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Abstract

Seesaw mechanism appears to be the simplest and most appealing way to

understand small neutrino masses observed in recent experiments. It intro-

duces three right handed neutrinos with heavy masses to the standard model,

with at least one mass required by data to be close to the scale of conven-

tional grand unified theories. This may be a hint that the new physics scale

implied by neutrino masses and grand unification of forces are one and the

same. Taking this point of view seriously, I explore different ways to resolve

the puzzle of large neutrino mixings in grand unified theories such as SO(10)

and models based on its subgroup SU(2)L × SU(2)R × SU(4)c.
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I. INTRODUCTION

The discovery of neutrino masses and mixings has been an important milestone in the
history of particle physics and rightly qualifies as the first evidence for new physics beyond
the standard model. The amount of new information on neutrinos already established from
various oscillation experiments has provided very strong clues to new symmetries of particles
and forces and new directions for unification. Enough puzzles have emerged making this
field a hotbed for research with implications ranging from ideas such as supersymmetry and
grand unification to cosmology and astrophysics.

A major cornerstone for the theory research in this field has been the seesaw mechanism
introduced in the late seventies [1] to understand why neutrino masses are so much smaller
than the masses of other fermions of the standard model. Even though there was no evidence
for neutrino masses then, there were very well motivated extensions of the standard models
that led to nonzero masses for neutrinos. It was therefore incumbent on those models that
they have a mechanism for understanding why upper limits on neutrino masses known at
that time were so small. Seesaw mechanism introduces three right handed neutrinos into the
standard model with very large Majorana masses and predicts that observed neutrinos are
their own anti-particles. A very appealing aspect of this mechanism is not only the beauty
and elegance it brings to the standard model by restoring quark-lepton symmetry but also
the new insight it provides into such questions as the origin of parity violation and Dirac
vrs Majorana nature of the neutrino.

The first conclusive evidence for nonzero neutrino masses appeared in 1998. During the
past six years, we have learnt that neutrinos not only have mass but they also mix among
themselves with a pattern which is very different from that among quarks. The equation
below summarizes our present knowledge about neutrino masses and mixings [2] in the
notation |να >=

∑

Uαi|νi > (where α = e, µ.τ is the flavor index and i = 1, 2, 3 denotes the
mass eigenstate index). For the CP conserving case Uαi are functions of three angles, θij
and for these angles we have:

ain22θA ≡ sin22θ23 ≥ 0.89 (1)

∆m2

A ≃ 1.4× 10−3 eV 2 − 3.3× 10−3 eV 2

sin2θ⊙ ≡ sin2θ12 ≃ 0.23− 0.37

∆m2

⊙ ≃ 7.3× 10−5 eV 2 − 9.1× 10−5 eV 2

sin2θ13 ≤ 0.047

For the sake of comparision, note the corresponding quark mixing angles i.e. θq12 ≃ 0.22;
θq23 ≃ 0.04 and θq13 ≃ 0.004. Clearly, the mixing pattern in the lepton sector is very different
from that among quarks.

It is also important to point that while the mass differences among neutrinos are fairly
well determined, the situation with respect to absolute values of masses is far from clear.
This is another major gap in our understanding of neutrinos compared to quarks. At present,
there are three equally viable mass arrangements among the neutrinos:

• (i) Normal hierarchy i.e. m1 ≪ m2 ≪ m3. In this case, we can deduce the value

of m3 ≃
√

∆m2
23 ≡

√

∆m2
A ≃ 0.03 − 0.07 eV. In this case ∆m2

23 ≡ m2
3 − m2

2 > 0.
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The solar neutrino oscillation involves the two lighter levels. The mass of the lightest
neutrino is unconstrained. If m1 ≪ m2, then we get the value of m2 ≃≃ 0.008 eV.

• (ii) Inverted hierarchy i.e. m1 ≃ m2 ≫ m3 with m1,2 ≃
√

∆m2
23 ≃ 0.03 − 0.07 eV. In

this case, solar neutrino oscillation takes place between the heavier levels and we have
∆m2

23 ≡ m2
3 −m2

2 < 0.

• (iii) Degenerate neutrinos i.e. m1 ≃ m2 ≃ m3.

There are a large number of experiments in the planning stage to improve our knowledge
of mixings, to determine the mass ordering and also to find out whether neutrinos are
Majorana (i.e. their own antiparticles) or Dirac fermions. These are not only crucial pieces
of information about the neutrinos that we need to know to elevate our knowledge of them
to the same level as the quarks but it is becoming increasingly clear that they will also point
very clearly to the direction of new physics beyond the standard model. For instance if
neutrinos are established to be Dirac fermions, seesaw mechanism in its simplest form will
not be able to describe their masses and a major theoretical idea will be disproved.

If we accept the seesaw mechanism as the explanation for the smallness of neutrino
masses, the next major challenge for theory is to understand the unusual mixing pattern
among them. The hope is that in the process of understanding the mixings we will find out
which of the mass patterns is realized in Nature and more importantly, will get a definite
clue to the nature of new physics.

In this talk I will give some promising possibilities for this new physics and discuss their
experimental tests. In particular, I will argue that the seesaw mechanism for small neutrino
masses requires a scale of new physics close to the traditional scale of grand unification
where all forces and matter are supposed to become unified and a new symmetry B-L which
naturally arises if the gauge group is assumed to be SO(10) [5]. I will then show that a
minimal version of supersymmetric SO(10) provides a very natural way to understand the
large solar as well as atmospheric neutrino mixing angles while predicting a value for the
mixing angle θ13 ∼ 0.1 − 0.18 depending on details. This prediction can be tested by the
various planned reactor [3] and long baseline experiments [4]. I will also discuss two other
related ideas which are outside the SO(10) framework but are based on one of the maximal
subgroups of SO(10) i.e. SU(2)L×SU(2)R×SU(4)c [6] that also unifies quarks and leptons
and then argue that measurement of the parameter θ13 may provide crucial insight into the
question of whether there is quark-lepton unification at high scale.

While in this talk I will assume that there are only three neurtinos, we do not know for
sure how many neutrinos there are. In particular if the LSND results are confirmed by the
Mini Boone experiment [7], we will have evidence that there are more neutrinos and the
discussions presented here will have to be extended.

II. SEESAW MECHANISM, B-L AND LEFT-RIGHT SYMMETRY

In order to introduce the seesaw mechanism, which will form the anchor for the main
body of the talk, let us start with a discussion of neutrino mass in the standard model.
It is based on the gauge group SU(3)c × SU(2)L × U(1)Y group under which the quarks
and leptons transform as follows: Quarks: QL(3, 2,

1

3
); uR(3, 1,

4

3
); dR(3, 1,−2

3
); Leptons
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L(1, 2−1); eR(1, 1,−2); Higgs Boson H(1, 2,+1); Gluons Ga(8, 1, 0) and Weak Gauge Fields
W±, Z, γ. The electroweak symmetry SU(2)L×U(1)Y is broken by the vacuum expectation
of the Higgs doublet < H0 >= vwk ≃ 180 GeV, which gives mass to the gauge bosons and
all fermions except the neutrino. The model had been a complete success in describing all
known low energy phenomena, until the evidence for neutrino masses appeared.

Note that there is no right handed neutrino in the standard model and this directly leads
to massless neutrinos at the tree level. The situation remains the same not only to all orders
in perturbation theory but also when nonperturbative effects are taken into account. This is
due to existence of an exact B-L symmetry in the theory and the absence of the right handed
neutrino, NR. The absence of the right handed neutrino from the standard model of course
destroys the symmetry between quarks and leptons that is so obvious in weak interactions.

Once the right handed neutrinos (NR) are included in the standard model, new Yukawa
couplings of the form hνL̄HNR are allowed which after electroweak symmetry breaking lead
to a neutrino mass, MD ≡ hνvwk. Since hν is expected to be of same order as the charged
fermion Yukawa couplings in the model, these masses are much too large to describe neutrino
oscillations. Luckily, since the NR’s are singlets under the standard model gauge group,
they are allowed to have Majorana masses unlike the charged fermions. We denote them by
MRN

T
RC

−1NR (where C is the Dirac charge conjugation matrix). The masses MR are not
constrained by the gauge symmetry and can therefore be arbitrarily large (i.e. MR ≫ hνvwk).
This together with mass induced by Yukawa couplings (called the Dirac mass) leads to a
the mass matrix for the neutrinos (left and right handed neutrinos together) which has the
form

Mν =
(

0 MD

MT
D MR

)

(2)

where MD and MR are 3 × 3 matrices. Diagonalizing this mass matrix, one gets the mass
matrix for the light neutrinos (the seesaw formula) as:

Mν = −MT
DM

−1

R MD (3)

Since as already noted MR can be much larger than MD, one finds that mν ≪ me,u,d very
naturally.

Seesaw mechanism of course raises its own questions:

• Is there a natural reason for the existence of the right handed neutrinos other than
quark-lepton symmetry ?

• What determines the scale of MR ?

• Is the seesaw mechanism by itself enough to explain all aspects of neutrino masses and
mixings ?

Below, we try to answer some of these questions. Restoration of quark-lepton symmetry
and unification of quarks and leptons within a single gauge theory framework provided
the first inspiration to bring the right handed neutrino into particle physics [6]. It is easy
to see that in the presence of the NR’s, the minimal anomaly free gauge group of weak
interactions expands beyond the standard model and becomes the left-right symmetric group
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SU(2)L×SU(2)R×U(1)B−L [8] which is a subgroup of the SU(2)L×SU(2)R×SU(4)c group.
This makes the weak interactions parity conserving at short distances [8], providing another
appealing feature of adding the right handed neutrino. To see this explicitly, we give in
Table I, the assignment of fermions and Higgs fields to the left-right gauge group.

Table I

Fields SU(2)L × SU(2)R × U(1)B−L

representation

QL ≡
(

uL

dL

)

(2,1,+1

3
)

QR ≡
(

uR

dR

)

(1,2,1
3
)

LL ≡
(

νL
eL

)

(2,1,−1)

LR ≡
(

νR
eR

)

(1,2,−1)

φ (2,2,0)
∆L (3,1,+ 2)
∆R (1,3,+ 2)

It is clear that this theory leads to a weak interaction Lagrangian of the form

Lwk =
g

2

(

~jµL · ~WL,µ +~jµR · ~WR,µ

)

(4)

which is parity conserving prior to symmetry breaking. Furthermore, the electric charge
formula is given by [9]:

Q = I3L + I3R +
B − L

2
. (5)

where all the terms have physical meaning unlike the case of the standard model.
The left-right symmetric theories face two challenges: (i) how does the predominantly

V-A nature of weak interactions emerge in such a theory and (ii) how does one understand
the small neutrino masses since SU(2)R makes both the electron and the neutrino much
more similar than they were in the standard model. We will see that both these challenges
are met in one stroke i.e. breakdown of SU(2)R × U(1)B−L symmetry to U(1)Y not only
explains the V-A nature of weak interactions but it also explain why mν ≪ me via the seesaw
mechanism. The seesaw scale then becomes the scale of parity violation. Furthermore, when
the gauge symmetry SU(2)R × U(1)B−L is broken down while keeping the standard model
symmetry unbroken, one finds from Eq. (5) the relation ∆I3R = −∆B−L

2
. This connects

B−L breaking to the breakdown of parity symmetry i.e. ∆I3R 6= 0 and clearly implies that
neutrinos must be Majorana particles.

To see this explicitly, we break the gauge symmetry of the left-right model in two stages
: in stage I, vacuum expectation values (vev) of the Higgs multiplets ∆R(1, 3, 2) breaks the
left-right gauge symmetry to the standard model gauge group and in stage II by the bidoublet
φ(2, 2, 0) vev breaks the standard model group to SU(3)c × U(1)em. In the first stage of
symmetry breaking, the right handed neutrino picks up a mass of order f < ∆0

R >≡ fvR.

5



Denoting the left and right handed neutrino by (ν,N) (in a two component notation), the
mass matrix for neutrinos at this stage looks like

M0

ν =
(

0 0
0 fvR

)

(6)

At this stage, familiar standard model particles remain massless. As soon as the standard

model symmetry is broken by the bidoublet φ i.e. < φ >≡
(

κ 0
0 κ′

)

, the W and Z boson as

well as the fermions pick up mass. I will generically denote κ, κ′ by a common symbol vwk.
The contribution to neutrino mass at this stage look like

M0

ν =
(

fvL hvwk

hvwk fvR

)

(7)

Note the appearance of a new term in the neutrino mass matrix i.e. vL =
v2
wk

vR
compared

to the seesaw matrix given in Eq. (1). This is a reflection of parity invariance of the model.
Diagonalizing this matrix, we get a modified seesaw formula for the light neutrino mass
matrix

Mν = fvL − hT
ν f

−1

R hν

(

v2wk

vR

)

(8)

The important point to note is that vL is suppressed by the same factor as the second term
so that despite the new contribution to neutrino masses, seesaw suppression remains [10].
This is called the type II seesaw in contrast with the formula in Eq. (2) which is called type
I seesaw formula.

An important physical meaning of the seesaw formula is brought out when it is viewed
in the context of left-right models. Note that mν → 0 when vR goes to infinity. In the same
limit the weak interactions become pure V-A type. Therefore, left-right model derivation of
the seesaw formula smoothly connects smallness of neutrino mass with suppression of V+A
part of the weak interactions providing an important clarification of a major puzzle of the
standard model i.e. why are weak interactions are near maximally parity violating ? The
answer is that they are near maximally parity violating because the neutrino mass happens
to be small.

In a subsequent section, we will discuss the connection of the seesaw mass scale with the
scale of grand unification. SO(10) is the simplest gauge group that contains the right handed
neutrino needed to implement the seesaw mechanism and also it is important to note that
the left-right symmetric gauge group is a subgroup of the SO(10) group, which therefore
provides an attractive over all grand unified framework for the discussion of neutrino masses.
The extra bonus one may expect is that since bigger symmetries tend to relate different
parameters of a theory, one may be able to predict neutrino masses and mixings. We will
present a model where indeed this happens.

Before proceeding further, it is important to point out that type I and type II seesaw
can be tested by the nature of neutrino spectrum in a model independent way. Since type
I seesaw involves the Dirac mass of the neutrino, a general expectation is that it scales
with generation the same way as the charged fermions of the standard model. In this case,
unless there is extreme hierarchy among the right handed neutrinos, one would expect the
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spectrum to be hierarchical. On the other hand, it has been realized for a long time [12] that
if neutrino masses are quasi-degenerate, it is a tell-tale sign of type II seesaw with the triplet
vev term being the dominant one. However, a normal hierarchy can also arise with type II
seesaw as we discuss in the example below. Therefore, whereas a normal hierarchy cannot
distinguish between type I and type II seesaw, a quasi-degenerate spectrum is a definite sign
of type II kind.

III. SEESAW AND LARGE NEUTRINO MIXINGS

While seesaw mechanism provides a simple framework for understanding the smallness
of neutrino masses, it does not throw any light on the question of why neutrino mixings are
large. The point is that mixings are a consequence of the structure of the light neutrino
mass matrix and the seesaw mechanism is only statement about the scale of new physics.
This can also be understood by doing a simple parameter counting. If we work in a basis
where the right handed neutrino masses are diagonal, there are 18 parameters describing the
seesaw formula for neutrino masses - three RH neutrino masses and 15 parameters in the
Dirac mass matrix. On the other hand, there are only nine observables (three masses, three
mixing angle and three phases) describing low energy neutrino sector. Thus there are twice as
many parameters as observables. As a result, understanding neutrino mixings needs inputs
beyond the simple seesaw mechanism to fix the neutrino mass matrix. Nonetheless, since the
large mixings could arise from the physics involving the seesaw formula e.g. flavor structure
of MR, the large mixings are not in obvious contradiction with quark lepton unification.
This becomes clear in the examples given below.

Many seesaw models for large mixings have been considered in the literature [11]. In the
following section, I will focus on a recently discussed minimal SO(10) model, where without
any assumption other than SO(10) grand unification, one can indeed predict all but one
neutrino parameters. I will then consider a case where assumption of quasi-degeneracy in
the neutrino spectrum at high scale leads in a natural way via radiative corrections to large
mixings at low energies as well as briefly describe a model of quark-lepton complementarity.

To understand the fundamental physics behind neutrino mixings, we first write down
the neutrino mass matrix that leads to maximal solar and atmospheric mixing for the case
of normal hierarchy:

Mν =

√

∆m2
A

2







cǫ bǫ dǫ
bǫ 1 + aǫ −1
dǫ −1 1 + ǫ





 (9)

where ǫ ≃
√

∆m2

⊙

∆m2

A

and parameters a, b, c, d are of order one. Any theory of neutrino which

attempts to explain the observed mixing pattern for the case of normal hierarchy must strive
to get a mass matrix of this form.

It is important to point out that the above mass matrix when a = 1 and b = d, becomes
symmetric under the interchange of µ and τ and yields θ13 = 0. It was shown in two recent

papers that [13], if µ− τ symmetry is broken via a 6= 1 with b = d, then typically θ13 ∼ ∆m2

⊙

∆m2

A

whereas if we have b 6= d, one gets θ13 ∼
√

∆m2

⊙

∆m2

A

. It turns out that most grand unified
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(or quark-lepton unified ) theories lead to θ13 ∼
√

∆m2

⊙

∆m2

A

(see examples below). Therefore,

measurement of the mixing parameter θ13 may provide a way to test for possible quark-lepton
unification at high scales.

IV. A PREDICTIVE MINIMAL SO(10) THEORY FOR NEUTRINOS

The main reason for considering SO(10) for neutrino masses is that its 16 dimensional
spinor representation consists of all fifteen standard model fermions plus the right handed
neutrino arranged according to the it SU(2)L × SU(2)R × SU(4)c [6] subgroup as follows:

Ψ =
(

u1 u2 u3 ν
d1 d2 d3 e

)

(10)

There are three such spinors for three fermion families.
In order to implement the seesaw mechanism in the SO(10) model, one must break the B-

L symmetry. In supersymmetric SO(10) models, how B-L breaks has profound consequences
for low energy physics. For instance, if B-L is broken by a Higgs field belonging to the 16

dimensional Higgs field (to be denoted by ΨH), then the field that acquires a nonzero vev
has the quantum numbers of the νR field i.e. B-L breaks by one unit. In this case higher
dimensional operators of the form ΨΨΨΨH will lead to R-parity violating operators in the
effective low energy MSSM theory such as QLdc, ucdcdc etc which can lead to large breaking
of lepton and baryon number symmetry and hence unacceptable rates for proton decay. This
theory also has no dark matter candidate.

On the other hand, if one breaks B-L by a 126 dimensional Higgs field, the member of
this multiplet that acquires vev has B − L = 2. R-parity is therefore left as an automatic
symmetry of the low energy Lagrangian. There is a naturally stable dark matter in this
case. It has recently been shown that this class of models lead to a very predictive scenario
for neutrino mixings [14–17]. We summarize this model below.

As already noted earlier, any theory with asymptotic parity symmetry leads to type II
seesaw formula and if B-L is broken by a 126 field, then the first term in the type II seesaw
formula can in principle dominate in the seesaw formula. We will discuss a model of this
type below.

The basic ingredients of this model are that one considers only two Higgs multiplets
that contribute to fermion masses i.e. one 10 and one 126. A unique property of the 126

multiplet is that it not only breaks the B-L symmetry and therefore contributes to right
handed neutrino masses, but it also contributes to charged fermion masses by virtue of
the fact that it contains MSSM doublets which mix with those from the 10 dimensional
multiplets and survive down to the MSSM scale. This leads to a tremendous reduction of
the number of arbitrary parameters, as we will see below.

There are only two Yukawa coupling matrices in this model: (i) h for the 10 Higgs and
(ii) f for the 126 Higgs. SO(10) has the property that the Yukawa couplings involving the
10 and 126 Higgs representations are symmetric. Therefore if we assume that CP violation
arises from other sectors of the theory (e.g. squark masses) and work in a basis where one of
these two sets of Yukawa coupling matrices is diagonal, then it will have only nine coupling
parameters. Noting the fact that the (2,2,15) submultiplet of 126 has a pair of standard
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model doublets that contributes to charged fermion masses, one can write the quark and
lepton mass matrices as follows [14]:

Mu = hκu + fvu (11)

Md = hκd + fvd

Mℓ = hκd − 3fvd

MνD = hκu − 3fvu

where κu,d are the vev’s of the up and down standard model type Higgs fields in the 10

multiplet and vu,d are the corresponding vevs for the same doublets in 126. The vevs added
to the Yukawa couplings give a total of 13 parameters in the theory. They are determined
by 13 inputs (six quark masses, three lepton masses and three quark mixing angles and
weak scale). There is therefore no free parameter in the neutrino sector except for an overall
seesaw scale.

To determine the light neutrino masses, we use the seesaw formula in Eq. (7), where the
f is nothing but the 126 Yukawa coupling. These models were extensively discussed in the
last decade [15] using type I seesaw formula. It was pointed out in Ref. [16] that if the direct
triplet term in type II seesaw dominates, then it provides a very natural understanding of
the large atmospheric mixing angle for the case of two generations without invoking any
symmetries. Subsequently it was shown in Ref. [17] that the same b − τ mass convergence
also provides an explanation of large solar mixing as well as small θ13 making the model
realistic and experimentally interesting.

A simple way to see how large mixings arise in this model is to note that when the triplet
term dominates the seesaw formula, we have the neutrino mass matrix Mν ∝ f , where f
matrix is the 126 coupling to fermions discussed earlier. Using the above equations, one
can derive the following sumrule :

Mν = c(Md −Mℓ) (12)

To see how this leads to large atmospheric and solar mixing, let us work in the basis where
the down quark mass matrix is diagonal. All the quark mixing effects are then in the up
quark mass matrix i.e. Mu = UT

CKMMd
uUCKM . Note further that the minimality of the

Higgs content leads to the following sumrule among the mass matrices:

kM̃ℓ = rM̃d + M̃u (13)

where the tilde denotes the fact that we have made the mass matrices dimensionless by
dividing them by the heaviest mass of the species i.e. up quark mass matrix by mt, down
quark mass matrix by mb etc. k, r are functions of the symmetry breaking parameters of
the model. Using the hierarchical pattern of quark mixings, we can conclude that that we
have

Md,ℓ ≈ mb,τ







λ3 λ3 λ3

λ3 λ2 λ2

λ3 λ2 1





 (14)
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Sin22θA
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FIG. 1. The figure shows the predictions of the minimal SO(10) model for sin22θ⊙ and sin22θA
for the presently range of quark masses. Note that sin22θ⊙ ≥ 0.9 and sin22θA ≤ 0.9

where λ ∼ 0.22 and the matrix elements are supposed to give only the approximate order
of magnitude. An important consequence of the relation between the charged lepton and
the quark mass matrices in Eq. (12) is that the charged lepton contribution to the neutrino
mixing matrix i.e. Uℓ ≃ 1+O(λ) or close to identity matrix. As a result the neutrino mixing
matrix is given by UPMNS = U †

ℓUν ≃ Uν . Thus the dominant contribution to large mixings
will come from Uν , which in turn will be dictated by the sum rule in Eq. (11).

To show that Uν has two large mixings, we extrapolate the quark masses to the GUT
scale and use the well known fact that mb −mτ ≈ mτλ

2 for a wide range of values of tanβ.
Using this the neutrino mass matrix Mν = c(Md −Mℓ) roughly takes the form

Mν = c(Md −Mℓ) ≈ m0







λ3 λ3 λ3

λ3 λ2 λ2

λ3 λ2 λ2





 (15)

This mass matrix is in the form discussed in Eq. (8) and it is easy to see that both the
θ12 (solar angle) and θ23 (the atmospheric angle) are now large. The detailed magnitudes
of these angles of course depend on the details of the quark masses at the GUT scale.
Using the extrapolated values of the quark masses and mixing angles to the GUT scale, the
predictions of this model for various oscillation parameters are given in Fig. 1,2 and 3 in a
self expalanatory notation. The predictions for the solar and atmospheric mixing angles fall
within 3 σ range of the present central values. Note specifically the prediction in Fig. 3 for
Ue3 ≃ 0.18 which can be tested in MINOS as well as other planned Long Base Line neutrino
experiments such as Numi-Off-Axis, JPARC etc. This model has been the subject of many
investigations, which we do not discuss here [18].

A. CP violation in the minimal SO(10) model

In the discussion given above, it was assumed that CP violation is non-CKM type and
resides in the soft SUSY breaking terms of the Lagrangian. The overwhelming evidence from
experiments seem to be that CP violation is perhaps is of CKM type. It has recently been
pointed out that with slight modification, one can include CKM CP violation in the model

10
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FIG. 2. The figure shows the predictions of the minimal SO(10) model for sin22θA and

∆m2
⊙/∆m2

A for the range of quark masses and mixings that fit charged lepton masses.
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FIG. 3. The figure shows the predictions of the minimal SO(10) model for sin22θA and Ue3

for the allowed range of parameters in the model. Note that Ue3 is very close to the upper limit

allowed by the existing reactor experiments.
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[19]. The basic idea is to include all higher dimensional operators of type h′ΨΨ∆̄Σ/M
where ∆̄ and Σ denote respectively the 126 and the 210 dimensional representation. It
is then clear that those operators transforming as 10 and 126 representations will simply
redefine the h, f coupling matrices and add no new physics. On the other hand the higher
dimensional operator that transforms like an effective 120 representation will add a new piece
to all fermion masses. Now suppose we introduce a parity symmetry into the theory which
transforms Ψ to Ψc∗, then it turns out that the couplings h and f become real and symmetric
matrices whereas the 120 coupling (denoted by h′) becomes imaginary and antisymmetric.
This process introduces three new parameters into the theory and the charged fermion
masses are related to the fundamental couplings in the theory as follows:

Mu = hκu + fvu + h′vu (16)

Md = hκd + fvd + h′vd

Mℓ = hκd − 3fvd − 3h′vd

MνD = hκu − 3fvu − 3h′vu

(17)

Note that the extra contribution compared to Eq. (10) is antisymmetric which therefore
does not interfere with the mechanism that lead to Mν,33 becoming small as a result of
b− τ convergence. Hence the natural way that θA became large in the CP conserving case
remains.

Let us discuss if the new model is still predictive in the neutrino sector. Of the three
new parameters, one is determined by the CP violating quark phase. the two others are
determined by the solar mixing angle and the solar mass difference squared. Therefore we
lose the prediction for these parameters. However, we can predict in addition to θA which is
close to maximal, θ13 ≥ 0.1 and the Dirac phase for the neutrinos. We show the predictions
for Dirac phase in Fig. 4. This is a unique property of the model that it can predict the
leptonic CP phase.

V. RADIATIVE GENERATION OF LARGE MIXINGS: ANOTHER

APPLICATION OF TYPE II SEESAW

As alluded before, type II seesaw liberates the neutrinos from obeying normal genera-
tional hierarchy and instead could easily be quasi-degenerate in mass. This raises a new way
to understand the large mixings instead of having to generate them in the original seesaw
theory as is normally done. The basic idea is that at the seesaw scale, all mixings angles
are small. Since the observed neutrino mixings are the weak scale observables, one must
extrapolate [20] the seesaw scale mass matrices to the weak scale and recalculate the mixing
angles. The extrapolation formula is

Mν(MZ) = IMν(vR)I (18)

where Iαα =

(

1− h2
α

16π2

)

(19)

Note that since hα =
√
2mα/vwk (α being the charged lepton index), in the extrapolation

only the τ -lepton makes a difference. In the MSSM, this increases the Mττ entry of the
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neutrino mass matrix and essentially leaves the others unchanged. It was shown in ref. [21]
that if the muon and the tau neutrinos are nearly degenerate but not degenerate enough
in mass at the seesaw scale, the radiative corrections can become large enough so that at
the weak scale the two diagonal elements of Mν become much more degenerate. This leads
to an enhancement of the mixing angle to become almost maximal value. This can also be
seen from the renormalization group equations when they are written in the mass basis [22].
Denoting the mixing angles as θij where i, j stand for generations, the equations are:

ds23
dt

= −Fτ c23
2 (−s12Uτ1D31 + c12Uτ2D32) , (20)

ds13
dt

= −Fτ c23c13
2 (c12Uτ1D31 + s12Uτ2D32) , (21)

ds12
dt

= −Fτ c12 (c23s13s12Uτ1D31 − c23s13c12Uτ2D32

+Uτ1Uτ2D21) . (22)

where Dij = (mi +mj)) / (mi −mj) and Uτ1,2,3 are functions of the neutrino mixings angles.
The presence of (mi−mj) in the denominator makes it clear that asmi ≃ mj , that particular
coefficient becomes large and as we extrapolate from the GUT scale to the weak scale, small
mixing angles at GUT scale become large at the weak scale. It has been shown recently that
indeed such a mechanism for understanding large mixings can work for three generations
[23]. It was shown that if we identify the seesaw scale neutrino mixing angles with the
corresponding quark mixings and assume quasi-degenerate neutrinos, the weak scale solar
and atmospheric angles get magnified to the desired level while due to the extreme smallness
of Vub, the magnified value of Ue3 remains within its present upper limit. In figure 5, we
show the evolution of the mixing angles to the weak scale. A requirement for this scenario
to work is that the common mass of neutrinos must be larger than 0.1 eV, a result that can
be tested in neutrinoless double beta experiments.

VI. QUARK-LEPTON COMPLEMENTARITY AND LARGE SOLAR MIXING

There has been a recent suggestion [24] that perhaps the large but not maximal solar
mixing angle is related to physics of the quark sector. According to this, the deviation from
maximality of the solar mixing may be related to the quark mixing angle θC ≡ θq12 and is
based on the observation that the mixing angle responsible for solar neutrino oscillations,
θ⊙ ≡ θν12 satisfies an interesting complementarity relation with the corresponding angle in
the quark sector θCabibbo ≡ θq12 i.e. θν

12
+ θq12 ≃ π/4. While it is quite possible that this

relation is purely accidental or due to some other dynamical effects, it is interesting to
pursue the possibility that there is a deep meaning behind it and see where it leads. It has
been shown in a recent paper that if Nature is quark lepton unified at high scale, then a
relation between θν12 and θq12 can be obtained in a natural manner provided the neutrinos
obey the inverse hierarchy [25]. It predicts sin2θ⊙ ≃ 0.34 which agrees with present data at
the 2σ level. It also predicts a large θ13 ∼ 0.18, both of which are predictions that can be
tested experimentally in the near future.
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VII. CONCLUSION

In summary, the seesaw mechanism is by far the simplest and most appealing way to
understand neutrino masses. It not only improves the aesthetic appeal of the standard model
by restoring quark-lepton symmetry but it also makes weak interactions asymptotically
parity conserving. Further more it connects neutrino masses with the hypothesis of grand
unification. In this talk I have discussed three ways to understand the large solar and
atmospheric neutrino mixings within the frameworks that unify quarks and lepton and in
one case into a grand unified model based on SO(10). All three models predict large values
for θ13 and can therefore be tested in forthcoming experiments. The SO(10) model appears
to be most promising since it not only resolves the difficulties of the minimal SUSY SU(5)
GUT but is also a minimal predictive model for neutrinos.

From these examples, one is also tempted to conclude that a large θ13 could be a generic
feature of models that unify quarks and leptons, which if true will be a unique window to a
very important question in beyond the standard model physics.

This work is partially supported by the National Science Foundation Grant No. PHY-
0354401. I would like to thank the organizers of the Nobel symposium 129 at Haga Slott
for creating a very pleasant environment for physics.
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