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ABSTRACT
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no room for non-abelian, local, deformations of a pure system of chiral p-forms.
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1 Introduction

A chiral p-form A is defined by the equation

F = ∗F. (1.1)

where F ≡ dA is the corresponding fieldstrength. From this, it is clear that the

dimension, d, of space-time is given by d = 2(p + 1). Furthermore, p should be

even in the Minkowski case and odd in the Euclidean case since only in those cases

is the square of the Hodge ∗-operator equal to the identity. Throughout this paper

we maintain a Minkowski signature. Chiral p-forms naturally appear in string or

M-theory. Chiral bosons are essential in the worldsheet formulation of the heterotic

string and correspond to p = 0. Chiral two-forms, which, as we will explain further,

constitute the main motivation for the present study, are central in the description of

the M5-brane. Finally, chiral four-forms appear in type IIB string theory where they

signal the presence of D3-branes.

The strongest motivation for studying deformations of chiral forms arises from

the study of coinciding M5-branes. The solitonic objects in M theory (viewed here

as eleven dimensional supergravity) are M2- and M5-branes. These soliton solutions

break half of the supersymmetries, reducing them from 32 to 16. Their effective

worldbrane actions contain therefore 16 Goldstinos, which correspond to 8 propagat-

ing fermionic degrees of freedom. This should be matched by 8 bosonic degrees of

freedom. Obvious candidates for the bosonic degrees of freedom of a p-brane living

in d dimensions are the d−p−1 transversal positions of the brane. For the M2 brane

(p = 2 and d = 11), this saturates the number of bosonic degrees of freedom. For the

M5-brane, however, one needs three additional bosonic degrees of freedom. The little

group of the worldvolume theory is Spin(6) = SU(2)× SU(2), which means we need

a (3,1) representation of this. This is precisely a chiral two-form in six dimensions.

In the low energy limit where bulk gravity decouples, a single M5-brane is de-

scribed by a six dimensional N = (2, 0) superconformal field theory [1], [2]. Its field

content consists of five scalar fields and a single chiral two-form 1. A Lorentz non-

covariant action was constructed in [3], [4] and [5]. A covariant action was obtained in

[6] and [7]. The covariant action contains appropriate extra auxiliary fields and gauge

symmetries. Partial gauge fixing of the covariant action yields the non-covariant ac-

tion.

Once n M5-branes coincide, the situation changes. This can be seen by compacti-

fying one direction on a circle. For small radius, the resulting theory is weakly coupled

type IIA string theory. When the M5-branes are transversal to the circle, they appear

1Throughout this paper we ignore the fermionic degrees of freedom which does not change any
of our conclusions.
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in the type IIA theory as n coinciding NS5-branes. Not much is explicitely known

about this system. However, when the M5-branes are longitudinal to the circle, they

emerge as n coinciding D4-branes. The effective action for such a system is a U(n)

non-Abelian Born-Infeld action [8]. Its leading and next to leading terms are well un-

derstood but discussion about the subleading terms remains [9], [10]. Ignoring higher

derivative terms and focussing on the leading term, one gets that the dynamics of the

D4 system is governed by 5 scalar fields in the adjoint representation of U(n) coupled

to a 5-dimensional U(n) gauge theory. Going back to the supergravity description,

this observation suggests the existence of a non-abelian extension of chiral 2-forms.

Genuine non-abelian extensions of non-chiral p-forms, for p ≥ 2 have not yet

been constructed. Viewing a 2-form as a connection over loopspace, one can show

that no straightforward non-abelian extension exists [11] (see also [12]). Dropping

geometric prejudices, all local deformations continously connected to the free action

were constructed in [13]. Though both known and novel deformations were discovered,

none of them had the required property that the p-form gauge algebra becomes truly

non-abelian.

Turning back to chiral 2-forms, one finds that M-theoretical considerations indi-

cate that n coinciding M5-branes constitute a highly unusual physical system. Indeed,

the supergravity description of n M5-branes predicts that both the entropy [14] and

the two-point function for the stress-energy tensor [15] scale as n3 in the large n limit.

Anomaly considerations lead to a similar behaviour [16], [17]. So this suggests that

a non-abelian extension of chiral two-forms falls outside the scope of finite dimen-

sional semi-simple Lie groups as none of those have a dimension growing as fast as

n3 (where n would be the dimension of the Cartan sub-algebra). It has been argued

that “gerbes” could provide the appropriate mathematical framework [18, 19].

In [20], we announced the result that no local field theory is able to describe

a system of coinciding M5-branes. This result was obtained by showing that local

deformations of the action cannot modify the abelian nature of the algebra of the

2-form gauge symmetries. It holds under the assumption that the deformed action

is continuous in the coupling constant (i.e., possible non-perturbative “miracles” are

not investigated) and reduces, in the limit of vanishing coupling constant, to the

action describing free chiral 2-forms. In particular, no assumption was made on the

polynomial order (cubic, quartic ...) of the interaction terms.

In the present paper we present detailed proofs of that assertion. The techniques

used in this paper can be applied in a straightforward fashion to prove the results

in [21] as well. There, deformations of chiral four-forms in ten dimensions were

analyzed with as conclusion that the only consistent deformation was the type IIB

coupling of the chiral four-form to the NS-NS and the R-R two-forms familiar from
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IIB supergravity [22, 23].

The outline of this paper is as follows. In the next section, we review how the prob-

lem of consistent couplings can be reformulated as a cohomological problem [24, 25].

We then recall the non-covariant formalism for chiral 2-forms, and their BRST for-

mulation (sections 3, 4 and 5). In particular, we point out that the BRST differential

s naturally splits as the sum s = δ + γ of simpler building blocks. After a brief

section in which we recall the so-called “algebraic Poincaré lemma”, which provides

an important tool for our investigations, we turn to the calculation of the BRST co-

homology. First we compute the cohomology of γ (section 7). Next, we compute the

cohomology of γ modulo d, where d is the spacetime exterior derivative (sections 8

and 9). In section 10, we compute the same cohomologies for the other piece involved

in s, namely δ. In section 11, we put together the calculations of the previous sec-

tions to derive the announced result that the gauge symmetries for a set of free chiral

2-forms are rigid and cannot be deformed continuously in the local field theoretical

context. Our paper ends with a short, concluding section.

2 Constructing consistent couplings as a deforma-

tion problem

The theoretical problem of determining consistent interactions for a given gauge in-

variant system has a long history. It has been formulated in general terms in [26] (see

also [27]).

The equations for the consistent interactions are rather intricate because they are

non linear and involve simultaneously not only the deformed action, but also the

deformed structure functions of the deformed gauge algebra, as well as the deformed

reducibility coefficients if the gauge transformations are reducible. The problem is

further complicated by the fact that one has to factor out the “trivial” interactions

that are simply induced by a change of variables.

As we now review, one can reformulate the problem as a cohomological problem

[24]. This approach systematizes the recursive construction of the consistent interac-

tions and, furthermore, enables one to use the powerful tools of homological algebra.

Starting with a “free” action
(0)

S0 [ϕ
i] with “free” gauge symmetries

δεϕ
i =

(0)

R
i

α εα, (2.1)

leading to the Noether identities

δ
(0)

S

δϕi

(0)

R
i

α= 0 , (2.2)
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we introduce a coupling constant g and modify
(0)

S0,

(0)

S0−→ S0 =
(0)

S0 +g
(1)

S0 +g2
(2)

S0 +... (2.3)

We consider only consistent deformations, meaning that the deformed action should

be gauge invariant as well. In the generic case this requires a deformation of the

gauge transformation rules,

(0)

R
i

α−→ Ri
α =

(0)

R
i

α +g
(1)

R
i

α +g2
(2)

R
i

α +.... (2.4)

Consistency is then translated into the requirement that the Noether identities should

hold to all orders
δS

δϕi
Ri

α = 0, (2.5)

where,

δεϕ
i = Ri

αε
α. (2.6)

Expanding Eq. (2.5) order by order in the coupling constant gives consistency con-

dition of increasing complexity.

For reducible theories, which is the case relevant to chiral 2-forms, there is an

additional constraint. The gauge transformations of the free theory are not indepen-

dent,
(0)

R
i

α

(0)

Z
α

A= 0 (2.7)

(possibly on-shell). One must then also impose that the gauge transformations re-

main reducible, possibly in a deformed way. This yields additional conditions on the

coefficients R’s in Eq. (2.4).

The deformations of an action fall into three classes. In the first one, gauge

invariant terms are added to the original lagrangian and therefore no modification

of the gauge transformations is required. Examples of this are functionals of the

field strength and its derivatives, as well as Chern-Simons-like terms [28]. In the

second class, both the action and the transformation rules are modified. However,

the terms added to the transformation rules are invariant under the original gauge

transformations. As a consequence, the gauge algebra is not modified to first order in

the coupling constant. An example of this is the Freedman-Townsend model [29] for

two-forms in four dimensions. Finally, in the last class, the additional terms in the

deformed transformation rules are not gauge invariant. Therefore the gauge algebra

itself gets modified as well. The best known example of this is the deformation of an

abelian Yang-Mills theory to a non-abelian theory.

The key to translating the problem of consistent interactions into a cohomological

problem is the antifield formalism [30, 31, 32] (for reviews, see [33, 34]). Let us assume
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that we solved the master equation for the undeformed theory. Its solution is denoted

by
(0)

S , which satisfies (
(0)

S ,
(0)

S ) = 0. The existence of a consistent deformation of the

original gauge invariant action implies the existence of a deformation of
(0)

S , which we

denote by S,
(0)

S−→ S =
(0)

S +g
(1)

S +g2
(2)

S +... (2.8)

Expanding the master equation for S, (S, S) = 0, order by order in the coupling

constant yields various consistency relations,

(
(0)

S ,
(0)

S ) = 0 (2.9)

(
(0)

S ,
(1)

S ) = 0 (2.10)

2(
(0)

S ,
(2)

S ) + (
(1)

S ,
(1)

S ) = 0 (2.11)
... .

The first equation is satisfied by assumption. As (
(0)

S , (
(0)

S , ·)) = 0, the second equation

implies that
(1)

S is a cocycle for the free differential
(0)
s≡ (

(0)

S , ·). If
(1)

S is a coboundary,
(1)

S= (
(1)

T ,
(0)

S ), one can show that this corresponds to a trivial deformation (i.e. a

deformation which amounts to a simple redefinition of the fields).

In practice, we consider deformations which are local in spacetime, i.e., we im-

pose that
(1)

S ,
(2)

S , ... be local functionals. Reformulating the equations in terms of the

Lagrange densities takes care of this problem. E.g., rewriting equation (2.10) as

(0)
s

(1)

S=
(0)
s (

∫ (1)

S ) = 0 ⇔
∫

(
(0)
s

(1)

S ) = 0, (2.12)

we obtain the following condition on the Lagrange density
(1)

S ,

(0)
s

(1)

S +dM = 0, (2.13)

where M is a local form of degree n− 1, where n is the dimensionality of space-time

and d is the spacetime exterior derivative2. Again one can show that BRST-exact

terms modulo d are trivial solutions of (2.13) and corresponds to trivial deformations.

In the local context, the proper cohomology to evaluate is thus H0,n(
(0)
s | d) where the

first and second superscripts denote the ghost number and form degree, respectively.

Note that when all the representatives of H0,n(
(0)
s | d) can be taken not to de-

pend on the antifields, one may take the first-order deformations
(1)

S to be antifield-

independent. In this case Eq. (2.10) reduces to (
(0)

S ,
(2)

S ) = 0 and implies that the

deformation at order g2 defines also an element of H0,n(
(0)
s | d). One can thus take

(2)

S
2Throughout this paper we ignore boundary contributions
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not to depend on the antifields either. Proceeding in this manner order by order in

the coupling constant, we conclude that the additional terms in S are all independent

of the antifields. Since the antifield-dependent terms in the deformation of the mas-

ter equation are related to the deformations of the gauge transformations, this means

that there is no deformation of the gauge transformations. Summarizing, if there

is no non-trivial dependence on the antifields in H0,n(
(0)
s | d) = 0, the only possible

consistent interactions are of the first class and do not modify the gauge symmetry.

This is the situation met for a system of chiral 2-forms, as we now pass to discuss.

3 System of free chiral 2-forms in 6 dimensions

The non-covariant action for a system of N free chiral 2-forms is [35],

S0[A
A
ij] =

∑

A

∫

dtd5xBAij(ȦA
ij −BA

ij), (A = 1, . . . , N), (3.1)

where

BAij =
1

6
ǫijklmFA

klm =
1

2
ǫijklm∂kA

A
lm. (3.2)

The integer N can be any function of the number n of coincident M5-branes (e.g.,

N ∼ n3). The action (3.1) differs from the one in [3]-[5] where a space-like dimension

was singled out. Here we take time as the distinguished direction; from the point

of view of the PST formulation [6, 7], the two approaches simply differ in the gauge

fixation. We work in Minkowski spacetime. This implies, in particular, that the

topology of the spatial sections R5 is trivial. Most of our considerations would go

unchanged in a curved background of the product form R×Σ provided the De Rham

cohomology groups H2
DeRham(Σ) and H1

DeRham(Σ) of the spatial sections Σ vanish.

[If H2
DeRham(Σ) is non-trivial, there are additional gauge symmetries besides (3.3)

below, given by time-dependent spatially closed 2-forms; similarly, if H1
DeRham(Σ) is

non-trivial, there are additional reducibility identities besides (3.4) below. One would

thus need additional ghosts and ghosts of ghosts. These, however, would not change

the discussion of local Lagrangians because they would be global in space (and local

in t).]

The action S0 is invariant under the following gauge transformations

δΛA
A
ij = ∂iΛ

A
j − ∂jΛ

A
i , (3.3)

because BAij is gauge-invariant and identically transverse (∂iB
Aij ≡ 0) 3. As δAA

ij = 0

for

ΛA
i = ∂iε

A, (3.4)
3Since AA

0i does not occur in the action – even if one replaces ∂0A
A
ij by ∂0A

A
ij − ∂iA

A
0j − ∂jA

A
i0 (it

drops out because BAij is transverse) –, the action is of course invariant under arbitrary shifts of
AA

0i.
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this set of gauge transformations is reducible. This exhausts completely the redun-

dancy in ΛA
i since H1

DeRham(R
5) = 0.

The equations of motion obtained from S0[A
A
ij ] by varying AA

ij are

ǫijklm∂kȦ
A
lm − 2∂kF

Aijk = 0 ⇔ ǫijklm∂k(Ȧ
A
lm −BA

lm) = 0. (3.5)

Using H2
DeRham(R

6) = 0, one finds that the general solution of (3.5) is

ȦA
ij − BA

ij = ∂iΛ
A
j − ∂jΛ

A
i . (3.6)

The ambiguity in the solutions of the equations of motion is thus completely accounted

for by the gauge freedom (3.3). Hence the set of gauge transformations is complete.

We can view ΛA
i as AA

0i, so the equation (3.6) can be read as the self-duality

equation

FA
0ij − ∗FA

0ij = 0, (3.7)

where FA
0ij = ȦA

ij + ∂iA
A
j0 + ∂jA

A
0i. Alternatively, one may use the gauge freedom to

set ΛA
i = 0, which yields the self-duality condition in the temporal gauge.

4 Fields - Antifields - Solution of the master equa-

tion

The solution of the master equation is easy to construct in this case because the gauge

transformations are abelian. We refer to [30, 31, 32, 33] for the general construction.

The fields in presence here are

{ΦM} = {AA
ij, C

A
i , η

A}. (4.1)

The ghosts CA
i corresponds to the gauge parameters ΛA

i , and the ghosts of ghosts ηA

corresponds to ǫA.

Now, to each field ΦM we associate an antifield Φ∗

M . The set of antifields is then

{Φ∗

M} = {A∗Aij , C∗Ai, η∗A}. (4.2)

The fields and antifields have the respective parities

ǫ(AA
ij) = ǫ(ηA) = ǫ(C∗Ai) = 0 (4.3)

ǫ(CA
i ) = ǫ(A∗Aij) = ǫ(η∗A) = 1. (4.4)

The antibracket is defined as

(X, Y ) =
∫

dnx

(

δRX

δΦM (x)

δLY

δΦ∗

M(x)
−

δRX

δΦ∗

M (x)

δLY

δΦM(x)

)

(4.5)
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where δR/δZ(x) and δL/δZ(x) denote functional right- and left-derivatives.

Because the set of gauge transformations is complete and defines a closed algebra,

the (minimal, proper) solution of the master equation (S, S) = 0 takes the general

form

S = S0 +
∑

M

∫

(−)ǫ(M)Φ∗

MsΦM , (4.6)

where ǫ(M) is the Grassmann parity of ΦM . More explicitly, we have

S = S0 +
∑

A

∫

dtd5x(A∗Aij∂iC
A
j − C∗Ai∂iη

A) (4.7)

The solution S of the master equation captures all the information about the

gauge structure of the theory : the Noether identities, the closure of the gauge trans-

formations and the higher order gauge identities are contained in the master equation.

The existence of S reflects the consistency of the gauge transformations.

5 BRST operator

The BRST operator s is obtained by taking the antibracket with the proper solution

S of the classical master equation,

sX = (S,X). (5.1)

The BRST operator can be decomposed as

s = δ + γ (5.2)

where δ is the Koszul–Tate differential [33]. What distinguishes δ and γ is the

antighost number (antigh) defined through

antigh(AA
ij) = antigh(CA

i ) = antigh(ηA) = 0, (5.3)

antigh(A∗Aij) = 1, antigh(C∗Ai) = 2, antigh(η∗A) = 3. (5.4)

The ghost number (gh) is related to the antighost number by

gh = puregh− antigh (5.5)

where puregh is defined through

puregh(AA
ij) = 0, puregh(CA

i ) = 1, puregh(ηA) = 2, (5.6)

puregh(A∗Aij) = puregh(C∗Ai) = puregh(η∗A) = 0. (5.7)
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The differential δ is characterized by antigh(δ) = −1, i.e. it lowers the antighost

number by one unit and acts on the fields and antifields according to

δAA
ij = δCA

i = δηA = 0, (5.8)

δA∗Aij = 2∂kF
Akij − ǫijklm∂kȦ

A
lm, (5.9)

δC∗Ai = ∂jA
∗Aij , (5.10)

δη∗A = ∂iC
∗Ai. (5.11)

The differential γ is characterized by antigh(γ) = 0 and acts as

γAA
ij = ∂iC

A
j − ∂jC

A
i , (5.12)

γCA
i = ∂iη

A, (5.13)

γηA = 0, (5.14)

γA∗Aij = γC∗Ai = γη∗A = 0. (5.15)

Furthermore we have,

sxµ = 0, s(dxµ) = 0. (5.16)

6 Local forms - Algebraic Poincaré lemma

A local function is a function of the fields, the ghosts, the antifields, and their deriva-

tives up to some finite order k (which depends on the function),

f = f(Φ, ∂µΦ, . . . , ∂µ1
. . . ∂µk

Φ). (6.1)

A local function is thus a function over a finite dimensional vector space Jk called

“jet space”. A local form is an exterior polynomial in the dxµ’s with local functions

as coefficients. The algebra of local forms will be denoted by A. In practice, the local

forms are polynomial in the ghosts and the antifields, as well as in the differentiated

fields, so we shall from now on assume that the local forms under consideration are

of this type. One can actually show that polynomiality in the ghosts, the antifields

and their derivatives follows from polynomiality in the derivatives of the Aij by an

argument similar to the one used in [36] for 1-forms; and polynomiality in the deriva-

tives is automatic in our perturbative approach where we work order by order in the

coupling constant(s).

Note also that we exclude an explicit x-dependence of the local forms. One could

allow for one without change in the conclusions. In fact, as we shall indicate below,

allowing for an explicit x-dependence simplifies some of the proofs. We choose not to

do so here since the interaction terms in the Lagrangian should not depend explicitly

on the coordinates in the Poincaré-invariant context.
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The following theorem describes the cohomology of d in the algebra of local forms,

in degree q < n.

Theorem 6.1 The cohomology of d in the algebra of local forms of degree q < n is

given by

H0(d) ≃ R,

Hq(d) = {Constant Forms}, 0 < q < n.

Constant forms are by definition polynomials in the dxµ’s with constant coefficients.

This theorem is called the algebraic Poincaré lemma (for q < n). There exist many

proofs of this lemma in the literature. One of the earliest can be found in [37, 38].

Constant q-forms are trivial in degree 0 < q < n in the algebra of local forms

with an explicit x-dependence; e.g., dx0 = df , where f is the x0-dependent function

f = x0. Thus, in this enlarged algebra, the cohomology of d is simpler and vanishes

in degrees 0 < q < n. This is the reason that the calculations are somewhat simpler

when one allows for an expicit x-dependence.

We work in a formalism where the time direction is privileged. For this reason,

it is useful to introduce the following notation : the l-th time derivative of a field

Φ (including the ghosts and antifields) is denoted by Φ(l) (= ∂l
0Φ), and the spatial

differential is denoted by d̃ = dxi∂i.

A local spatial form is an exterior polynomial in the spatial dxk’s with coefficients

that are local functions. If we write the set of the generators of the jet space Jk as

{Φ(l0), ∂i1Φ
(l1), . . . , ∂i1 . . . ∂ikΦ

(0); lj = 0, . . . , k − j}, (6.2)

it is clear that

Theorem 6.2 The cohomology of d̃ in the algebra of local spatial forms of degree

q < n− 1 is given by

H0(d̃) ≃ R,

Hq(d̃) = {Constant spatial forms}, 0 < q < n− 1.

A similar decomposition of space and time derivatives occurs of course in the

Hamiltonian formalism. A discussion of the problem of consistent deformations of a

gauge invariant action has been carried out in the Hamiltonian context in [39, 40, 41].

7 Cohomology of γ

The following theorem completely gives H(γ).
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Theorem 7.1 The cohomology of γ is given by,

H(γ) = I ⊗ V. (7.1)

Here, the algebra I is the algebra of the local forms with coefficients that depend only

on the variables FA
ijk, the antifields φ∗

M , and all their partial derivatives up to a finite

order (“gauge-invariant” local forms). These variables are collectively denoted by χ.

The algebra V is the polynomial algebra in the ghosts ηA of ghost number two and

their time derivatives.

Proof: The generators of A can be grouped in three sets:

T = {ti} = {∂µ1...µk
FA
ijk, ∂µ1...µk

φ∗

M , ηA(l), dxµ} (7.2)

U = {uα} = {∂(i1...ikA
A(l)
[i)2j]1

, ∂(i1...ik−1
C

A(l)
ik)

} (7.3)

V = {vα} = {∂i1...ik∂[iC
A(l)
j] , ∂i1...ikη

A(l)} (7.4)

(k, l = 0, · · ·) where [ ] and ( ) mean respectively antisymmetrization and

symmetrization; the subscript indicates the order in which the operations are

made.

The differential γ acts on these three sets in the following way

γT = 0, γU = V, γV = 0. (7.5)

The elements of U and V are in a one-to-one correspondence and are linearly

independent with respect to each other, so they constitute a manifestly con-

tractible part of the algebra and can thus be removed from the cohomology.

No element in the algebra of generated by T is trivial in the cohomology

of γ, except 0. Indeed, let us assume the existence of a local form F (ti) 6= 0

which is γ-exact, then

F (ti) = γG(ti, uα, vα) = vα
∂LG

∂uα
(ti, uα, vα). (7.6)

But this implies that

F (ti) = F (ti) |vα=0= 0, (7.7)

as announced. ✷

Note that contrary to what happens in the non-chiral case, the temporal deriva-

tives of the ghosts ηA are non-trivial in cohomology. There is thus an infinite number

of generators in ghost number two for H(γ), namely, all the ηA(l)’s. In contrast, in the

non-chiral case, one has ∂0η
A = γCA

0 and so ∂0η
A (and all the subsequent derivatives)

are γ-exact. In the chiral case, there is no CA
0 .
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Let{ωI} be a basis of the vector space V of polynomials in the variables ηA and

all their time derivatives. Theorem 7.1 tells us that

γα = 0, α ∈ A ⇔ α =
∑

I

PI(χ)ω
I + γβ. (7.8)

Furthermore, because ωI is a basis of V

∑

I

PI(χ)ω
I = γβ ⇒ PI(χ) = 0. (7.9)

It will be useful in the sequel to choose a special basis {ωI}. The vector space V

of polynomials in the ghosts ηA and their time derivatives splits as the direct sum V 2k

of vector spaces with definite pure ghost number 2k. The space V 0 is one-dimensional

and given by the constants. We may choose 1 as basis vector for V 0, so let us turn to

the less trivial spaces V 2k with k 6= 0. These spaces are themselves the direct sums of

finite dimensional vector spaces V 2k
r containing the polynomials with exactly r time

derivatives of the η’s (e.g., ∂0η
A ∂00η

B is in V 4
3 ). The following lemma provides a basis

of V 2k for k 6= 0:

Lemma 7.1 Let V 2k be the vector space of polynomials in the variables ηA(l) with

fixed pure ghost number 2k 6= 0. V 2k is the direct sum

V 2k = V 2k
0 ⊕ V 2k

1 ⊕ . . . , (7.10)

where V 2k
m is the subspace of V 2k containing the polynomials with exactly m derivatives

of ηA. One has dimV 2k
m ≤ dimV 2k

m+1. There exist a basis of V 2k
m

{ωIm
(m) : Im = 1, . . . , qm; m = 0, . . .}, (7.11)

which fulfills

ωIm
(m) = ∂0ω

Im
(m−1) (Im = 1, . . . , qm−1). (7.12)

In other words, the first qm−1 basis vectors of V 2k
m are directly constructed from the

basis vectors of V 2k
m−1 by taking their time derivative ∂0.

Proof: We will prove the lemma by induction. For m = 0, take an arbitrary basis

of V 2k
0 (space of polynomials in the undifferentiated ghosts ηA of degree k).

Assume now that a basis with the required properties exists up to order m−1.

Let {ωI
(m−1); I = 0, . . . , qm−1} be a basis with those properties for V 2k

m−1. We

want to prove that it is possible to construct a basis of V 2k
m where the first

qm−1 basis vectors are the time derivatives of the basis vectors of V 2k
m−1. We

only have to show that the ∂0ω
I
(m−1) are linearly independent (because they

12



can always be completed to form a basis of V 2k
m ). In other words, we must

prove that
qm−1
∑

I=1

λI∂0ω
I
(m−1) = ∂0(

qm−1
∑

I=1

λIω
I
(m−1)) = 0 (7.13)

implies λI = 0. But (7.13) is equivalent to

qm−1
∑

I=1

λIω
I
(m−1) = K, (7.14)

where K is a constant (algebraic Poincaré lemma in form degree 0). K must

be equal to zero because we are in pure ghost number 6= 0. By hypothesis, the

ωI
(m−1) are linearly independant, hence the λI must be all equal to zero, which

ends the proof. ✷

8 Cohomology of γ modulo d at positive antighost

number

Let be ap a local p-form of antighost number k 6= 0 fulfilling

γap + dbp−1 = 0. (8.1)

We want to show that if we add to ap an adequate d-trivial term, the equation (8.1)

reduces to γap = 0.

From (8.1), using the algebraic Poincaré lemma and the fact that γ is nilpotent

and anticommute with d, we can derive the descent equations

γap + dbp−1 = 0 (8.2)

γbp−1 + dcp−2 = 0 (8.3)
...

γeq+1 + df q = 0 (8.4)

γf q = 0, (8.5)

Indeed, the fact that the antighost number is strictly positive eliminates the constants.

[E.g., from (8.1), one derives dγbp−1 = 0 and thus γbp−1 + dcp−2 = constant, but the

constant must vanish since it must have strictly positive antighost number.] We

suppose q < p, since otherwise γap = 0, which is the result we want to prove. The

equation (8.5) tells us that f q is a cocycle of γ. It must be non-trivial inHq(γ) because

if f q = γgq, then (8.4) becomes γ(eq+1−dgq) = 0. The redefinition e
′q+1 = eq+1−dgq

does not affect the descent equation before (8.4), which means that the descent stops

one step earlier, at q − 1.

13



Using theorem 7.1, we deduce from (8.5) that

f q =
∑

m,Im

[P̃
(m)
Im

(χ) + dx0Q̃
(m)
Im

(χ)]ωIm
(m), (8.6)

where P̃
(m)
Im

and Q̃
(m)
Im

are local spatial forms of respective degree q and q−1. We take

the basis elements ωIm
(m) to fulfill the conditions of lemma 7.1. Differentiating (8.6),

we find

df q =
∑

m,Im

{d̃P̃
(m)
Im

ωIm
(m) + γ(P̃

(m)
Im

ω̂Im
(m))

+dx0[(∂0P̃
(m)
Im

− d̃Q̃
(m)
Im

)ωIm
(m) + P̃

(m)
Im

∂0ω
Im
(m)]}. (8.7)

The local function ω̂Im
(m) is defined by d̃ωIm

(m) = γω̂Im
(m) ( and exists thanks to equation

(5.13)).

Now, we will show that the component P̃
(m)
Im

can be eliminated from f q by a

trivial redefinition of f q. In order to satisfy (8.4), the term independent of dx0 and

the coefficient of the term linear in dx0 in (8.7) must separately be γ-exact. The

second condition gives explicitly

∑

m,Im

[(∂0P̃
(m)
Im

− d̃Q̃
(m)
Im

)ωIm
(m) + P̃

(m)
Im

∂0ω
Im
(m)] = γβ, (8.8)

To analyze precisely this equation, we define a degree T by

T (χ) = 0, T (ηA(m)) = m. (8.9)

In fact, T simply counts the number of time derivative of ηA. We can decompose

(8.8) according to the degree T . Let p be the highest degree occuring in f q. Then,

the highest degree occuring in (8.8) is p+ 1 and we must have

qp
∑

I=1

P̃
(p)
I ∂0ω

I
(p) = γβp+1. (8.10)

From the proof of the lemma 7.1, we find that

P̃
(p)
I = 0 (I = 1, . . . , qp) (8.11)

because the ∂0ω
I
(p) are linearly independent. In T -degree p, (8.8) gives then

γβp = −
qp
∑

I=1

d̃Q̃
(p)
I ωI

(p) +
qp−1
∑

I=1

P̃
(p−1)
I ∂0ω

I
(p−1) (8.12)

=
qp−1
∑

I=1

(P̃
(p−1)
I − d̃Q̃

(p)
I )ωI

(p) −
qp
∑

I=qp−1+1

d̃Q̃
(p)
I ωI

(p), (8.13)
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where we have used the property (7.12) of the basis {ωI}. This implies that

P̃
(p−1)
I = d̃Q̃

(p)
I (I = 1, . . . , qp−1) (8.14)

Inserting this equation in (8.6), we find that P̃
(p−1)
I can be removed from f q by

eliminating a trivial cocycle of γ modulo d and redefining Q̃
(p−1)
I . It only affects eq+1

by a d-exact term. Next, the equation (8.8) at T -degree p − 1 shows that P̃
(p−2)
I is

also d̃-exact and can thus also be removed. Proceeding in the same way until the

order 1 in T , we have proved that all the P̃
(m)
I can be eliminated from f q.

Looking back at (8.8) and taking into account that P̃
(m)
Im

can be set equal to zero

by the above argument, we find that

d̃Q̃
(m)
Im

= 0. (8.15)

Now, we must use the invariant Poincaré lemma (invariant means in the algebra I of

gauge-invariant forms) stating that

Theorem 8.1 Let be P̃ (χ) a local spatial form of degree q < 5, then

d̃P̃ (χ) = 0 ⇒ P̃ (χ) = R̃(FA(l)) + d̃Q̃(χ), (8.16)

where R̃(FA(l)) is a polynomial in the curvature forms FA = 1
6
FA
ijkdx

idxjdxk and all

their time derivatives (with coefficients that may involve dxk, which takes care of the

constant forms).

Proof: The set of the generators of the algebra I is

{χ} = {∂i1...ikF
A(l)
ijk , ∂i1...ikφ

∗(l)
M , ηA(l), dxµ} (8.17)

The 1-form dx0 is not present in our problem since P̃ is a spatial local form

(it only involves dxk). Considering l and A as only one label (call it α) and

forgetting about dx0, the set (8.17) is the same as the corresponding set of

generators of the algebra I(≡ H(γ) in pureghost number 0) for a system of

spatial two-forms {Aα
ij ≡ AA

ij, ∂0A
A
ij , ∂00A

A
ij, · · ·} in 5 dimensions. Consequently,

we can simply use the results demonstrated in [42] for a system of p-forms in

any dimension. ✷

We assumed before that f q is of degree q < 6, hence Q̃I is of degree < 5. Thus, (8.15)

implies

Q̃
(m)
Im

= d̃R̃
(m)
Im

, (8.18)

where R̃
(m)
Im

is a spatial form which only depends on the variables χ. There is no exte-

rior polynomial in the curvatures in Q̃
(m)
Im

because Q̃
(m)
Im

has strictly positive antighost
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number. We can therefore conclude that f q is trivial in Hq(γ | d) and can be elimi-

nated by redefining eq+1. The true bottom is then one step higher. We can proceed

in the same way until we arrive at γa
′p = 0 with a

′p = ap + dgp−1. This can be

translated into the following theorem

Theorem 8.2 Let be a local form a of antighost number 6= 0 fulfilling γa + db = 0.

There exists a local form c such as a′ := a+ dc satisfies γa′ = 0.

9 Cohomology of γ modulo d at zero antighost

number

Now, we want to study H6,0(γ | d) in pureghost number 0. Let be a(6,0) ∈ A of form

degree 6, of antighost and pureghost number 0, and fulfilling γa(6,0) + da(5,1) = 0. If

a(5,1) is trivial γ modulo d, this equation reduces to γa(6,0) + db(5,0) = 0, which gives

a(6,0) = f(∂µ1...µk
FA
ijk)d

6x plus a term trivial in the cohomology of γ modulo d.

Otherwise, we can derive the non trivial descent equations

γa(6,0) + da(5,1) = 0 (9.1)

γa(5,1) + da(4,2) = 0 (9.2)
...

γa(7−g,g−1) + da(6−g,g) = 0 (9.3)

γa(6−g,g) = 0, (9.4)

because pureghost(γa(6−i,i)) > 0 eliminates the constants. If a(6−g,g) is trivial γ

modulo d, the bottom is really one step higher.

Eq. (9.4) implies that

a(6−g,g) =
∑

I

(P̃ 6−g
I (χ) + dx0Q̃5−g

I (χ))ωI + γb(6−g,g−1), (9.5)

where P̃ 6−g
I and Q̃5−g

I are local spatial forms, the superscript giving the form degree.

Because the pureghost number of η is two, a(6−g,g) is non trivial only for g even. So,

three cases are of interest: g = 0, 2, 4.

The case g = 0 corresponds to γa(6,0) = 0 and has been already studied so let us

assume g > 0. The equations (9.3) and (9.5) imply together

∑

I

(∂0P̃
6−g
I − d̃Q̃5−g

I )ωI +
∑

I

P̃ 6−g
I ∂0ω

I = γβ. (9.6)

Repeating the same analysis as for the equation (8.8), we arrive at the conclusion

that P̃ 6−g
I is trivial in the invariant cohomology of d̃ (or vanishes) and can thus be

removed from a(6−g,g) by the addition of trivial terms in the cohomology of γ modulo
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d and a redefinition of Q̃5−g
I . The case g = 6 is then eliminated because in that case

Q̃5−g
I is not present at all. Hence, there remains only two cases to examine: g = 2

and g = 4.

Once P̃ 6−g
I is removed, the equation (9.6) gives d̃Q̃5−g

I = 0. Using the invariant

Poincaré lemma, we find Q̃5−g
I = R̃5−g

I (FA(l)) + d̃S̃
(4−g,g)
I (χ). Hence, the form of the

bottom is

a(6−g,g) = dx0
∑

I

R̃5−g
I (FA(l))ωI + γb(6−g,g−1) + dc(5−g,g). (9.7)

But FA(l) is of form degree 3, thus if g = 4, R̃5−g
I must be a constant spatial 1-form.

In that instance, the ωI must be quadratic in the ghosts ηA(l). The lift of such a

bottom is obstructed (i.e., leads to no a6,0) unless it is trivial (see [13]), so that the

case g = 4 need not be considered. [In the algebra of x-dependent local forms, the

argument is simpler: the bottom is always trivial and removable since it involves a

constant 1-form, which is trivial.]

It only remains to examine the case g = 2. R̃ must then be a 3-form. One can

take R̃ linear in FA(l). In that case, the lift gives Chern-Simons terms, which are

linear combinations of dx0FA(l)AB(m), with AB(m) = 1
2
A

B(m)
ij dxidxj . Or one can take

R̃ to be a constant 3-form. The corresponding deformation is linear in the 2-form

AA(l) with coefficients that are constant forms. This second possibility is not SO(5)

invariant and leads to equations of motion that are not Lorentz invariant. It will not

be considered further.

Dropping the latter possibility, all these results can be summarized in the

Theorem 9.1 The non trivial elements of H6,0
0 (γ | d) are of two types: (i) those that

descend trivially; they are of the form f(∂µ1...µk
BA

ij)d
6x; (ii) those that descend non

trivially; they are linear combinations of the Chern-Simons terms ∂l
0B

Aij∂m
0 AB

ijd
6x.

Note that the kinetic term in the free action is precisely of the Chern-Simons type

(with l = 0 and m = 1).

10 Invariant cohomology of δ modulo d̃ in antighost

number 2, 4, 6, . . .

To pursue the analysis, we need some results on the cohomology of the Koszul-Tate

differential δ as well as on its mod-d and mod-d̃ cohomologies.

We can rewrite the action of the Koszul-Tate differential in the following way

δA
A(l)
ij = δC

A(l)
i = δηA(l) = 0, (10.1)

δA∗A(l)ij = 2∂kF
A(l)kij − ǫijklm∂kA

A(l+1)
lm , (10.2)
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δC∗A(l)i = ∂jA
∗A(l)ij , (10.3)

δη∗A(l) = ∂iC
∗A(l)i. (10.4)

If we regard A and l as only one label, these equations corresponds to an infinite

number of coupled non-chiral 2-forms in 5 dimensions.

It is useful to introduce a degree N defined as

N(Φ∗

M ) = 1, N(ΦM) = 0, (10.5)

N(∂k) = 1, N(∂0) = 0 (10.6)

N(dxµ) = 0. (10.7)

N counts the number of spatial derivatives as well as the antifields (with equal weight

given to each). According to this degree, δ decomposes as δ0 + δ1. The differential

δ1 acts exactly in the same way as the Koszul-Tate differential for a system of free

2-forms in 5 dimensions.

We are now able to prove the

Theorem 10.1 Hi(δ) = 0 for i > 0, where i is the antighost number, i.e, the coho-

mology of δ is empty in antighost number strictly greater than zero.

Proof: From [42], we know that Hi(δ1) = 0. Let be a ∈ A a δ-closed local function

of antighost number i > 0. We decompose a according to the degree N

a = a1 + . . .+ am. (10.8)

The expansion stops because a is polynomial in the antifields and the deriva-

tives. Furthermore, a0 = 0 because antigh(a) = i > 0. The equation δa = 0

gives in N -degree m + 1: δ1am = 0. But Hi(δ1) = 0, hence am = δ1bm−1. We

can define an a′ as being

a′ = a− δbm−1 = a1 + . . .+ am−2 + a′m−1, (10.9)

with a′m−1 = am−1 − δ0bm−1. We can proceed in the same way as before with

a′, whose component of higher N -degree is of degree less than m. We will then

find a new a′ of highest degree less than m− 1, and so on, each time lowering

the N -degree. After a finite number of steps, we arrive at a
′

= a
′

1 = a − δb.

Then, δa = 0 implies δ1a
′

1 = 0. Hence, a′1 = δ1b0 = δb0 because δ0Φ
M = 0. In

conclusion a = δb, with b = b0 + . . .+ bm−1. ✷

Of course, this theorem is really a consequence of general known results on the

cohomology of the Koszul-Tate differential. It simply confirms, in a sense, that we
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have correctly taken into account all gauge symmetries and reducibility identities in

constructing the antifield spectrum.

The cohomological space H5,inv
k (δ | d̃) is defined as H5

k(δ | d̃) in the space of

local spatial forms that belongs to I, i.e., that are invariant. We want to compute

it for k even and 6= 0. To do this, we will proceed as in the proof of theorem 10.1.

We first prove the requested result for δ1; we then use “cohomological perturbation”

techniques to extend the result to δ.

Lemma 10.1 For k = 2, 4, . . .

H5,inv
k (δ1 | d̃) = 0. (10.10)

Again, this result is simply a particular case of more general results, which were

previously known, but for completeness, we prove it here.

Proof: Firstly, the theorem 9.1 of [43] says that for a linear gauge theory of re-

ducibility order p in n dimensions Hn
k (δ | d) = 0 for k > p + 2. A system of

abelian spatial 2-forms in 5 dimensions is a linear gauge theory of reducibility

order 1 (see section 3), thus, we can state that H5
k(δ1 | d̃) = 0 for k > 3.

Secondly, the theorem 7.4 of [42] gives here : H5
2 (δ1 | d̃) = 0.

Finally, the theorem 10.1 of [42] says that for a system of space-time p-form

gauge fields of the same degree Hn
k (δ | d) ∼= Hn,inv

k (δ | d) for k > 0. For the

system under consideration here, this can be translated into: H5
k(δ1 | d̃) ∼=

H5,inv
k (δ1 | d̃) for k > 0. Putting all these results together completes the proof.

✷

Let be a5(χ) a local spatial 5-form in I of strictly positive and even antighost number,

satisfying

δa5(χ) + d̃b4(χ) = 0. (10.11)

We can decompose a5 and b4 according to the degree N

a5 = a51 + . . .+ a5n, (10.12)

b4 = b41 + . . .+ b4m. (10.13)

a50 = 0 and b40 = 0 because a5 and b4 are of antighost number > 0. We can always

suppose m ≤ n because if m > n, (10.11) gives in N -degree m + 1: d̃b4m = 0. Using

the invariant Poincaré lemma, this yields b4m = d̃c3m−1. Hence, b4m only contributes

to b4 by a d̃-trivial term which can be eliminated. Proceeding in the same way until

m = n, we arrive at the equation

δ1a
5
n(χ) + d̃b4n(χ) = 0. (10.14)
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It has already been noticed above that the algebra I without dependence on dx0 is

the same as for a system of spatial 2-forms. We can thus use the lemma 10.1 in

(10.14) to find that

a5n(χ) = δ1e
5
n−1(χ) + d̃f 4

n−1(χ). (10.15)

Therefore, a
′5 = a5 − δe5n−1 − d̃f 4

n−1 satisfies the same properties as a5, except that

its component of highest N -degree is of degree < n. We can now apply the same

reasoning as before to a
′5, and so on, until we arrive at

a
′5 = a

′5
1 = a5 − δ(

n−1
∑

i=1

e5i )− d̃(
n−1
∑

i=1

f 4
i ) (10.16)

This leads to

a
′5
1 = δ1e

5
0(χ) + d̃f 4

0 (χ). (10.17)

But δ1e
5
0 = δe50 because δ0Φ

M = 0. Eventually, we have a5 = δe5(χ) + d̃f 4(χ), with

e5 =
n−1
∑

i=0
e5i and f 4 =

n−1
∑

i=0
f 4
i . This gives the awaited theorem:

Theorem 10.2 For k = 2, 4, . . .

H5,inv
k (δ | d̃) = 0. (10.18)

11 Decomposition of the Wess-Zumino equation

We now have all the necessary tools to solve the Wess-Zumino consistency condition

that controls the consistent deformations (to first-order) of the action,

sa6 + db5 = 0, (11.1)

where a6 and b5 are local forms of respective form degrees 6 and 5, and ghost number

0 and 1. These forms are defined up to the following allowed redefinitions

a6 → a6 + sf 6 + dg5 (11.2)

b5 → b5 + sg5 + dh4, (11.3)

which preserve (11.1). We can decompose a6 and b5 according to antighost number,

which gives

a6 = a60 + . . .+ a6k, (11.4)

b5 = b50 + . . .+ b5q , (11.5)

with a6k 6= 0.
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We suppose k > 0 and we will show that a6k can be eliminated if we redefine a6 in

an appropriate way. In antighost number k, the equation (11.1) just reads

γa6k + db5k = 0. (11.6)

We can always assume k ≥ q because if q > k, the equation (11.1) gives in highest

antighost number db5q = 0. Using the algebraic Poincaré lemma, we find that b5q = dc4q.

Hence, we can remove the component b5q up to a d-trivial redefinition of b5.

From the theorems 7.1 and 8.2, we know that Eq. (11.6) implies

a6k =
∑

I

PI(χ)ω
I + γf 6

k + dg5k. (11.7)

The γ modulo d trivial part of a6k can be eliminated by redefining a6 in the following

way

a6 → a6 − sf 6
k − dg5k. (11.8)

We notice that H6,0
k (γ) is non trivial only in even antighost number k (because η is

of pureghost number 2). This implies that we can assume k to be even.

The Wess-Zumino consistency condition in antighost number k − 1 is

γa6k−1 + δa6k + db5k−1 = 0. (11.9)

The term b5k−1 is invariant because (11.9) implies d(γb5k−1) = 0. Therefore, the al-

gebraic Poincaré lemma gives γb5k−1 + dc4k−1 = 0 because k > 1. From ¿From the

theorem 8.2 we know that we can suppose γb5k−1 = 0 without affecting a6. Further-

more, if b5k−1 = γc5k−1 we can eliminate b5k−1 by redefining b5 in the following way:

b5 → b5 − sc5k−1, which does not modify a6k.

Therefore, we can assume

a6k =
∑

I

dx0P̃ 5
I ω

I , (11.10)

b5k−1 =
∑

I

(Q̃5
I + dx0R̃4

I)ω
I . (11.11)

The P̃ 5
I , Q̃

5
I , and R̃4

I are local spatial forms belonging to I.

Inserting (11.10) and (11.11) in (11.9), we find

γa6k−1 =
∑

I

{−d̃Q̃5
Iω

I − γ[(Q̃5
I + dx0R̃4

I)ω̂
I ] (11.12)

+dx0[(δP̃ 5
I + d̃R̃4

I − ∂0Q̃
5
I)ω

I − Q̃5
I∂0ω

I ]}, (11.13)

with d̃ωI = γω̂I . This implies that

∑

I

[(δP̃ 5
I + d̃R̃4

I − ∂0Q̃
5
I)ω

I − Q̃5
I∂0ω

I ] = γβ. (11.14)
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If we analyse this equation in the same way as the equation (8.8), we can prove that

Q̃5
I = δP̃ 5

I + d̃R̃4
I (or simply vanishes). Inserting these equations in (11.11), we find

that b5k−1 is of the form

b5k−1 = δc5k + de4k−1 + γf 5
k−1 + dx0

∑

I

R̃
′4
I (χ)ω

I , (11.15)

where c5k and e4k−1 belong to H(γ). In conclusion, we can eliminate Q̃5
I from b5k−1 by

redefining a6 and b5 in the following way

a6 → a6 − d(c5k + f 5
k−1), (11.16)

b5 → b5 − s(c5k + f 5
k−1)− de4k−1, (11.17)

which does not affect the condition γa6k = 0, because γc5k = 0.

Therefore, we can finally assume

a6k =
∑

I

dx0P̃ 5
I (χ)ω

I , b5k−1 =
∑

I

dx0R̃4
I(χ)ω

I . (11.18)

The equation (11.9) becomes

γa
′

k−1 + dx0
∑

I

(δP̃ 5
I (χ) + d̃R̃4

I(χ))ω
I = 0, (11.19)

which implies that δP̃ 5
I (χ) + d̃R̃4

I(χ) = 0. We know that we are in even antighost

number, thus we can use the theorem 10.2 to find that P̃ 5
I = δS̃5

I (χ)+ d̃T̃ 4
I (χ). Hence,

a6k = sf 6
k+1 + dg5k + γh6

k, (11.20)

where we have defined

f 6
k+1 = −dx0

∑

I

S̃5
Iω

I , g5k = −dx0
∑

I

T̃ 4
I ω

I , (11.21)

h6
k = dx0

∑

I

T̃ 4
I ω̂

I , d̃ωI = γω̂I . (11.22)

Thus a6k can be completely eliminated by redefing a6 as

a
′6 = a6 − s(f 6

k+1 + h6
k)− dg5k, (11.23)

which only affects the components of antighost number < k. Repeating the argument

at lower antighost numbers enables one to remove successively ak−1, ak−2, ..., up to

a1. This completes the proof of the fact that there is no non trivial dependence on

the antifields for the elements of H6,0(s | d).

For antifield-independent local forms, the cocycle condition H6,0(s | d) reduces

to the cocycle condition for H6,0(γ | d). Furthermore, γ-exact (mod-d) solutions are
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also s-exact. Thus, we are led to consider H6,0(γ | d). This cohomology is given

by the theorem 9.1. [The terms in that cohomology that vanish on-shell are trivial

in the s-cohomology.] Thus, the only consistent deformations of the free action for

a system of abelian chiral 2-forms are either functions of the curvatures or of the

Chern-Simons type. In both cases, the integrated deformations are off-shell gauge

invariant and yield no modification of the gauge transformations.

12 Final comments and conclusions

We have shown that the most general first-order consistent deformation of a set of

free chiral 2-forms cannot modify (non trivially) the original gauge transformations

and a fortiori, their algebra, which remains abelian. Thus, there is no room for a non-

abelian, local, generalization of the theory analogous to the Yang-Mills construction.

This result holds in fact to all orders, since the allowed deformations involve the

gauge-invariant curvatures or Chern-Simons terms. The addition of such terms to

the original action yields a new action which is evidently gauge-invariant under the

original gauge transformations to all orders.

One can show along identical lines that the rigidity of the gauge symmetries is

actually valid for a set of chiral 2p-forms in 2p+ 2 dimensions, for any p > 0. If one

includes other fields, one may deform the gauge transformations, but the possibilities

are severely limited [21]. For instance, in 10 dimensions, the only couplings of a chiral

4-form to 2-forms are those present in type IIB supergravity.
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