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Abstract

The Schiff moment, ψ̄i
−↔
∂µγ5ψi ψ̄jγ

µψj , is a parity and time reversal violating
fermion-fermion coupling. The nucleus-electron Schiff moment generically gives the

most important contribution to the electric dipole moments of atoms and molecules
with zero net intrinsic electronic spin and nuclear spin 1

2
. Here, the electromagnetic

contribution to the Schiff moment, ψ̄i
−↔
∂ν γ5ψi ∂µF

µν , is considered. For a nucleon,

the leading chirally violating contribution to this interaction is calculable in the

chiral limit in terms of the parity and time reversal violating pion-nucleon coupling.
For the Schiff moment of heavy nuclei, this chiral contribution is somewhat smaller

than the finite size effect discussed previously in the literature.
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Experimental searches for electric dipole moments (EDMs) provide low energy

probes for P and T violating physics at and beyond the electroweak symmetry

breaking scale. The current experimental limits on the EDMs of atoms, molecules,

and the neutron already give bounds on certain T violating extensions of the stan-

dard model. The sensitivity of atomic and molecular EDMs to microscopic P and

T violation depends on the net intrinsic electronic spin. Atoms with an unpaired

electron, such as 133Cs and 205Tl, are sensitive mainly to the electron EDM. Atoms

with paired electrons, such as 199Hg and 129Xe, or the molecule 205TlF, are sensi-

tive mainly to nuclear effects. The effect of the nuclear EDM is highly suppressed

due to Schiff’s theorem.
[1]

Higher electromagnetic moments are not affected by

Schiff’s theorem. This allows the magnetic quadrupole moment to contribute for

nuclei with J ≥ 1, where J is the nuclear spin. For J = 1

2
however, the domi-

nant nuclear contribution to the atomic or molecular EDM comes from a local (on

the atomic scale) coupling between the nucleus and electrons known as the Schiff

moment.

The Schiff moment (SM) coupling two spin 1

2
Dirac fermions arises from the

operators

S1 ψ̄i
−↔
∂µγ5ψi ψ̄jγ

µψj (1)

−S2 ψ̄iσ
µνiγ5ψi ∂ν(ψ̄jγµψj) (2)

These operators are equivalent on shell and can therefore be related using equations

of motion. In what follows only (1) will be kept explicitly. The contribution of

the nucleus-electron SM to an atomic EDM can be estimated just on dimensional

grounds to be da ∼ eS Z2αm2
e, where me is the electron mass.

[3−5]
Similarly, a

molecular EDM can be estimated to be dm ∼ eS Z2αmemN , where mN is the

nucleus mass.
[3−5]

The magnitude of S depends on the origin of the microscopic P and T violation

and the scale at which the effective operator (1) is generated. One contribution

comes from the neutral current component of the weak electric dipole moment
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(WEDM), −dw
1

2
ψ̄iσ

µνiγ5ψiZµν , where Zµν is the Z boson field strength. Such an

operator would be generated, for example, at one loop in a multi-Higgs model of T

violation. For light fermions the chirally violating WEDM is effectively dimension

six, being suppressed by two powers of the heavy scale associated with T violation.

Tree level Z exchange, with the WEDM, then gives a SM (1) with S = gvdw/m
2
z ,

where gv is the neutral current vector coupling of the fermion j.
[2]

A SM can also

arise directly at the heavy scale. For example, in the supersymmetric standard

model box diagrams involving gauginos and the scalar partners of the external

fermions give S ∼ sinφ α2mi/M
4
SUSY

, where sinφ is some combination of T violat-

ing phases.
[2]

The nucleus-electron SM arising from quark-electron moments of the

type discussed above are suppressed by four powers of a heavy mass. The resulting

atomic or molecular EDM is therefore less important than that arising from, for

example, the light quark EDM or chromo-electric dipole moment (CEDM), which

are suppressed by only two powers of a heavy mass.

A SM may also arise from the electromagnetic interaction

S′ ψ̄i
−↔
∂ν γ5ψi ∂µF

µν (3)

Using the equation of motion ∂µF
µν = eQj ψ̄jγ

νψj gives the operator (1) with

S = eQjS
′. Diagrammatically, (1) arises from the coupling of the electromagnetic

current to (3) through tree level photon exchange. The q2 dependence in (3) is

canceled by the photon propagator. In order to make explicit the origin of the

operator (3) consider the matrix element of the electromagnetic current for particle

i. The most general P and T odd matrix element of jµ on two single particle Dirac

states can be written

〈p′, s′|jµ|p, s〉 = D(q2) ū(p′, s′)σµνγ5qνu(p, s) (4)

where qν = (p−p′)ν , and D(q2) is a momentum dependent form factor. Expanding

about q2 = 0, the constant part of D(q2) is just the electric dipole moment, d,

d = D(0) (5)

The q2 dependent piece ofD(q2) is reproduced for on shell fermions by the operator
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(3) with

S′ =
d

dq2
D(0) (6)

As long asD(q2) is not constant, any process which produces an EDM also produces

a SM.
⋆
In particular, a quark-electron electromagnetic SM can be generated at the

heavy scale associated with T violation by the same processes responsible for a

quark EDM. However, this will necessarily be suppressed by four powers of the

heavy scale, just as the previous contributions.

More important are contributions to the nucleus-electron SM arising at the

nuclear scale. First consider the nucleon-electron SM. In the chiral limit, effective

operators involving nucleons are typically dominated by nonanalytic contributions

arising from integrating out pions. As an example of the nonanalytic contribu-

tion to the nucleon SM consider the chirally violating P and T odd pion-nucleon

coupling

ḡN̄πN (7)

where π = τaπa. This coupling could arise from a finite QCD vacuum angle or a

light quark CEDM.
[2]

The nonanalytic contribution comes from the same graphs

which give a nucleon EDM (see fig. 1).
[6]

This graph for the SM is divergent in the

infrared, cutoff by the pion mass. A straightforward calculation gives

S′ =
eḡgA

48π2fπm2
π

(8)

where gA ≃ 1.26 is the usual pion-nucleon coupling, and fπ ≃ 93 MeV is the pion

decay constant. Notice that since ḡ scales as m2
π, S

′ is a constant in the chiral

limit. This is in contrast to the nucleon EDM from (7) which scales as m2
π lnm

2
π

in the chiral limit.
[6]

The SM of individual nucleons will contribute incoherently to

the nucleus SM. This nonanalytic contribution to the SM of heavy spin 1

2
nuclei

will therefore be equal to the nucleon SM (8).

⋆ It is worth noting that Eqs. (4) and (6) show that the electromagnetic contribution to the
SM can be thought of as the P and T odd analog of the charge radius or electromagnetic
anapole moment.
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In addition to the incoherent contribution to the nucleus-electron SM, there are

coherent contributions due to the finite size of the nucleus. The magnitude of the

finite size effects may be estimated with a simple model due to Sushkov, Flambaum,

and Khriplovich.
[3−5,7]

The model assumes a nucleus with a single unpaired valence

proton. In the nonrelativistic limit (7) leads to a coupling of the valence proton to

the nuclear core of

ḡgA
fπm2

π
~σ · ~∇ρ (9)

where ρ is the core density. To model the effect of this interaction the nuclear

potential, U , is assumed to be proportional to ρ, i.e. U = ρ(Uo/ρo), where ρo ∼ m̃3

and Uo ∼ m̃3/4πf2π are the density and potential deep in the core, and m̃ is some

nuclear mass parameter characterizing the repulsive part of the nuclear potential

(m̃ is independent of the chiral limit). Under this assumption the interaction

(9) leads to a constant shift of the valence proton wave function given by

~λ ≃
4πḡgAfπ
m2

π
~σ (10)

This constant shift leads to P and T odd interactions of the nucleus with the

electromagnetic field. For spin 1

2
these are contained in the form factor D(q2).

Just on dimensional grounds the electromagnetic SM resulting from the shift ~λ

is
[3,7]

S′ ∼
e

4π
λR2 ∼

eḡgAfπA
2/3

m2
πm̃

2
(11)

where R ∼ A1/3m̃−1 is the rms radius of the valence wave function, and A the

atomic number. The finite size effect is essentially coherent over the entire nucleus,

being proportional to the square of the valence nucleon wave function radius. It

is larger than the incoherent loop contribution (8) by O((4πfπ/m̃)2A2/3), where

(4π)2 counts the loop factor.

In conclusion, any P and T violating microscopic physics which generates

EDMs also generally gives rise to an electromagnetic SM. The nucleus-electron

SM represents the most important nuclear contribution to the EDMs of atoms
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and molecules with paired electrons and nuclear spin 1

2
. This moment arises pre-

dominantly from indirect effects at the nuclear scale rather than directly from the

microscopic P and T violating scale. The chirally violating contribution to the

nucleon SM is nonanalytic and calculable in the chiral limit. Coherent finite size

effects however dominate the SM of heavy nuclei.
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FIGURE CAPTIONS

1) Nonanalytic contribution to the nucleon electromagnetic Schiff moment from

the coupling ḡN̄πN . Other graphs related by gauge invariance are not shown.

The graph with the photon attached to the nucleon is smaller by O(m2
π/m

2
n).
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