.8),
vanishes, and remains zero below the threshold, since as
we remarked above the integral I then has no regular part
and is completely ’infrared singular’. The two represen-
tations for the infrared singular part, valid for different
ranges of the parameter P 2, may be ‘joined together’ at
the threshold singularity. A similar thing happened in the
last chapter for the two representations of the infrared
singular part of the scalar loop integral IV φ.

11.2 Application to the self-energy

The major problem in finding the ’soft part’ of the ampli-
tude of Fig. 3 has been solved in the last paragraph. For
the full expression, we need to add some vertex structure
from the local effective Lagrangian. We choose to work
with the interaction Lagrangian of Eq. (2.11) and refrain
from constructing interaction terms with a higher num-
ber of derivatives, though not all momenta in the present
problem can be considered as ’soft’. Since the coupling
constantGV may be measured from ρ–meson decay, where
the Goldstone bosons are also not of soft momentum, this
can be seen as a valid approximation. Applying the usual
Feynman rules, we obtain

(−i)Σµν,ρσ
V =

1

2

G2
V

F 4
fabcf bad

×
∫

ddk

(2π)d
(kµP ν − kνPµ)(P ρkσ − P σkρ)

(k2 −M2
φ)((k − P )2 −M2

φ)
. (11.9)

Before further evaluating this, we have to discuss the power
counting. The vertices are both of the order O(p), since
only one momentum in the product k · P is a small mo-
mentum in the sense of the power counting scheme. Re-
membering the discussion of the last paragraph, we want
the amplitude to be of ’chiral order’ d+1+1− 2 = d. We
will see that the infrared regularized amplitude will indeed
respect this power counting. Using the tensor integral of
App. D, we get

Σµν,ρσ
V = (11.10)

3G2
V

2F 4
δcdPµν,ρσ 1

d− 1

(

1

2
Iφ +

1

4
(4M2

φ − P 2)I

)

.

Here I is the scalar loop integral of Eq. (11.1), and we
defined

Pµν,ρσ = gµρP νP σ − gµσP νP ρ − (µ ↔ ν) . (11.11)

The infrared regularized amplitude is obtained from (11.9)
by simply letting I → IIR. The infrared part IIR was of
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O(pd−2). In order to check that the terms of O(pd−2) can-
cel in the soft part of (11.9), it is easiest to use that the
first term in the chiral expansion of IIR is also the first
term of the series for Isoft, which was given in Sect. 11.1:

Isoft =
2

P 2
Iφ + . . .

Inserting this in (−i)Σµν,ρσ
V,IR , that is the infrared part of

Eq. (11.9), it is clearly seen that the infrared part of the
amplitude is indeed of order O(pd), as required by low-
energy power counting.

11.3 Contributions to the Vector Meson Mass

First we introduce some notation. We define

1 ≡ 1µν,ρσ =
1

2
(gµρgνσ − gµσgνρ). (11.12)

Furthermore, we write

P ≡ Pµν,ρσ,

see Eq (11.11). It is easy to calculate

1 · 1 = 1 , 1 ·P = P ,

P · 1 = P , P ·P = 2P 2P ,

where the multiplication works as e.g.

1µν,αβ ·Pαβ,ρσ = Pρσ
µν .

The tensor field propagator may then be written

D =
i

M2
V

(

21+
P

M2
V − P 2

)

, (11.13)

while its inverse (in the sense of the above multiplication)
is

D−1 =
1

i

(

M2
V

2
1− 1

4
P

)

. (11.14)

The one-particle irreducible self-energy amplitude may be
parametrized as

Σ =
M2

V

2
A1− B

4
P . (11.15)

where A and B are scalar functions of P 2 and the meson
masses.

The procedure is now standard: Summing over the
number of self-energy insertions, we find that the full prop-
agator

Dfull = D+D(−i)ΣD+ . . .

is given by

Dfull = (D−1 + iΣ)−1 (11.16)

=
i

M2
V (1 −A)









21+
P

M2
V

(

1−A
1−B

)

− P 2









.

We have to look for the poles of this expression. Since A
is a small perturbation of O(p2), the only pole will be at

P 2 = M2
V

(

1−A

1−B

)

= M2
V,ph , (11.17)

with MV,ph the physical mass of the vector meson. Before
we use this formula to compute the contribution of Fig. 3
to the vector meson mass, let us make a very rough esti-
mate of the expected size of the contribution. The most
general effective Lagrangian for the tensor field contains
a term

c〈WµνW
µνχ+〉,

yielding, among other terms, a contact term contribution
of O(p2), which gives rise to a shift of the propagator pole:

M2
V → M2

V + 8cM2
φ .

Since the coupling constant c is not known, for the pur-
pose of our estimate we make a naturalness assumption
concerning this coupling, and set c = 1, which gives us
a value of 100 MeV for the mass shift. If power counting
is a consistent perturbative scheme here, we would ex-
pect for an O(p4) correction a number of size of roughly
(M2

φ/M
2
V ) (100 MeV) ∼ 3MeV (for the pion contribu-

tion). Now let us compare this estimate with the (infrared
regularized) amplitude corresponding to Fig. 3. It will con-
tribute to B, defined above, with

BV = −6G2
V

F 4

(

1

6
Iφ +

4M2
φ −M2

V

12
IIR

+
1

144π2
(d1M

2
V − (1 + 4d1)M

2
φ)

)

, (11.18)

giving a mass shift of 1.2MeV, which is really only a
small correction, and also of the size expected by the (very
rough) estimate made above. If we had used the full (real
part of) the integral I, we would get a result that is com-
parable to a correction of O(p2) (of course, there are such
terms of O(p2) in the full integral, i.e. the power-counting
violating terms). We conclude that the main effect of the
graph of Fig. 3 (at the physical pion mass) is due to the
imaginary part of this diagram, associated with the width
of the vector meson propagator.

12 Chiral extrapolation of the rho meson

mass

In this section, we analyse the quark mass dependence of
the ρ-meson mass and related topics. This is not entirely
new, see e.g. Refs. [31, 32], but we do not want to rely
on any model or the assumption of ‘dominating’ contribu-
tions to the ρ self-energy. In fact, there are many different
contributions to the self-energy of the vector mesons, and
only a few of the corresponding LECs are known from phe-
nomenology. Of course, one could resort to models like the
massive Yang-Mills approach or the extended NJL model
to estimate these parameters (as it is done e.g. in the
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work of Bijnens and collaborators [25]), but our goal is
more modest. We resort to parameterizing the pion mass
dependence of Mρ and fix the combinations of LECs from
existing lattice data [33]. This allows e.g. to analyze the
value of Mρ in the chiral limit.

First, let us discuss the many different contributions
to the vector meson mass. We restrict ourselves to terms
at most quadratic in the quark masses. The first type of
contribution stems from tree diagrams with quark mass
insertions, i.e. operators ∼ χ+ or ∼ χ2

+, like e.g.

〈W·W χ+〉 , 〈W·W〉〈χ+〉 , . . . , 〈W·Wχ2
+〉 , . . . . (12.1)

The LECs accompanying such explicit symmetry breaking
terms are in general difficult to determine, as it is well
known from the analysis of the nucleon mass in chiral
perturbation theory, see e.g. [20, 34, 35]. Such tree graphs
lead to the following vector meson mass terms:1

M tree
V = k1 M

2
φ + k2 M

4
φ , (12.2)

with k1 (k2) a combination of dimension two (four) LECs.
There is also a tree graph without quark mass insertion,
it corresponds to the vector meson mass in the chiral lim-
ited, denoted asM0

V in what follows. Next, we consider the
various one-loop graphs. Tadpole diagrams with an inser-
tions of the second order effective chiral Lagrangian have
also to be considered, some of the pertinent structures are

〈W ·Wχ+〉 , 〈W ·W uαu
α〉 , 〈WαµW βνgµν uαuβ〉 , . . . .

Note that in addition to the symmetry breakers of the
type given in Eq. (12.1), kinetic terms ∼ ∂µφ∂µφ from
the second order effective Lagrangian also contribute, thus
increasing the number of LECs to be determined. In the
comparable case of the nucleon mass, these can be deter-
mined to good accuracy form the analysis of pion-nucleon
scattering in the low energy regime. The total contribu-
tion of the tadpoles to the vector meson mass takes the
form

M tadpole
V = k3 M

4
φ ln

(

M2
φ

M2
V

)

, (12.3)

with k3 another combination of dimension two LECs. The
sunrise diagram (cf. Fig. 1a) starts to contribute at order
p3 because there are one derivative vertices of the form

〈ǫµνρσ Wµν ∇α Wαρ uσ〉 , . . . ,

A famous example of such a vertex is the ωρπ coupling,
which is generated in meson field theory from the Wess-
Zumino-Witten term, see e.g. [11, 12]. It was e.g. consid-
ered in the analysis of [32] as one of what these authors
call ‘dominating contributions’. Since there are various of
such V V φ couplings, we write the sunrise contribution to
the vector meson mass as

M sunrise
V = k4 M

3
φ + k5 M

4
φ ln

(

M2
φ

M2
V

)

+ . . . , (12.4)

1 To avoid notational clutter, we absorb all prefactors like
1/F 2 etc. in the coefficients ki.

which is again reminiscent of the leading non-analytic con-
tribution to the nucleon mass. The ellipsis denotes analytic
terms ∼ M4

π and higher order contributions. Finally, we
have to consider the self-energy graph considered in the
preceding section. It leads only to a fourth order contri-
bution of the form

M self
V = k6 M

4
φ ln

(

M2
φ

M2
V

)

+ . . . , (12.5)

To be specific, we consider now the pion mass expan-
sion of the ρ-meson mass, i.e. we set MV = Mρ and
Mφ = Mπ in the above formulae. Including only the non-
analytic terms from the fourth order, it takes the form

Mρ = M0
ρ + c1 M

2
π + c2 M

3
π + c3 M

4
π ln

(

M2
π

M2
ρ

)

+O(M4
π) ,

(12.6)
where M0

ρ is the mass in the chiral limit, and the ci (i =
1, 2, 3) are combinations of coupling constants as discussed
before. In the absence of a detailed phenomenological anal-
ysis of these couplings, we will use the CP-PACS data [33]
for the ρ-meson mass as a function of the pion (average
light quark) mass to determine the parameters M0

ρ , c1, c2
and c3. We only employ lattice data with M2

π . 0.5GeV2.
In fit 1, we fit these parameters by demanding that the
physical ρ-mass is obtained for Mπ = 140MeV. For fits 2
and 3, however, this restriction is lifted. In these fits, we
input the chiral limit mass. Throughout, the fits are sub-
jected to the further restriction that one obtains natural
values for the combinations of LECs, that is we enforce
|ci| ≤ 3. The corresponding fit parameters (obtained by
least-square fits) are collected in Tab. 1.
The corresponding curves are shown in Fig. 4. To get a
better handle on the theoretical uncertainty, we also allow
the fits to stay within the theoretical uncertainty of the
lowest point at M2

π = 0.1GeV2, as shown in Fig. 5. If we
insist again on naturalness of the coupling constants, we
can bound the ρ-mass in the chiral limit by

650 MeV ≤ M0
ρ ≤ 800 MeV . (12.7)

These results are similar to what was found in the pioneer-
ing work in Ref. [32], but they are less model-dependent.
The range for M0

ρ is also consistent with the numbers de-
rived by Bijnens and collaborators in their study of vector
mesons in chiral perturbation theory [25]. It would be in-
teresting to extend these studies in two directions, first to
include also more recent lattice data and second to try to
give more stringent limits on the combinations of LECs
by incorporating more phenomenological constraints.

Table 1. Fit parameters. ⋆ denotes an input quantity.

Fit 1 Fit 2 Fit 3

M0

ρ [GeV] 0.776 0.650⋆ 0.800⋆

c1 [GeV−1] −0.662 2.200 −1.215
c2 [GeV−2] 1.291 −1.934 1.915
c3 [GeV−3] −1.723 1.572 −2.367
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Fig. 4. The rho meson mass as a function of the light quark
mass, M2

π ∼ (mu + md). The solid (dot-dashed) line(s) refers
to fit 1 (2,3) as described in the text. The lattice data are from
CP-PACS [33]. The diamond denotes the physical rho mass.
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Fig. 5. The rho meson mass as a function of the pion mass:
Theoretical uncertainty as described in the text. For further
notations, see Fig. 4.

The quark mass expansion of the ρ-mass Eq.(12.6) al-
lows one to deduce the corresponidng σ–term,

σπρ = m̂
∂Mρ

∂m̂
= M2

π

∂Mρ

∂M2
π

, (12.8)

with m̂ the average light quark mass. From the numbers
collected in Table 1, we find

− 1.9M2
π ≤ σπρ ≤ 1.5M2

π . (12.9)

This shows again that the rho as a massive particle has a
very different quark mass expansion than the pion, where
σπ ≃ M2

π [1]. In magnitude, the rho σ-term is similar to
the pion-nucleon one, σπN ≃ 45MeV.

13 Summary and outlook

In this paper, we have considered chiral perturbation the-
ory in the presence of vector and axial-vectormesons (spin-
1) fields and presented an extension of the infrared reg-
ularization scheme originally developed for baryon chiral

perturbation theory. The pertinent results of this investi-
gation can be summarized as follows:

1) The most economic way to deal with vector mesons
in chiral perturbation theory is to utilize the anti-
symmetric tensor field formulation as stressed in [13].
When vector mesons appear in tree graphs only, cal-
culations are straightforward as summarized in Sect. 2
and App. A. Of course, other formulations like the vec-
tor field approach can also be used, see App. B,C.

2) When vector mesons appear in loops, the appearance
of the large mass scale complicates the power count-
ing, as discussed in Sect. 3 and Sect. 4. In essence,
loop diagrams pick up large contributions when the
loop momentum is close to the vector meson mass. To
the contrary, the contribution from the soft poles (mo-
menta of the order of the pion mass) that leads to the
interesting chiral terms of the low-energy EFT (chiral
logs and alike) obeys power counting. We have briefly
summarized the method proposed in [19] to extract the
‘soft pole’ contribution from one-loop integrals.

3) The standard case of infrared regularization [20], where
the heavy particle line is conserved in the (one-loop)
graphs is recapitulated in Sect. 5. For these cases a
very elegant splitting of a Feynman parameter integral
allows to unambigouosly separate the infrared singular
from the regular part, cf. Eq.(5.5).

4) In the case of spin-1 fields, new classes of self-energy
graphs appear. The case for lines with small exter-
nal momenta but a vector meson line appearing inside
the diagram in analyzed in Sect. 6 and the singularity
structure of the corresponding integrals is discussed in
Sect. 7. In Sect. 8 the infrared singular part for such
types of integrals is explicitly constructed, cf. Eq. (8.4).
As explicit examples, the Goldstone boson self-energy
and the triangle diagram are worked out in Sect. 9 and
Sect. 10, respectively.

5) A different type of one-loop graphs appears in the vec-
tor meson self-energy, where only light particles (Gold-
stone bosons) run in the loop. This is discussed in
detail in Sect. 11, where the corresponding infrared
singular part is extracted, see Eq. (11.7), and the con-
tribution to the vector meson mass is worked out. We
briefly discuss the problems related to the imaginary
part of such type of diagrams.

6) As an application, we consider the pion mass depen-
dence of the ρ-meson mass in Sect. 12. We show that
there are many contributions with unknown LECs, still
one is able to derive a compact formula for Mρ(Mπ),
see Eq. (12.6). We analyze existing lattice data [33]
and conclude that the ρ-meson mass in the chiral limit
is bounded between 650 and 800 MeV. We have also
discussed the πρ sigma term.

The methods outlined here can be applied to many in-
teresting problems, for example one could systematically
analyze vector meson effects on Goldstone properties like
form factors or polarizabilities or extend these consider-
ations to systems including baryons (for a first step see
e.g. [23]).
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A Tensor field approach

In this appendix, we briefly discuss the representation of
spin-1 particles in terms of antisymmetric tensor fields,
following closely Appendix A of [13].

As an antisymmetric tensor field, Wµν has six degrees
of freedom, whereas a massive vector field only has three.
Loosely speaking, there are two spin-1 fields ’hidden’ in a
general antisymmetric tensor field approach (correspond-
ing to a reducible representation of the rotation group).
To make this clear, we decompose the tensor field Wµν (in
momentum space)

Wµν = (W −PWP )µν+(PWP )µν ≡ WL
µν+WT

µν , (A.1)

where the matrix P is the projector

Pµν = gµν − pµpν
p2

, (A.2)

and pµ is the momentum four-vector associated with the
tensor field. Because of the projector property of P , we
have

pµWT
µν = 0,

giving 4 conditions for six degrees of freedom, but one
condition is redundant due to the antisymmetry property
of Wµν . So we are left with 6 − 3 = 3 degrees of freedom
for WT , and therefore also for WL.

Inserting the above decomposition in the general form
of an action principle for antisymmetric tensor fields [13],

S̃W =

∫

d4x
{

(a− 2b)∂µWµν∂ρW
ρν + b∂ρWµν∂ρW

µν

+cWµνW
µν
}

, (A.3)

with arbitrary parameters a, b, and c 6= 0, and using

WL
µνW

µν
T = 0,

which is easily verified by a direct calculation, we see that
the action splits in two terms:

S̃W = SWL
+ SWT

, (A.4)

where

SWL
=

∫

d4x
(

a∂µWL
µν∂ρW

ρν
L + cWL

µνW
µν
L

)

,

SWT
=

∫

d4x
(

b∂ρWT
µν∂ρW

µν
T + cWT

µνW
µν
T

)

.

Therefore, the path integral can also be factored:
∫

[dW ]eiS̃W =

∫

[dWL]e
iSWL

∫

[dWT ]e
iSWT . (A.5)

In the rest frame, this decomposition corresponds to

[dW ] = [dWL][dWT ] =

3
∏

i=1

[dW0i]

3
∏

i<j

[dWij ].

Following [13], we choose b = 0, so that the second path
integral becomes an unimportant constant (from the view-
point of the classical action,WT becomes a non-propagating
field). For a = 0, in contrast, WL would be ’frozen’ in this
way. Choosing, furthermore,

a = −1

2
, c =

M2
V

4
, (A.6)

and dropping the letter L, the massive vector field is de-
scribed by
∫

[dW ]eiSW =

∫

[dW ]exp

{

i

∫

d4x (−1

2
∂µWµν∂ρW

ρν

+
M2

V

4
WµνW

µν)}. (A.7)

Without invalidating the above argument, we can also add
a coupling linear in W , of the form

−1

4
JµνW

µν ,

with some external antisymmetric current Jµν . Since we
do not use couplings quadratic in the tensor field in this
work, we will not attempt to extend the given argument to
Lagrangians including such more complicated interaction
terms.

B Vector field approach

One can now ask how much the results obtained from cal-
culations similar to the ones in the main body of the text
depend on the description in terms of an antisymmetric
tensor field. Of course a dependence of that kind is not
wanted for physical observables!

What happens if one uses a more conventional vector
field approach for the description of the vector mesons?
The Lagrangian for a massive vector field Vµ is well known:

Lkin
V = −1

4
〈VµνV

µν〉+ 1

2
M2

V 〈VµV
µ〉 (B.1)

where Vµν is the field strength tensor associated with Vµ,

Vµν = ∇µVν −∇νVµ.

The corresponding vector field propagator (in momentum
space) reads

Gµν(k) = (−i)

(

gµν − kµkν

M2

V

)

k2 −M2
V + iǫ

. (B.2)

If one now tries to write down interaction terms in analogy
to the ones given before, it is seen that they are all O(p3),
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giving a resonance exchange diagram of O(p6) in contrast
to the O(p4) result derived with the antisymmetric tensor
field description. In particular, the interaction terms are

Lint
V = − fV

2
√
2
〈F+

µνV
µν〉 − igV

2
√
2
〈[uµ, uν ]V

µν〉. (B.3)

Here fV and gV are new coupling constants, and the minus
sign is a pure convention. This interaction looks very much
like Eq. (2.11), but note that the tensor Vµν contains, from
its definition, an additional derivative giving the interac-
tion the order O(p3) instead of O(p2). The form factor
contribution derived with this interaction is of higher or-
der than the result of the last section and does not agree
with experiment. If we had started with a vector field de-
scription for vector mesons, we might have concluded that
the vector meson contribution is less important than sug-
gested, for example, by a dispersive analysis. This problem
was already solved in [15], we simply repeat here some of
salient ingredients in a slightly different way.

The mathematical relation between the two variants
of the theory was worked out in [15] by imposing e.g. the
large momentum transfer constraints on the pion vector
form factor. In App. C, we argue that the Lagrangians

Lkin
W − 1

4
〈JµνWµν〉 (B.4)

and

Lkin
V +

1

4MV

〈JµνV µν〉 − 1

16M2
V

〈JµνJµν〉 (B.5)

indeed give equivalent theories on the level of the path
integrals, when Jµν are some traceless hermitian sources.
This equivalence is achieved by simply integrating out the
field Wµν , which leads to the appearance of contact terms
quadratic in the source. The source terms we use are

Jµν = −
√
2(FV F

+
µν + iGV [uµ, uν])

(compare Eq. (2.11)) and, assuming the validity of the
path-integral argument for the equivalence, we draw the
conclusion that equivalence leads to

fV =
FV

MV

, gV =
GV

MV

, (B.6)

in perfect agreement with Ref. [15]. Furthermore, since
the Vµν - couplings are of O(p3), we conclude that vector
meson exchange to lowest order O(p4) can be represented
by the contact terms

1

16M2
V

〈JµνJµν〉 =
〈

− G2
V

8M2
V

[uµ, uν ][u
µ, uν ]

+
F 2
V

8M2
V

F+
µνF

µν
+ +

iFV GV

4M2
V

F+
µν [u

µ, uν ]

〉

.

Using the definition of the objects uµ and F+
µν and stan-

dard trace relations, the contact terms can be written as

− 1

16M2
V

〈JµνJµν〉 = LV
1 P1 + LV

2 P2 + LV
3 P3

+LV
9 P9 + LV

10P10 +HV
11P11 ,

with Pi the structures of the fourth order meson Lagrangian
[2] and furthermore

LV
1 =

G2
V

8M2
V

, LV
2 = 2LV

1 , LV
3 = −6LV

1

LV
9 =

FV GV

2M2
V

, LV
10 = − F 2

V

4M2
V

, HV
11 = − F 2

V

8M2
V

.

C Duality transformation

The action for an antisymmetric tensor field Wµν is

SW =

∫

d4x LW (C.1)

Note that Wµν now stands for the field WL
µν , having three

degrees of freedom, as discussed in App. A. Now let us
modify this action by a term containing a vector field Vµ:

LV,W = LW − 1

4
JµνW

µν +
M2

V

2

(

Vµ − 1

MV

∂νWνµ

)2

.

(C.2)
We have also added a source term linear inWµν . The equa-
tions of motion (e.o.m.) following from this Lagrangian are

Wµν +
1

MV

(∂µVν − ∂νVµ) =
1

2M2
V

Jµν , (C.3)

Vµ − 1

MV

(∂σWσµ) = 0. (C.4)

Substituting Vµ from the second equation into the first
one, the latter becomes the ’old’ e.o.m. following from
LW − 1

4J · W alone. So on the classical level, the addi-
tional squared term does not change anything.

Considering now path integrals, we deduce by a Gaus-
sian integration over V that
∫

[dW ]ei
∫

d4x(LW− 1

4
JµνW

µν) ∼
∫

[dW ]

∫

[dV ]ei
∫

d4xLV,W ,

(C.5)
where the ’∼’ means ’up to a constant factor’. It must
be noted here that the vector field V should be treated
like W , that is using a constraint to eliminate one degree
of freedom. On the classical level, the second e.o.m. says
that V has the same number of degrees of freedom as W ,
i.e. three d.o.f. Contributions of the path integral over V
deviating from this e.o.m are exponentially damped like

e−x2

because of the form of the squared term in LV,W .
Using a constraint on V , we will get just another constant
prefactor as long as this constraint is linear in the field.

If we now recklessly interchange the order of integra-
tions on the right-hand-side of Eq. (C.5), define

Vµν = ∂µVν − ∂νVµ,

and do the W -integration, we get
∫

[dW ]ei
∫

d4x (LW− 1

4
JµνW

µν)
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∼
∫

[dV ][dW ] exp

{

i

∫

d4x

(

1

4
M2

V WµνW
µν − 1

4
JµνW

µν

+
M2

V

2
VµV

µ +
MV

2
VµνW

µν

)}

∼
∫

[dV ] exp

{

i

∫

d4x

(

−1

4
VµνV

µν +
M2

V

2
VµV

µ

+
1

4MV

JµνV
µν − 1

16M2
V

JµνJ
µν

)}

.

(C.6)

This corresponds to a conventional vector field Lagrangian,
together with contact terms of the form

− 1

16M2
V

JµνJ
µν .

If the tensor field W is given in the matrix notation of
Eq. (2.6), which implies that one has to take the (flavor)
trace of every term in the Lagrangian LW , the source term
linear in the field W a

µν can be taken as

−1

4
〈WµνJ

µν〉 = − 1

4
√
2
W a

µν〈T aJµν〉.

If Jµν is traceless and hermitian (which is the case for
the couplings we consider in Eq.(2.11)), we produce the
contact terms
(

1

16M2
V

)

1√
2
〈JµνT a〉 1√

2
〈JµνT a〉 = 1

16M2
V

〈JµνJµν〉,

which justifies the form of the contact terms given in the
preceding appendix.

A path-integral approach to show the duality of the
antisymmetric tensor field and the vector field description
has also been presented in [36], but the approach used
here is shorter. In principle, we have not done much more
than a Legendre transformation to change variables from
∂W to V . The W -field has been integrated out, leaving
as a ’souvenir’ only the contact terms. As in the foregoing
Appendix, we do not attempt to include also more com-
plicated coupling terms in such a transformation, with the
excuse that in this work the contact terms are only needed
for the linear interaction of Eq. (2.11).

D Loop integrals

In this Appendix we treat the reduction of general loop
integrals to linear combinations of scalar loop integrals.
The scalar loop integrals Iφ and IV have been defined in
Eqs.(9.5) and (9.6), respectively, while IV φ was defined in
Eq. (5.1). Writing q2 = (q2 −M2

V ) +M2
V , one derives

i

∫

ddq

(2π)d
q2

(q2 −M2
V )((q − p)2 −M2

φ)

= Iφ +M2
V IV φ(p). (D.1)

Moreover, by Lorentz invariance, we must have

i

∫

ddq

(2π)d
qµ

(q2 −M2
V )((q − p)2 −M2

φ)
= pµS, (D.2)

because there is no other four-vector than pµ available
here. The scalar S can be found by contracting with pµ:

S =
i

2p2

∫

ddq

(2π)d
q2 + p2 − (q − p)2

(q2 −M2
V )((q − p)2 −M2

φ)

=
1

2p2
(Iφ − IV + (M2

V −M2
φ + p2)IV φ). (D.3)

Using both results together, we can compute

i

∫

ddq

(2π)d
(p · q)qµ

(q2 −M2
V )((q − p)2 −M2

φ)

=
pµ

4p2
(aφIφ + aV IV + aV φIV φ), (D.4)

where the coefficients are given by

aφ = M2
V −M2

φ + 3p2,

aV = M2
φ −M2

V − p2 , aV φ = a2V . (D.5)

These results so far are already sufficient to arrive at the
decomposition of Eq. (9.3) for IΣ . Another useful result is
also derived using Lorentz invariance:

i

∫

ddq

(2π)d
qµqν

(q2 −M2
φ)((q − p)2 −M2

φ)

= gµνA(p) +
pµpν

p2
B(p) . (D.6)

The coefficients can be found by contracting with gµν and
pµ, using the above results and gµνg

µν = d :

(d− 1)A(p) =
1

2
Iφ +

1

4
(4M2

φ − p2)Iφφ(p) (D.7)

(d− 1)B(p) =

(

d

2
− 1

)

Iφ +

(

d

4
p2 −M2

φ

)

Iφφ(p).

Here the integral Iφφ(p) is obtained from IV φ(p) by sub-
stituting Mφ for MV .

The last result we have to derive is the integral Iτ∆(p, k),
which we only need for on-shell kinematics , p2 = k2 =
M2

φ. Using the algebraic decomposition

4(p · k)q2 − 4(p · q)(k · q)
(q2 −M2

V )(q
2 − 2q · p)(q2 − 2q · k)

=
4(p · k)M2

V −M4
V

(q2 −M2
V )(q

2 − 2q · p)(q2 − 2q · k)

+
4(p · k)− q2 −M2

V

(q2 − 2q · p)(q2 − 2q · k) −
1

q2 −M2
V

+
1

q2 − 2q · p +
1

q2 − 2q · k

+
M2

V

(q2 −M2
V )(q

2 − 2q · p)

+
M2

V

(q2 −M2
V )(q

2 − 2q · k) ,
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the results obtained in this appendix enable us to calculate

Iτ∆(p, k) =

i

∫

ddq

(2π)d
(p+ k − 2q)τ ((p · k)q2 − (p · q)(k · q))

(q2 −M2
V )((q − p)2 −M2

φ)((q − k)2 −M2
φ)

= (p+ k)τ (dV φφIV φφ(p, k) + dV φIV φ

+dφφIφφ(k − p) + dφIφ + dV IV ) . (D.8)

The coefficients are given by

4dV φφ =
(M2

φ −M2
V + (p · k))(4(p · k)M2

V −M4
V )

M2
φ + (p · k) ,

4dV φ =
2M2

φM
2
V −M4

V

M2
φ

− M4
V − 4(p · k)M2

V

M2
φ + (p · k) ,

4dφφ =
M2

φ + (p · k)
d− 1

− 4(p · k)M2
V −M4

V

M2
φ + (p · k) ,

4dφ =
1

d− 1
− M2

V

M2
φ

, 4dV =
M2

V

M2
φ

− 1. (D.9)

We remind the reader that this is valid only for p2 = k2 =
M2

φ. For this case, we have IV φ(k) = IV φ(p) ≡ IV φ .
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