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BRANE THEORY SOLITONS
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Abstract. Field theories that describe small fluctuations of branes are
limits of ‘brane theories’ that describe large fluctuations. In particular,
supersymmetric sigma-models arise in this way. These lectures discuss the
soliton solutions of the associated ‘brane theories’ and their relation to
calibrations.

1. Preamble

The last five years or so have seen some exciting developments in high
energy/gravitational physics, with branes as the common feature. In par-
ticular, branes have revolutionized our ideas about quantum field theory,
both on the technical level, by giving us new and powerful methods that
allow us to go beyond perturbation theory, and on the conceptual level, by
providing us with a new insight into its nature: it now seems likely that all
consistent quantum field theories can be viewed as effective descriptions of
low-energy fluctuations of branes.

The small fluctuations of a single brane are governed by a free field the-
ory. Going beyond small fluctuations, but still on a single brane, introduces
interactions but these are of higher-derivative type, and hence associated
with a characteristic length scale L. The 11-dimensional supermembrane
provides a simple example, with L determined by the membrane tension.
Interactions of conventional field theory type arise from inter-brane inter-
actions. These will dominate if the branes are separated by distances much
less than L but if L also sets the scale for the brane ‘core’, as will typi-
cally be the case, then the inter-brane dynamics cannot be separated from
the unknown core dynamics. Exceptions to this state of affairs can arise

http://arxiv.org/abs/hep-th/0004039v3


2 P.K. TOWNSEND

only when there is a separate length scale Lc determined by the size of the
core, with Lc ≪ L, and this implies the existence of a small dimensionless
constant g = Lc/L ≪ 1. This scenario is realized by the D-branes of su-
perstring theory, with L = ls the string length (set by the string tension)
and gp+1 = gs, for a Dp-brane, with gs the string coupling constant (which
must be small for superstring theory to be a valid approximation); in this
case the inter-brane interactions between parallel D-branes separated by
distances l with gsls ≪ l ≪ ls are supersymmetric gauge theories. If, in-
stead, l ≫ ls then we cannot ignore interactions due to brane fluctuations
but we can ignore inter-brane interactions. In this limit the dynamics of
each brane is governed (at sufficiently low energy) by a Dirac-Born-Infeld
(DBI) action. At intermediate length scales we have interactions of both
types. This regime is the one that we are going to study in these lectures,
although not for D-branes. We want to include the inter-brane interactions
that can lead to interacting field theories, but we want to go beyond the
field theory approximation by including the interactions due to large brane
fluctuations. We shall call this ‘brane theory’.

One might expect some general features of field theory to remain valid
in brane theory, and others not. Of importance to these lectures is the
fact that many supersymmetric field theories admit supersymmetric soliton
solutions saturating a Bogomolnyi-type bound. As these bounds are usually
a consequence of the supersymmetry algebra one would expect them to hold
beyond the field theory approximation, but it is not immediately clear how,
or whether, the bound continues to be saturated because the brane theory
equations are different. In the D-brane case, for example, the equations are
of non-abelian DBI type. They reduce to standard gauge theory equations
in the field theory limit, with their standard gauge theory soliton solutions,
but to determine whether these solitons continue solve the brane theory
equations and, if so, whether they continue to saturate the energy bound
implied by supersymmetry requires a precise knowledge of the non-abelian
DBI equations. Here we confront a general difficulty: to get interactions
of field theory type we need more than one brane, but the inter-brane
interactions are known precisely only in the field theory limit.

There is one way to avoid this dilemma. We can fix our attention on one
brane and replace the others with which it interacts by the supergravity
background that they induce at ‘our’ brane. This way we take the inter-
brane interactions into account in an approximation that is exact in the
limit of large brane charges for the ‘other’ branes, which are effectively
macroscopic and can be replaced by the supergravity background they in-
duce. What we now have is a single brane in a brane background. As applied
to D-branes, this method can be used to recover many of the finite-energy
soliton solutions of D=4 SYM theory but as soliton solutions on a sin-
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gle brane, with an abelian gauge group [1]. In this application, the ‘other’
branes are parallel D3-branes. Another application of this idea, and one to
be reviewed in lecture 2, involves M2-branes in a two-centre M-monopole
(i.e. M-theory Kaluza-Klein monopole) background, which allows a brane
realization [2] of the sigma model ‘lump’ soliton of hyper-Kähler sigma-
models. Of course, other backgrounds can yield brany generalizations of
sigma-models with other target spaces, and other branes can yield models
in other dimensions. A general feature is that the relativitistic aspects of
the field theory are extended to a bulk-space relativity. This is explained
in the first lecture, where it is presented as a consequence of implementing
the principle of ‘field-space democracy’ [3].

It is also a general feature that sigma-model solitons survive as solutions
of the brane equations and continue to minimize the energy in their charge
sector. Moreover, these solitons now acquire a new geometrical interpreta-
tion, as minimal surfaces in the simple cases discussed in these lectures.
At this point we can see that brane theory goes beyond field theory be-
cause there are many types of minimal surface and not all of them have an
interpretation as field theory solitons. Derrick’s theorem states that static
minimal energy solutions of (conventional) scalar field theories in p space
dimension cannot exist for p > 2, but Derrick’s theorem no longer applies
once we have made the transition from field theory to brane theory.

When discussing solitons that minimise the energy it is natural to start
from the Hamiltonian rather than the Lagrangian, and this will be the
strategy adopted here, following [4]. Only the standard Dirac-type p-brane
action, and its Hamiltonian, will be needed in these lectures, apart from the
coupling to a background (p+1)-form gauge potential A, which will play a
minor role because only backgrounds with vanishing field strength F = dA
will arise. Neither will we need terms involving worldvolume gauge fields
because no attempt will be made here to review the brane theory status
of gauge theory solitons. A further restriction will be to static solitons. A
general framework for those cases that remain is provided by the theory of
calibrations [5]. As we shall see in the third lecture, sigma model solitons
on the M2-brane fit into this framework as examples of Kähler calibrations
[6], but for other branes there are solitons with no field theory analogue
that arise from more complicated types of calibration [7, 8]. The simplest
example, albeit one with infinite energy, is the Special Lagrangian 3-surface
in E

6. Its realization by intersecting M5-branes [9, 10, 11] will be reviewed
in the fourth, and last, lecture. Hopefully, the detailed treatment of these
few cases of ‘brane theory solitons’ will compensate for the restricted focus.

One other restriction is implicit in the above discussion. We have taken
the term ‘field theory’ to exclude gravity (and hence supergravity). It has
long been appreciated that gravity is a rather special kind of ‘field theory’,
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and branes have provided us with a new reason for believing this. Gravitons
(and superpartners) propagate in the ‘bulk’ while ‘matter’ propagates on
branes. There are reasons for this that go beyond the simple statement that
it is ‘difficult’ to confine gravity to a brane but these reasons need to be
reassessed in light of the demonstration [12] that it is, nevertheless, possible.
The epilogue that concludes these lectures deals with some of these issues.

2. Lecture 1: Field theory vs Brane Theory

The n scalar fields of a non-linear sigma-model define a map from a (p+1)-
dimensional Minkowski spacetime W with metric η (diagonal with entries
(−1, 1, . . . , 1) in cartesian coordinates) to an n-dimensional Riemannian
target spaceM with metric G. Let ξµ, (µ = 0, 1, . . . , p) be cartesian coordi-
nates for W , and let Xi (i = 1, . . . , n) be coordinates for M , so that Xi(ξ)
are the scalar fields. The Lagrangian density of the massless sigma model
is then

Lσ =
1

2
ηµν∂µX

i∂νX
jGij(X) . (1)

The corresponding Hamiltonian density is

Hσ =
1

2
GijPiPj +

1

2
∇Xi ·∇XjGij , (2)

where the variables Pi(ξ) are the momenta canonically conjugate to the
fields Xi(ξ). Although this field theory is ‘relativistic’ as a field theory on
W , there is another sense in which it is not relativistic. Consider the special
case of p = 0, and set Pi = pi/

√
µ; then Hσ = HNR, where

HNR =
1

2µ
Gijpipj . (3)

This is the Hamiltonian of a non-relativistic particle of mass µ. This may
be contrasted with the Hamiltonian

H =
√

Gijpipj + µ2 (4)

for a relativistic particle. Is there an analogous ‘relativistic’ Hamiltonian
density H for a scalar field theory?

There is, and one way to find it is by implementation of ‘field-space
democracy’ [3] (a principle invoked for similar reasons in [13]). We begin
with a Lorentzian spacetime M of dimensionD = p+n+1 with coordinates
(ξµ,Xi). The sigma model fields Xi(ξ) now define a (p+1)-dimensional
surface W in M. This (p+1)-surface can also be specified parametrically
by giving D coordinates Xm (m = 0, 1, . . . , p + n), as functions of (p + 1)
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parameters ξµ, such that Xµ = ξµ for some particular parametrization.
The equations for the (p+1)-surface W now take the form Xm = Xm(ξ).
We will assume that the induced metric on W is Lorentzian, so that W
is a (p+1)-dimensional worldvolume swept out in time by a p-dimensional
‘worldspace’ w. The evolution of w is governed by an action S[X] that
must be reparametrization invariant in order to allow, at least locally, the
‘physical’ gauge choice

Xµ(ξ) = ξµ . (5)

Let G be the Lorentzian metric on M and let g be the metric it induces
on W . The reparametrization invariant action with a Lagrangian density
of lowest dimension is

S = −T
∫

dp+1ξ
√

− det g , (6)

which is the Dirac-Nambu-Goto action for a p-brane of tension T .
To make contact with the sigma model we set T = 1 and take the metric

G on M to be of the form

Gmn =

(

ηµν 0
0 Gij

)

. (7)

The physical gauge metric that this induces on W is

gµν = ηµν + ∂µX
i∂νX

jGij . (8)

Choosing local cartesian coordinates for W , we then have

T−1L = − det g = 1 +
1

2
ηµν∂µX

i∂νX
jGij +O

(

(∂X)4
)

. (9)

Apart from the constant term, and the higher-derivative corrections, this
is the sigma-model Lagrangian density. The low-energy ‘non-relativistic’
dynamics of the brane is therefore governed by the sigma-model. To com-
plete the picture we now need to determine the p-brane Hamiltonian and
show that it provides the required generalization of the relativistic particle
hamiltonian.

We could find the physical-gauge Hamiltonian by performing a Legendre
transformation on the gauge-fixed Lagrangian. Instead, we will first proceed
to the Hamiltonian form of the gauge-invariant action. This has the advan-
tage of maintaining manifest invariance under any isometries of G, until
a gauge choice is made. We will need to make a worldvolume space/time
split, so we write

ξµ = (t, σa) , (10)
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where σa (a = 1, . . . , p) are coordinates for the p-dimensional worldspace
w. Let us write the induced metric on W as

gµν =

(

gtt gta
gtb mab

)

, (11)

so that m is the metric induced on w, with components

mab = ∂aX
m∂bX

nGmn . (12)

One can now use standard methods to obtain the Hamiltonian form of the
action in which the independent variables are the scalar fields Xm(ξ) and
their canonically conjugate momenta Pm(ξ). The result is [14]

S =

∫

dt

∫

dpσ
[

ẊmPm − siHi − ℓHt

]

, (13)

where sa and ℓ are Lagrange multipliers for the constraints Ha = 0 and
Ht = 0, with

Ha = ∂aX
mPm , Ht =

1

2

(

GmnPmPn + T 2 detm
)

. (14)

This form of the action is to be expected from the general covariance of the
initial action (6). The Lagrange multipliers are analogous to the ‘shift’ and
‘lapse’ functions of General Relativity. The difference is that the geometry
here is extrinsic whereas that of General Relativity is intrinsic.

It is simple to verify that the result given above is correct. Elimination
of Pm in (13) by its Euler-Lagrange equation yields

S =

∫

dt

∫

dpσ

[

1

2ℓ

(

gtt − 2sagta + sasbmab

)

− 1

2
T 2ℓ detm

]

. (15)

We now eliminate sa by its Euler-Lagrange equation, set

ℓ = v/detm, (16)

and use the identity

det g ≡ detm
(

gtt −mabgtagtb
)

, (17)

to get

S =

∫

dt

∫

dpσ

[

1

2v
det g − 1

2
T 2v

]

. (18)

This is a well-known alternative form of the p-brane action. Provided T 6= 0,
which we assume here, we can eliminate v by its algebraic Euler-Lagrange
equation to recover (6).
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To find the physical gauge Hamiltonian we have only to substitute the
‘physical’ gauge choice (5) into the constraints and then solve them for the
momenta Pµ. However, it is instructive to proceed sequentially, first fixing
only the time parameterization by the gauge choice X0(ξ) = t. If we rename
P0 as −H, and define

XI = (Xa,Xi) , PI = (Pa, Pi) , (19)

then we now have

Xm = (t,XI) , Pm = (−H, PI) . (20)

It will also prove convenient to write the spacetime metric G as

Gmn =

(

G00 G0I

G0J MIJ

)

. (21)

Note that since ∂aX
0 = 0 the metric m is now

mab = ∂aX
I∂aX

JMIJ . (22)

The Hamiltonian constraint Ht = 0 can now be solved to yield

H = N IPI ±N
√

M IJPIPJ + T 2 detm, (23)

where

N I = −G0I

G00
, N =

1√
−G00

, (24)

and M IJ is the inverse of the space metric MIJ . The action (13) now
becomes

S =

∫

dt

∫

dpσ
[

ẊIPI −H(X,P ) − saHa

]

, (25)

which is that of a (p + 1)-dimensional field theory with Hamiltonian den-
sity H(X,P ). The constraint imposed by sa is linear in momenta and can
therefore be viewed as the generator of a gauge invariance.

To fix this gauge invariance we set Xa(ξ) = σa. The constraint Ha = 0
can then be solved for Pa,

Pa = −∂aXiPi , (26)

and the action then takes the canonical form

S =

∫

dt

∫

dpσ
[

ẊiPi −H
]

, (27)



8 P.K. TOWNSEND

where the Hamiltonian density is now a function only of the physical phase-
space variables (Xi, Pi).

For a metric on M of the form (7) we have N I = 0, N = 1 and

MIJ =

(

δab 0
0 Gij

)

. (28)

The physical-gauge metric on w is therefore

mab = δab + ∂aX
i∂bX

jGij . (29)

The Hamiltonian density for this case is

H =
√

(Gij +∇Xi ·∇Xj)PiPj + T 2 det (I+∇Xi∇XjGij) . (30)

For p = 0 the ∇X terms are absent and T = µ, a mass parameter. The
Hamiltonian density then reduces to the Hamiltonian (4) for a relativistic
particle; we have thus found the sought p > 0 generalization of this Hamil-
tonian. If we now set T = 1 and write (30) as a double expansion in powers
of P and ∇X, we find that

H = 1 +
1

2

[

GijPiPj +∇Xi ·∇XjGij

]

+ . . . (31)

The leading term is the p-surface tension energy of the brane. The next
term is just the sigma model hamiltonian. The remaining terms, indicated
by the dots, are ‘relativistic’ corrections; these can be ignored if (i) all
speeds are much less than light, and (ii) all fields are slowly varying. To
this we should add that the validity of the Dirac-Nambu-Goto action from
which we began requires all accelerations to be small.

Although the non-zero vacuum energy is expected, it is natural to define
the energy on any given worldspace as

E = H− T , (32)

because this vanishes in the vacuum. Although no mention has been made
of supersymmetry, it is nevertheless the case that the analogous analysis
for a super-p-brane action yields a supersymmetric worldvolume theory
for which the energy density must vanish in the vacuum. In fact, it is
E , rather than H, that plays the role of the Hamiltonian density in the
worldvolume supersymmetry current algebra [15], and this is what allows
the brane vacuum to preserve half of the supersymmetry of the spacetime
vacuum. This can also be understood, from the spacetime perspective, as
due to a p-form charge in the spacetime supersymmetry algebra [16]. For
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these reasons, we will usually focus on the worldspace energy density E
given in the spacetimes of interest here, and for T = 1, by the formula

(E + 1)2 =
(

Gij +∇Xi ·∇Xj
)

PiPj + T 2 det
(

I+∇Xi
∇XjGij

)

. (33)

3. Lecture 2: Sigma-model solitons on branes

Let us begin with the (2+1) dimensional sigma-model Hamiltonian

Hσ =
1

2

∫

d2σ {|P |2 + |∇X|2} , (34)

where the norm |.| is defined by contraction with the target space metric
and, where applicable, with the Euclidean 2-space metric. We use here stan-
dard vector calculus notation for differential operators on E

2. For example,
in cartesian coordinates we have

∇ = (∂1, ∂2), ⋆∇ = (∂2,−∂1) . (35)

We will not consider models with fermions, such as supersymmetric mod-
els. However, all the models we will consider are supersymmetrizable, so
that supersymmetry will be implicit in much of the discussion and it will
pay to keep in mind some of its implications. The simplest, N=1, (2+1)-
dimensional supersymmetric sigma model has one real Sl(2;R) spinor charge.
If the target space has a metric of reduced holonomy then there may be
additional supersymmetries. Specifically, if the target space is Kähler then
there will be two spinor charges [17] (N = 2 supersymmetry) and if it is
hyper-Kähler there will be four spinor charges [18] (N=4 supersymmetry).
A summary of what these Kähler and hyper-Kähler conditions mean now
follows.

If the target space M is almost-complex then it will admit an almost
complex structure, which is a (1,1) tensor I such that I2 = −I, where I is
the identity matrix. Given an almost-complex structure I we may define
the associated Nijenhuis tensor

Nij
k(I) = 4

(

∂ℓI[i
kIj]

ℓ + ∂[iIj]
ℓIℓ

k
)

. (36)

IfN(I) vanishes then I is a complex structure andM is a complex manifold.
A metric G on M satisfying

I(i
jGj)k = 0 (37)

is Hermitian with respect to I. For a Hermitian metric the tensor Iij is
antisymmetric and hence defines a 2-form

Ω =
1

2
Iij dX

i ∧ dXj . (38)
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The metric is Kähler if this 2-form is closed, dΩ = 0, and Ω is then called
the Kähler 2-form (associated to the complex structure I). For a complex
manifold, with vanishing Nijenhuis tensor, this condition is equivalent to the
apparently weaker condition that I be covariantly constant (with respect to
the usual affine metric connection). A hyper-Kähler manifold is one with a
metric that is Kähler with respect to three independent complex structures
I, J,K, obeying the algebra of the quaternions (IJ = K and cyclic).

We begin our study of solitons by seeking minimal energy configurations
of a Kähler sigma model. The Hamiltonian (34) can be rewritten as

Hσ =
1

4

∫

d2σ {2|P |2 + |∇X ∓ ⋆∇XI|2} ∓ L. (39)

where L is the topological ‘lump’ charge

L =

∫

w
Ω . (40)

The integrand is the the Kähler 2-form Ω, which is integrated over the 2-
surface w into which the Euclidean 2-space is mapped by the sigma models
map. To check the equivalence of (39) to the original form (34) it suffices
to note that L cancels against the cross term from

Gij

(

∇Xi ∓ ⋆∇XkIk
i
) (

∇Xj ∓ ⋆∇X lIl
j
)

, (41)

while the identity I(k
iIℓ)

jGij = Gkℓ ensures equality of the remaining two
terms.

Since L is a topological invariant, the variation of the fields for fixed
boundary conditions will not change its value, and since the other terms in
H are non-negative we deduce the bound [19]

Hσ ≥ |L| , (42)

which is saturated by static solutions of the first order equations

∇Xi = ± ⋆∇XkIk
i . (43)

Locally we may choose complex coordinates Zα on a chart ofM for which I
is diagonal with eigenvalues ±i. We may also view E

2 as the complex plane
with complex coordinate ζ = σ1 ± σ2. The equations (43) then reduce to

∂̄Zα = 0 , (44)

where ∂̄ ≡ ∂/∂ζ̄. That is, the functions Zα(ζ) are holomorphic functions.
Globally this means that the solutions of (43) are holomorphic curves on
M .
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As a simple example, suppose that M = C, with complex coordinate
Z and flat metric dZdZ̄. The complex sigma-model field is Z(t, ζ, ζ̄), but
as there are no interactions we can hardly expect to find solitons. All the
same, it will prove instructive to consider how one might go about looking
for them. As we have seen, static solutions of minimum energy correspond
to holomorphic functions Z(ζ). For a localized energy density we require
that |Z| → 0 as |ζ| → ∞. This means that any non-zero Z(ζ) must have
singularities, and the simplest choice is a point singularity at the origin.
For this choice we have

Z(ζ) = c/ζ (45)

for complex constant c, with |c| determining the objects’s ‘size’. It would
be misleading to call this object a ‘soliton’ because its energy is infinite. To
see this we note that the Kahler 2-form on C is Ω = idZ∧dZ̄ so its pullback
to the complex ζ-plane, when Z is holomorphic has magnitude |Z ′|2. The
soliton energy is therefore

E =

∫

d2σ|Z ′|2 = |c|2
∫

d2σ|ζ|−4 (46)

= −π|c|2[r−2]∞0 = [πR2]∞0 , (47)

where r is distance from the origin in the ζ-plane, and R is distance from
the origin in the Z-plane. The energy is infinite because it equals the infinite
area of the target 2-space. In general, a finite energy soliton saturating the
energy bound is possible only if the target space has a compact holomorphic
2-cycle. A holomorphic map Zα(ζ) then yields finite energy if it maps the
ζ-plane to this 2-cycle, and the energy will be the area of the 2-cycle.
Obviously, a flat target space, which yields a free field theory, does not
have such 2-cycles.

A flat target space has trivial holonomy. In some respects, the sim-
plest non-flat sigma models are those for which the holonomy group is the
smallest non-trivial subgroup of SO(n). If one also requires a Ricci flat
metric (this being motivated by its ultimate interpretation as part of a
background supergravity solution) then the simplest case is n = 4 with
holonomy SU(2) ⊂ SO(4). Such 4-manifolds are hyper-Kähler. In this case
there is a triplet I of complex structures. For any unit 3-vector n the tensor
I = n · I is also a complex structure, which we can identify as the one of
the above discussion. Similarly, Ω = n ·Ω, where Ω is the triplet of Kähler
2-forms. An important class of hyper-Kähler 4-manifolds are those admit-
ting a tri-holomorphic Killing vector field; that is, a Killing vector k field
for which LkΩ vanishes. All such manifolds are circle bundles over E

3 [20].
We can choose coordinates such that

k = ∂/∂ϕ , (48)
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where ϕ parametrizes the circle. The metric then takes the form

ds24 = V −1(dϕ−A · dX)2 + V dX · dX (49)

where ∇×A = ∇V . This implies that V (X) is harmonic on E
3, except at

isolated poles. The metric (49) is complete provided that (i) the residues
of V at its poles are equal and positive, and (ii) ϕ is an angular variable
with period 4π times this common residue. Under these circumstances the
poles of V are coordinate singularities of the metric, called its ‘centres’. If
we also take V → 1 as |X| → ∞ then the metric is asymptotically flat. A
simple example is the 2-centre metric with ϕ ∼ ϕ+ 2π and

V = 1 +
1

2

[

1

|X+ a| +
1

|X− a|

]

. (50)

In terms of the frame 1-forms

eϕ = V −
1

2 (dϕ−A · dX) , e = V
1

2dX , (51)

the triplet of Kähler 2-forms is

Ω = eφe− 1

2
e× e , (52)

where the wedge product of forms is implicit here. In the two-centre case
there is a preferred direction n = a/|a| and hence a preferred complex struc-
ture Ω = n ·Ω. The 2-centre metric is the simplest multi-centre metric, all
of which admit finite energy lump solutions corresponding to holomorphic
maps from C to homology 2-cycles. In the 2-centre case there is just one
such 2-cycle. This is the 2-sphere with poles at the centres, where k van-
ishes, and orbits of k as its lines of latitude. The lump solution can be found
from the ansatz X = Xn, which leaves leaves ϕ(σ) and X(σ) as the two
‘active’ coordinates. When restricted to this subspace, the Kähler 2-form is
Ω = dϕ ∧ dX, and hence |L| = 4π|a|.

We now wish to generalize these considerations from field theory to
brane theory. Our starting point will be the p = 2 case of the formula
(33) for the physical-gauge p-brane energy density E . We expand the 2× 2
determinant to obtain

(E + 1)2 = 1 + |∇X|2 + (Gij +∇Xi ·∇Xj)PiPj

+ 2XijXklGikGjl , (53)

where we have set

Xij ≡ 1

2
∇Xi ×∇Xj . (54)
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Previously we were able to express the energy as a sum of a topological
charge and a manifestly non-negative integral. This is the trick introduced
by Bogomol’nyi for deriving energy bounds in field theory [21]. Its general-
ization to brane theory involves writing (E+1)2 as a sum of squares [5, 4, 2].
To simplify we will put the momentum to zero. For the case in hand we
can then rewrite (53) as

(E + 1)2 =
(

1∓XijIij
)2

+
1

2
|∇X ∓ ⋆∇XI|2

+
(

XijJij
)2

+
(

XijKij

)2
. (55)

To verify this one needs the identity

δi
(jδl

k) + Ii
(jIl

k) + Ji
(jJl

k) +Ki
(jKl

k) ≡ GjkGil . (56)

It now follows (for one choice of sign) that

E ≥ |XijIij | . (57)

This bound is saturated by static solutions of the same first-order equations
(43) as we found before because, for example, these imply that

XijJij = ∓1

2
∇Xi ·∇Xj(IJ)ij

= ∓1

2
∇Xi ·∇XjKij ≡ 0 , (58)

where we have used IJ = K in the last line. Of course, the choice of complex
structure I is arbitrary; we could take I = n · I. Let

L =

∫

w
Ω (59)

and let n̄ be the direction that minimises n ·L. Then we deduce the bound

E ≥ |XijΩij| , (60)

where Ω = n̄ ·Ω. Integration of (60) yields the bound

E ≡
∫

d2σ E ≥ |L| (61)

on the total energy. Given that the bound (60) is saturated, the bound (61)
will also be saturated provided that the integrand of L does not change sign.
Recalling that Ωij ≡ Iij , we see that this condition is satisfied because (43)
implies that

XijΩij = ±|∇X|2 . (62)
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Thus, the bound (61) is saturated by static solutions of (43). We see that
the additional non-quadratic terms in the membrane Hamiltonian make no
difference to the final result.

Let us now reconsider the case in which M = C. This corresponds to
a membrane in a 5-dimensional Minkowski spacetime, which we can view
as the product of a real time-line with C

2; the C
2 coordinates are (Z, ζ).

Minimal energy membranes are static holomorphic curves in C
2, which are

specified by an equation of the form f(Z, ζ) = 0 for some holomorphic
function of Z and ζ. This equation has a solution of the form Z = Z(ζ)
in which ζ parametrizes the membrane worldspace w and Z(ζ) can now
be interpreted both as a worldvolume field and as the displacement of the
membrane in the Z-plane at the coordinate ζ. If we want the field Z(ζ)
to be single-valued on the ζ-plane, a condition that is normally required
of a sigma model, we must choose f to be linear in Z. In contrast, we
might expect any given value of Z to occur for several values of ζ; for
instance, if we have k identical widely-separated solitons we expect each
value of Z to occur at least k times. This will happen if f is a k’th order
polynomial in ζ, but this suggests that the one soliton sector is described
by a function f that is linear in ζ. The simplest soliton solution should
therefore be found by choosing f = ζZ− c. Provided that c 6= 0, this yields
the solution Z(ζ) = c/ζ discussed above. In that discussion the limit c→ 0,
which shrinks the ‘soliton’ to a point, would simply yield the sigma-model
vacuum Z ≡ 0. In the membrane context, however, this limit yields the
equation

ζZ = 0 , (63)

which has two solutions: Z = 0 or ζ = 0. The second solution makes no sense
in the sigma model context but it does in the membrane context. Since this
equation is symmetric under the interchange of Z and ζ we could equally
well interpret Z as a worldspace coordinate and ζ(Z) as its displacement in
the ζ-plane. Thus, the equation (63) describes two membranes intersecting
at the point Z = ζ = 0. Recalling that this is a limit of the equation

ζZ = c (64)

we see that the ‘soliton’ solution Z = c/ζ describes the desingularized
intersection of two membranes [22]. Either membrane can be viewed as
an infinite-energy ‘soliton’ on the worldspace of the other one, the energy
being infinite because the ‘soliton’ membrane has constant surface tension
and infinite area. Of course, it is also possible to view the desingularized
intersection as a single membrane in E

4 with two asymptotic planes. This
single membrane will have minimal energy if it is a minimal surface in E

4.
The study of sigma model solitons is therefore closely related to the study
of minimal surfaces. We shall return to this theme in the next two lectures.
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We now turn to the membrane version of the finite energy soliton of
the hyper-Kähler sigma model. We start from the D=11 supermembrane
in a D=11 supergravity M-monopole background. The supermembrane is
a super version of the membrane already considered, and can be consis-
tently formulated in any background that solves the D=11 supergravity
field equations [23]. The M-monopole is a solution of D=11 supergravity
[24] for which the only non-vanishing field is the 11-metric, which takes the
form

ds211 = ds2(E(1,6)) +Gij(X)dXidXj , (65)

where G is a hyper-Kähler 4-metric of the type considered above. We now
place a probe membrane in this background and choose its vacuum to
be a Minkowski 3-space in E

(1,6). Restricting attention to deformations of
the supermembrane described by the worldvolume fields Xi, we find the
induced worldvolume 3-metric to be exactly as in (8). As we have seen, this
leads, in the field theory limit, to a sigma-model with target space metric G.
In the case of the supermembrane this becomes an N=4 supersymmetric
sigma model. As we have seen this model admits finite energy (and 1/2
supersymmetric) lump solutions corresponding to particular holomorphic
curves. We have also seen that the same configurations minimise the brane
theory energy, with the membrane worldspace as the holomorphic curve.
For the choice of a 2-centre hyper-Kähler metric with V given by (50) we
have the finite area homology 2-sphere previously described and the lump is
a membrane wrapped on it. This appears as a soliton on a probe brane that
intersects the lump brane. Non-singular intersections, which can be viewed
as single membranes asymptotic to the vacuum membrane, are obtained as
solutions of (43). This entire set up can be summarized by the array

MK : × − − −
M2 : 1 2 −
M5 : 3 4

where ‘MK’ indicates the (multi-centre) M-monopole background solution
of D=11 supergravity; the cross represents the compact direction of this
background. The second row is the probe supermembrane, or M2-brane, and
the third row the soliton M2-brane; of course, in the case of a non-singular
intersection, there is really only one M2-brane. This array is associated with
the constraints

Γ3456ǫ = ǫ , Γ012ǫ = ǫ , Γ034ǫ = ǫ , (66)

where ǫ is a 32-component real D=11 spinor. I refer to my previous Cargèse
lectures [25] for an explanation of these constraints, which will be needed in
the following lecture. The fact that their solution space is is 4-dimensional
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implies that the configuration as a whole preserves 1/8 of the supersym-
metry of the M-theory vacuum. As the hyper-Kähler sigma model vacuum
preserves eight supersymmetries the lump soliton on the supermembrane
preserves 1/2 of the supersymmetry of the brane theory vacuum.

To conclude this lecture, we will consider the IIA interpretation of the
above sigma model lump. Because of the holomorphicity of k, reduction on
its orbits preserves all supersymmetries of the original configuration. I will
not prove this here, but it can be verified directly from the resulting IIA
configuration, which (after a permutation of the columns) is represented by
the array

D6 : 1 2 3 4 5 6
D2 : 1 2
F1 : 7

We now have two parallel D6-branes, represented by the first row. The
probe M2-brane has become a D2-brane parallel to the D6-branes and the
‘soliton’ M2-brane a IIA string stretched between the D6-branes. An in-
tersection of the string with the D2-brane corresponds to a singular in-
tersection of the two M2-branes. The deformation of the M2-branes to a
non-singular lump on a single M2-brane now has a IIA interpretation as
the splitting of the IIA string intersection with the D2-brane into two end-
points, yielding two separate IIA strings stretched between the D2-brane
and each of the D6-branes.

4. Lecture 3: Solitons and Kähler Calibrations

We have been considering p-branes in D-dimensional spacetimes M = R×S
with metric

ds2 = −(dx0)2 +MIJdX
IdXj , (67)

so that M is the Riemannian metric on the (D-1)-dimensional space S. We
shall assume that a time parametrization has been chosen so thatX0(ξ) = t.
A static p-brane is then an immersed p-surface w in S specified by functions
XI(ξ). The metric induced on w is the metric m of (22). Let ΓI be the
spatial Dirac matrices that anticommute with γ0 and satisfy

{ΓI ,ΓJ} = 2MIJ , (68)

and let ΓIJ... be antisymmetrized products of Dirac matrices (with ‘strength
one’, so that Γ12... = Γ1Γ2 · · · when M is diagonal). The matrix

Γ =
1

p!
√
detm

ǫa1...ap∂a1X
I1 . . . ∂apX

Ipγ0ΓI1...Ip (69)
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will play an important role in what follows. It has the property that

Γ2 = (−1)(p−2)(p−5)/2 . (70)

To verify this one notes first that, as for any product of Dirac matrices,

Γ2 =
∑

k

1

k!
CI1...IkΓI1...Ik ≡

∑

k

C(k) · Γ(k) , (71)

for some coefficient functions C(k); one then observes that C(k) must vanish
for k 6= 0 because no antisymmetric tensor can be constructed from the
(p − k) factors of the induced metric arising from the ‘contractions’ of
Dirac matrices that must be made to get the k’th term. Evaluation of the
zeroth term then yields the result. We will restrict ourselves to the cases
p = 2, 5, for which

Γ2 ≡ 1 . (72)

We will also take D = 11, so S is 10-dimensional. In this case the 2-brane
and 5-brane have a natural interpretation as the M2-brane and M5-brane
of M-theory (with the tensor gauge field set to zero in the latter case).

We may, and will, choose the 32 × 32 D=11 Dirac matrices to be real.
Let ǫ(X) be a real (commuting) time-independent 32-component spinor
field on M, normalized so that

ǫT ǫ = 1 , (73)

and let Φ be the p-form on S defined by

Φ =
1

p!
(ǭΓI1...Ipǫ) dX

I1 ∧ . . . ∧ dXIp , (74)

where
ǭ ≡ ǫTγ0 . (75)

We shall choose ǫ to be covariantly constant with respect to a metric spin
connection. In this case Φ is a closed form,

dΦ = 0 . (76)

This p-form Φ induces a p-form φ on w, given by

φ = vol (ǫTΓǫ) . (77)

where
vol ≡ dσ1 ∧ . . . ∧ dσp

√
detm (78)
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is the volume p-form on w in the induced metric m. From the property (72)
it follows that

φ ≤ vol . (79)

A closed p-form Φ with this property is called a (p-form) calibration [5]. A
p-surface in S for which this inequality is everywhere saturated is said to
be a calibrated surface, calibrated by Φ.

The significance of calibrations resides in their connection to minimal
p-surfaces [5]. Let w be a calibrated surface and let U be an open subset
of w. Then, by hypothesis,

vol(U) =

∫

U
Φ . (80)

Now let V be any deformation of U in S such that U − V = ∂D where D
is some (p+1)-surface in S. Then

∫

U
Φ =

∫

V
Φ+

∫

D
dΦ =

∫

V
Φ . (81)

where the second equality follows from the fact that Φ is a closed form.
Because Φ is a calibration we have

∫

V
Φ ≤ vol(V ) . (82)

Putting everything together we deduce that

vol(U) ≤ vol(V ) , (83)

which shows that w is a minimal surface.
Given a p-surface w we may evaluate on any of its tangent p-planes the

matrix Γ, and hence the p-form φ induced by the calibration p-form Φ. The
p-surface will be calibrated by Φ if and only if there exists a covariantly
constant normalized spinor ǫ such that

Γǫ = ±ǫ (84)

for all p-planes tangent to w. Because of the identity (72), this equation is
automatically satisfied for any given tangent p-plane, the solutions span-
ning a 16-dimensional subspace of spinor space. The intersection of these
spaces for all tangent p-planes is the solution space of the equation (84),
which therefore has dimension ≤ 16. For a generic p-surface the dimension
will vanish, so a generic p-surface is not calibrated by Φ, but special sur-
faces, which will necessarily be minimal, may be. It follows that minimal
surfaces can be found by seeking solutions of (84). These minimal surfaces
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have the feature that they partially preserve the supersymmetry of the
M-theory vacuum; this can be understood either as a consequence of the
‘κ-symmetry’ of super-brane actions [26, 7, 27] or directly from the space-
time supersymmetry algebra [6], but the details of this connection between
supersymmetry and calibrations will not be needed here.

Examples are provided by a p-brane, with p=2 or p=5, in D=11 space-
times of the form (7), for which S = E

p ×M . In this case MIJ takes the
form (28) and the induced metric m in the physical gauge is given by (29).
It then follows that

detm = 1 +∇Xi ·∇XjGij

+
1

2
(∇Xi ·∇Xj)(∇Xk ·∇X l) (GijGkl −GikGjl)

+ . . .+ det
(

∇Xi
∇XjGij

)

. (85)

We also have

√
detmΓ =

( p
∑

k=0

(−1)k(k+1)/2

k!
γa1...ak∂a1X

i1 · · · ∂akXikΓi1...ik

)

Γ∗ (86)

where Γ∗ is the constant matrix

Γ∗ ≡ γ0Γ1...p . (87)

We are now in a position to find calibrated p-surfaces from the calibra-
tion condition (84). Consider first the brane theory vacuum; in this case
the calibration condition reduces (for one choice of sign) to

Γ∗ǫ = ǫ . (88)

Since Γ2
∗
= 1 and tr Γ∗ = 0, this condition reduces by half the space spanned

by covariantly constant spinors on S. The calibrated p-surface is a planar
p-surface that fills the E

p factor of S. It is calibrated by the p-form

Φ = dx1 ∧ . . . ∧ dxp . (89)

Since every p-surface is locally planar the condition (88) must always be
satisfied, but for non-planar p-surfaces it will not be sufficient. To determine
the required additional conditions we can use (88) in (84) to reduce the
latter to

√
detmǫ =

(

1− γa∂aX
iΓi −

1

2
γab∂aX

i∂bX
jΓij

+
1

6
γabc∂aX

i∂bX
j∂cX

kΓijk + . . .

)

ǫ (90)
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The simplest non-trivial way to solve this condition is to suppose that
each power of ∂X cancels separately. The cancellation of the linear term
requires

γa∂aX
iΓiǫ = 0 . (91)

Remarkably, this implies that all higher powers in ∂X cancel [5]. Here we
shall verify this for p = 2 [2]. Iteration of (91) yields

−γab∂aXi∂bX
jΓijǫ = ∇Xi ·∇XjGijǫ . (92)

Since ǫ is non-zero by hypothesis, the calibration condition is now reduced
to the condition

√

det(I+ m̃) = 1 +
1

2
tr m̃ (93)

where we have set
m̃ab = ∂aX

i∂bX
jGij . (94)

This condition is equivalent to

tr m̃2 =
1

2
(tr m̃)2 . (95)

This is indeed a consequence of (91) and can be proved by iteration of (92)
and use of the Dirac matrix identity

ΓIJΓKL = ΓIJKL + 2ML[IΓJ ]K − 2MK[IΓJ ]L + 2Mj[kML]I . (96)

We have just seen that we can find non-planar calibrated membranes in
a 6-dimensional subspace E

2×M of the 10-dimensional space S by seeking
fields Xi(σ) for which (91) admits non-zero solutions for constant ǫ. We
are now going to make contact with the results of the previous lecture by
showing that solutions of the Bogomol’nyi-type equation (43) are precisely
the required configurations. We will choose the top sign, for convenience,
and rewrite this equation as

∂2X
i = ∂1X

jIj
i . (97)

Subsitution of this into (91), followed by multiplication by γ1, yields

∂1X
i
(

Γi + γ12ΓjIi
j
)

ǫ = 0 . (98)

In coordinates for which I takes a standard skew-diagonal form, with two
2× 2 blocks, this becomes

[

e1
(

Γ1 + γ12Γ2
)

+ e2
(

Γ2 − γ12Γ1
)

+ e3
(

Γ3 + γ12Γ4

)

+ e4
(

Γ4 − γ12Γ3

)

]

ǫ = 0 (99)
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where we have set ei = ∂1X
i. This is equivalent to

2
∑

k=1

(

Γ2k−1e
2k−1 + Γ2ke

2k
) (

1 + γ12Γ2k−1Γ2k

)

ǫ = 0 . (100)

Thus, for each k = 1, 2, either e2k−1 and e2k vanish, which is equivalent to
requiring one complex field to be constant, or

(

1 + γ12Γ2k−1Γ2k

)

ǫ = 0 . (101)

Each such condition reduces the space of solutions of (91) by 1/2. The
generic solution of (43) has all four scalar fields ‘active’, and is hence 1/4
supersymmetric. However, the generic solution does not have finite energy.
As we have seen, finite energy solutions correspond to membranes wrapped
on finite area holomorphic 2-cycles. Consider the two-centre model dis-
cussed previously. The minimal energy membrane, wrapped on the one
finite-area holomorphic 2-cycle, has X = Xn. It is manifestly a configura-
tion with two ‘active’ scalars, which can be replaced by the single complex
scalar Z = Xeiφ. As a solution of the supermembrane equations, this finite-
energy lump solution is therefore 1/2 supersymmetric [2].

We have now seen how sigma model lump solutions of the membrane
equations provide examples of calibrated surfaces. The calibration 2-form
for this special class of calibrated surfaces is called a Kähler calibration, for
reasons that will now be explained. We begin by recalling that

Φ =
1

2
(ǭΓIJǫ) dX

IdXJ . (102)

In the physical gauge, this becomes

Φ =
1

2
(ǭγabǫ) dσ

adσb + (ǭγaΓiǫ) dσ
adXi + (ǭΓijǫ) dX

idXj , (103)

the wedge product being understood here and in what follows. As a re-
sult of the constraint (88), which is here equivalent to γ012ǫ = ǫ, and the
normalization (73) of ǫ, the first term equals dσ1dσ2. Furthermore, when
X = X(σ) the term linear in dX is

(γ̄aΓIǫ) dσ
adσb∂bX

i = dσ1dσ2(ǫTγbΓiγ012ǫ) ∂bX
i , (104)

but this vanishes on using the constraints (88) and (91). We therefore drop
the term linear in dX. In coordinates (ϕ,X) for M we are then left with

Φ = dσ1dσ2 + (ǭΓ3Γaǫ)e
φea +

1

2
(ǭΓabǫ)e

aeb (105)
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where (eϕ, ea) are the frame 1-forms for which the 4-metric takes the form

ds2 = (eϕ)2 +
3
∑

a=1

(ea)2 . (106)

Referring to the M-theory array of the previous lecture, we see that
the 3-direction is the one with coordinate ϕ and that we should take a =
(3, 4, 5). The constraints (66 associated with that array imply

(ǭΓ34ǫ) = (ǭΓ56ǫ) = 1 , (107)

and
(ǭΓ35ǫ) = (ǭΓ36ǫ) = (ǭΓ45ǫ) = (ǭΓ46ǫ) = 0 . (108)

After relabelling a = (4, 5, 6) → (1, 2, 3) we then find that the surviving
terms in Φ are

Φ = dσ1dσ2 + eφe1 − e2e3 . (109)

That is
Φ = dσ1dσ2 +Ω (110)

where Ω = Ω · n is the target space Kähler 2-form. Clearly, the calibration
form Φ is a Kähler 2-form on the larger space E

2×M ; it is therefore called
a Kähler calibration.

5. Lecture 4: Beyond Field Theory

So far, we have seen how field theory solitons are interpreted within brane
theory. Now we are going to see how brane theory allows additional static
‘solitons’ for which there is no field theory analogue. It will be useful to be-
gin by reviewing the a priori limitations due to Derrick’s theorem. Suppose
that we have an energy functional of the form

E[X] =
∑

k

Ek[X] , (111)

where the functionals Ek are p-dimensional integrals with integrands that
are homogeneous of degree k in derivatives of a set of scalar fields X(σ).
To any given field configuration X(σ) corresponds a value Ek of Ek and
hence an energy E. Now Ek → λk−pEk under a uniform scaling σ → λσ of
the coordinates σ, so a necessary condition for X(σ) to minimise E is that

∑

k

(k − p)Ek = 0 , (112)

since there otherwise exists a λ for which the field configuration X(σ) =
X(λσ) has lower energy. If Ek is non-negative for all k in the sum then
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for any finite sum there will be a p for which (k − p) is always negative
and (112) cannot be satisfied unless Ek = 0 for all k 6= p. For conventional
scalar field theories one has k = 0, 2, and since E2 vanishes only in the
vacuum there can be no static solitons for p > 2. This is Derrick’s theorem.
A corollary is that when p = 2 we must have E0 = 0, which can normally
be satisfied only if the scalar potential vanishes.

For a brane theory the energy functional is non-polynomial in deriva-
tives and Derrick’s theorem no longer applies. Of course, solutions that are
‘Derrick-forbidden’ must involve a cancellation of terms of different scaling
weight and cannot be solutions of first-order equations of Bogomol’nyi-
type; the relevant equations are necessarily non-linear in derivatives. The
simplest example is provided by a 3-brane in E

6. The E
6 coordinates are

(Xa,Xi) with a = (1, 2, 3) and i = (4, 5, 6). In a physical gauge we have
Xa = σa, where σa are the worldspace coordinates, and Xi(σ) are the
physical fields. Let us define the 3-vector

X = (X4,X5,X6) (113)

so that, for example, ∇ ·X ≡ tr (∂X). In the physical gauge,

(E + 1)2 = det
(

I+ (∂X)(∂X)T
)

(114)

Now, we use the identity1

det
(

I+ (∂X)(∂X)T
)

≡ [1− ⋆ψ]2 + (∇ ·X− det ∂X)2

+ |∇×X|2 +
6
∑

i=4

(

∇Xi ·∇×X
)2

(115)

where ⋆ψ is the worldspace dual of the closed worldspace 3-form

ψ =
1

2
dσ · dX× dX , (116)

the wedge product of forms being implicit. Given that ⋆ψ is negative2 we
may deduce the bound

E ≥ |ψ| (117)

1This is the 3× 3 case of an identity given by Harvey and Lawson for the n× n case
[5]. I thank Jerome Gauntlett for pointing this out and for helping to transcribe the 3×3
result to the notation used here.

2This assumption is necessary because, in contrast to the analogous identity for Kähler
calibrations we are not free to adjust the signs in the identity (115). It is possible to find
configurations for which ⋆ψ is positive, and even such that (1 − ⋆ψ) is negative, but
the simplest examples are such that |X| does not vanish as |σ| → ∞. Presumably, this
condition guarantees that ⋆ψ ≤ 0.
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with equality when

∇×X = 0 , ∇ ·X = det ∂X . (118)

These equations (118) describe a special Lagrangian (SLAG) 3-surface in
E
6. Note that these conditions combined with (115) imply that

√
detm = 1− ⋆ψ . (119)

The curl-free condition is equivalent to

dσ · dX = 0 . (120)

The left hand side is a symplectic 2-form on E
6 (the wedge product of forms

again being implicit). A lagrangian submanifold is a 3-surface on which this
form vanishes. Since X is curl free we have, locally,

X = ∇S (121)

for some scalar function S(σ) of the three worldspace coordinates. Any
such function provides a local description of a Lagrangian 3-surface. The
additional ‘special’ condition is needed for it to be minimal. In terms of S,
this condition is

∇2S = detHessS (122)

where the Hessian of S is the matrix of second partial derivatives of S.
We are now going to see how these equations can be understood via the

theory of calibrations. For the Kähler calibrations considered previously,
the calibration condition (90) was satisfied order by order in an expansion
in powers of ∂X. This was to be expected from the fact that the ‘BPS’
condition was homogeneous in derivatives. Now we should expect to satisfy
(90) by a cancellation between different powers of ∂X. Special Lagrangian
3-surfaces in E

6 have an M-theory interpretation in terms of three M5-
branes intersecting according to the array [10]

M5 : 1 2 3 − − − | 7 8 − − −
M5 : − − 3 4 5 − | 7 8 − − −
M5 : − 2 − 4 − 6 | 7 8 − − −

Omitting the two common worldspace directions, and the last two trans-
verse directions, neither of which plays a role, we have effectively three
3-branes in E

6. We can read off from the array the conditions imposed on
the spinor ǫ by these three branes, up to a choice of signs. For example

Γ012378ǫ = ǫ , Γ034578ǫ = −ǫ , Γ024678ǫ = ǫ . (123)
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Each product of Dirac matrices on the left hand side of these equations has
eigenvalues ±1, and the corresponding constraint projects out one of these
eigenspaces according to the sign chosen; the signs here have been chosen
for convenience. Note that these constraints imply

Γ1245ǫ = ǫ , Γ1346ǫ = ǫ , Γ2356ǫ = ǫ . (124)

The above discussion assumes that the only constraints are those as-
sociated with the three tangent planes indicated in the array. This is ob-
viously the case if the configuration represented by the array is a singular
orthogonal intersection of three planar M5-branes, but it may be possible to
smooth the intersection in such a way that no further constraints arise, in
which case the whole configuration can be interpreted as a single M5-brane
asymptotic to the three M5-branes of the array. Our aim is to find the
equations that govern such smooth intersections. We may choose the first
of the asymptotic planar M5-branes as the M5-brane vacuum, interpreting
the rest as a ‘solitonic’ deformation about this vacuum. Note that the first
constraint is then the vacuum constraint Γ∗ǫ = ǫ. Imposing this condition,
and taking

Γa → γa, (a = 1, 2, 3) (125)

to accord with our earlier notation, we again arrive at (90), but we will no
longer assume that the terms linear and cubic in ∂X must vanish separately.
Instead we allow for the possibility that that they may conspire to cancel;
noting that

1

6
γabc∂aX

i∂bX
j∂cX

kΓijk = γ123Γ456 det(∂aX
i) (126)

and that γ23Γ56ǫ = ǫ, this cancellation requires

γa∂aX
iΓiǫ = det(∂X) γ1Γ4ǫ . (127)

We now observe that (124) implies

γ1Γ4ǫ = γ2Γ5ǫ = γ3Γ6ǫ (128)

and

γ3Γ5ǫ = −γ2Γ6ǫ , γ1Γ6ǫ = −γ3Γ4ǫ , γ2Γ4ǫ = −γ1Γ5ǫ . (129)

These constraints imply, in turn, that

γa∂aX
iΓi ǫ =

[

(∇ ·X)γ1Γ4 + (∇×X) ·G
]

ǫ , (130)
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where we have set
G = (γ2Γ6, γ

3Γ4, γ
1Γ5). (131)

Putting all this together we see that (127) is satisfied if and only if X(σ)
satisfies (118). Thus the special Lagrangian equations are necessary for a
smooth calibrated intersection. We next show that they are also sufficient.

Using (119) the calibration condition becomes

[1− ⋆ψ] ǫ =

(

1− 1

2
γab∂aX

i∂bX
jΓij

)

ǫ = , (132)

since the terms linear and cubic in ∂X on the right hand side have cancelled.
We will see that this condition is identically satisfied, without any further
conditions imposed on ǫ. Firstly, interation of (127), and further use of
(124), yields

(

γa∂aX
iΓi

)2
ǫ = −(det ∂X)2ǫ+ 2 [(∇×X)3Γ45 − (∇×X)2Γ46] ǫ

= (tr ∂X)2ǫ , (133)

where (118) has been used to arrive at the second line. Multiplying out the
Dirac matrices on the right hand side, and using (118) again, we find that

γab∂aX
i∂bX

jΓij = (tr ∂X)2 − tr (∂X)2 . (134)

The calibration condition (132) is thus equivalent to

⋆ψ =
1

2
tr (∂X)2 − 1

2
(tr ∂X)2 (135)

Howe but this is identically satisfied as a consequence of the special La-
grangian conditions (118).

Finally, we turn to the relation between the 3-form ψ of (116) and the
calibration 3-form Φ. Recall that

Φ =
1

6
(ǭΓIJKǫ) dX

IdXJdXK (136)

for the case at hand. On going to the physical gauge we can expand the right
hand side in powers of ∂aX

i. Because the linear and cubic terms cancel on
the calibrated surface we may drop these terms. What is left is the zeroth
term and the quadratic term, and these are

Φ =
1

6
dσ · dσ × dσ − ψ . (137)

We can rewrite this as

Φ = Re [dZ · dZ× dZ] , (138)
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where Z = σ + iX is a set of complex coordinates for C
3. This illustrates

a general feature of special Lagrangian calibrations. A special Lagrangian
p-surface in C

p is calibrated by the real part of a holomorphic p-form. For
p = 2 this is the real part of a holomorphic 2-form, which we can identify
as the Kähler 2-form Ω of the previous lecture.

Of course, to find finite energy SLAG solitons of the type disussed we
would need to choose a background with a holomorphic 3-cycle of finite 3-
volume and admitting a covariantly constant holomorphic 3-form, but this
I leave until such time as I have understood it better. In the meantime, the
reader is invited to consult [28] for some interesting applications of SLAG
calibrations. I should not leave the impression that Kähler and SLAG cali-
brations are the only cases. There are also some ‘exceptional’ calibrations.
These also have a realization in terms of intersecting M5-branes and I refer
to [29] for a recent review of some applications.

6. Epilogue: the brane world

These lectures have argued that field theory can be understood as a limit
of a more encompassing ‘brane theory’. Brane theory identifies certain field
theory solitons with minimal surfaces (in spaces of reduced holonomy) as-
sociated to simple calibrations, but it goes beyond field theory in allowing
other types of minimal surface, associated with more complicated calibra-
tions. Only scalar field theories were considered here but a similar case can
be made for gauge theories via D-branes and generalizations of calibra-
tion theory to include worldvolume gauge fields [30, 31]. Gravitational field
theories, on the other hand, do not have an analogous brane theory interpre-
tation because gravitons (and superpartners) propagate in the ‘bulk’ and
not on branes. This explains the universality of gravitational interactions3;
while there can be many branes, and many types of brane, there is only
one ‘bulk’.

Thus, ‘brane theory’ is naturally non-gravitational. Of course, there
could still be an effective gravity at sufficiently low energy if the bulk is
compact. However, in this case we are dealing with Kaluza-Klein theory
rather than brane theory. One cannot really consider the lower-dimensional
spacetime as a brane in this case because this brane is not localized in the
extra dimension. This is a necessary feature in the quantum theory since
the uncertainty principle guarantees complete delocalization in a compact
space at zero momentum. Until recently it used to be thought that any
decompactification of the bulk would cause a loss of localization of the

3Branes may still describe gravity via an equivalence to field theory, as in the M(atrix)
model and the adS/CFT correspondence, but the variety of these equivalences corre-
sponds to varieties of supergravity theories and not to varieties of graviton.
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graviton on the lower-dimensional space, but Randall and Sundrum have
shown that this need not be the case; in particular, gravity is localized on
a horospherical boundary in anti-de Sitter space. This boundary is called a
‘Brane World’. The brane interpretation is problematic, however, because
gravity couples to the energy-momentum-stress tensor of matter, and ‘brane
matter’ does not have a conventional stress tensor.

The symmetric stress tensor T µν for a Minkowski spacetime field theory
is essentially the set of four Noether currents associated with translational
invariance. One way to find the Noether currents is to note that the varia-
tion of the action under an infinitesimal but non-uniform translation with
parameters α must be of the form

δαS =

∫

j ∧ dα . (139)

The left hand side vanishes (off-shell) when dα = 0 but it must vanish
on-shell even when dα 6= 0, so the coefficient form j must be closed on-
shell. Its dual vector density is therefore conserved, on shell, and can be
identified as the Noether current. However, this prescription fails to define a
translation Noether current for a brane theory because the action is not only
invariant under uniform translations but also non-uniform translations, so
the variation (139) vanishes identically.

This problem can be circumvented by fixing the worldvolume reparame-
terizations before applying the Noether prescription. In the physical gauge,
Xµ = σµ, we have g = η + g̃, where

g̃µν = ∂µX
i∂νX

jGij(X) (140)

and Xi are the physical worldvolume fields. The Lagrangian is now

L = −
√

− det(η + g̃) . (141)

The stress tensor is given by [32]
√

− det η T µν =
√

− det g gµν (142)

and ∂µT
µν = 0 in cartesian coordinates, on shell, because the Xµ field

equation in physical gauge is

∂µ
(

√

− det g gµν
)

= 0 (143)

This looks non-covariant but that is to be expected after gauge-fixing.
If this stress tensor is used to couple the brane to worldvolume gravity

one finds the Lagrangian

L = −
√

− det(g + h) , (144)
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where h ≡ γ − η is the deviation of the independent worldvolume metric γ
from the Minkowski metric. Since g = η + g̃ we can write this as

L = −
√

− det(γ + g̃) . (145)

An expansion in powers of g̃ now yields the sum of a cosmological term and
a more-or-less standard action for scalar fields Xi coupled to gravity via the
metric γ. From this interpretation one can see that we have now regained

reparameterization invariance. But we have paid a price: since one cannot
fix a gauge twice, the interpretation as a gauge-fixed brane action has been
lost. If one attempts to recover this interpretation by returning to (144)
and taking g to be the induced metric prior to choice of the physical gauge
then one has a coupling to gravity that is explicitly background dependent
since it depends on the perturbation h and not the full metric γ.

In the case of an adS background, the problem can be phrased in a
different way. The action is invariant under all isometries of the background,
but from the point of view of the brane these are symmetries of a non-
linearly realized conformal invariance [33, 34]. This observation applies, in
particular, to a brane for which the worldvolume is a horosphere near the
adS boundary. Such a brane provides a realization of the Randall-Sundrum
mechanism by which gravity is induced on the brane [12], but the coupling
to gravity on the brane will now break the non-linearly realized conformal
invariance. On the other hand, this brane is supposed to be equivalent to a
CFT on the adS boundary with a UV cut-off [35]. But a cut-off also breaks
conformal symmetry. From this perspective it is no surprise that gravity on
the brane breaks the non-linearly realized conformal symmetry of a brane
action.

Acknowledgements: I am grateful to Jerome Gauntlett for several very
useful discussions on the content of these lectures.
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18. L. Alvarez-Gaumé and D.Z. Freedman, Ricci flat Kahler manifolds and supersym-

metry, Phys. Lett. 94B (1980) 171.
19. A.M. Perelomov, Instantons and Kähler manifolds, Commun. Math. Phys. 63 (1978)

237;
R.S. Ward, Slowly moving lumps in the CP 1 model in (2+1)-dimensions, Phys.
Lett. 158B (1985) 424;
P.J. Ruback, Sigma model solitons and their moduli space metrics, Commun. Math.
Phys. 116 (1988) 645.

20. G.W. Gibbons and P.J. Ruback, The hidden symmetries of multi-centre metrics,
Commun. Math. Phys. 115 (1988) 267.

21. E.B. Bogomol’nyi, The stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976)
449.

22. C. Callan and J. Maldacena, Brane dynamics from the Born-Infeld action, Nucl.
Phys. B513 (1998) 198;
G.W. Gibbons, Born-Infeld particles and Dirichlet p-branes, Nucl. Phys. B514

(1998) 603.
23. E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and 11 dimensional

supergravity, Phys. Lett. 189B (1987) 75; Properties of the eleven-dimensional
supermembrane theory, Ann. Phys. (N.Y.) 185 (1988) 330.

24. S.K. Han and I.G. Koh, N=4 remaining supersymmetry in a Kaluza-Klein monopole
background in D=11 supergravity, Phys. Rev. D31 (1985) 2503;
P.K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett.
350B, (1995) 184.

25. P.K. Townsend, M-theory from its superalgebra, in Strings, Branes and Dualities,
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