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Abstract

The critical properties of the real φ4 scalar field theory are studied numerically on the fuzzy sphere.
The fuzzy sphere is a finite matrix (non–commutative) approximation of the algebra of functions on
the usual two dimensional sphere. It is also one of the simplest examples of a non–commutative
space to study field theory on. Aside from the usual disordered and uniform phases present in the
commutative scalar field theory, we find and discuss in detail a new phase called a matrix phase
because the geometry of the fuzzy sphere, as expressed by the kinetic term, becomes negligible there.
This highlights a new aspect of UV –IR mixing, the unusual behaviour which arises naturally when
taking the commutative limit of a non commutative field theory.

1 Introduction

The fuzzy approximation scheme [1, 2] consists in approximating the algebra of functions on a manifold
with a finite dimensional algebra (i.e. a matrix algebra) instead of discretising the underlying space as a
lattice approximation does.

Studying field theory on a non–commutative space such as the matrix algebras we are considering
is covered by the framework of Connes’ non-commutative geometry [3]. For reasons of simplicity, only
the simpler case of the real scalar field will be considered in this paper. As a result, the only relevant
differential operator is the Laplacian and it is possible to consider a greatly simplified theory.

Indeed, approximating an algebra of functions as an algebra of matrices does not carry in itself any
geometrical content, as is obvious from the fact that all fuzzy approximations must yield the same matrix
algebras. What really defines the geometry is the choice of a derivation and scalar product. For the
scalar product, we will normally arrange to use the canonical scalar product on the algebra of matrices

< φ|ψ >∝ Tr(φ∗ψ). (1)

As a consequence, complex conjugation will be associated with hermitian conjugation and thus, real fields
will be approximated with hermitian matrices. Then, as far as the scalar field theory is concerned, the
only required differential operator is the Laplacian. The fuzzy approximation of the scalar field theory on
a manifold will therefore be entirely determined by the choice of a Laplacian and multiplicative coefficient
in (1) for each matrix algebra.

However, even with such a simple scheme, only a few manifolds can be “fuzzified” in this way, including
the complex projective planes CPN [4] as well as their Cartesian products [5]. Under certain conditions,
it is also possible to approximate other spaces such as the spheres S3 [6] and S4 [7] by imbedding them in
one of the fuzzy CP

N . The non–commutative lattice [8] is another simple matrix space where numerical
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simulations have already been performed, although it is not a fuzzy space in the sense that it does not
approximate a manifold but a lattice.

As a approximation scheme, this “fuzzification” is well suited to numerical simulations of field theories
[9]. As a test run, the first fuzzy approximation to be investigated should be the simplest one, that of
the two dimensional sphere CP

1 = S2. Besides, the two–dimensional plane can be viewed as the limit of
a sphere of infinite radius.

In this paper, the fuzzy sphere and its properties will first be introduced in Section 2. Then, the real
scalar field theory on a sphere and on the fuzzy spheres will be presented in Section 3. The following
section 4 shows the results of the simulations. The phase boundaries between the three phases present
and their scaling properties are derived. A careful analysis of this new phase is also presented in this
section. Finally, the results are summarised and discussed in the Conclusion 5.

2 The fuzzy sphere

The simplest example of a fuzzy space is the fuzzy sphere [10]. As explained in the Introduction, for the
purpose of studying a scalar field theory, the only ingredient required to fix the geometry is a Laplacian
operator and a scalar product on each matrix algebra. Since derivations on the commutative sphere can
be viewed as infinitesimal SSU(2) transformations, the Laplacian on a (2s+1)× (2s+1) matrix algebra,
also denoted Mat2s+1, can be guessed as

L2φ = [Li, [Li, φ]], (2)

where Li are the angular momentum operators in the 2s + 1 dimensional irreducible representation of
SU(2). The scalar product is chosen as proposed in (1), with a multiplicative coefficient such that the
unit matrix has the same norm as the unit function on the sphere

< φ|ψ >= 4π

2s+ 1
Tr(φ†ψ). (3)

The spectrum of the proposed Laplacian operator can be recognised from the adjoint action of angular
momentum as

L2Ŷlm = l(l + 1)Ŷlm, 0 ≤ l ≤ 2s, (4)

where the eigenfunctions Ŷlm are the polarisation tensors whose normalisation is defined according to the
chosen scalar product

4π

2s+ 1
Tr(Ŷ †

lmŶlm) = 1. (5)

This is precisely the spectrum of the Laplacian on the commutative sphere truncated at angular momen-
tum 2s, thus vindicating this choice.

A clean way of recognising the approximation of a sphere in these matrix algebras is to introduce a
mapping which associates a function on the sphere with each matrix of the algebra Mat2s+1 and pulls
back most of the structure on the algebra of functions of the sphere onto the matrix algebra [11]. There
are various ways to define such a mapping, such as using coherent states [12]. However, the simplest one
is given by

Ms : Mat2s+1 → C∞(S2) (6)

M =
2s
∑

l=0

l
∑

m=−l

clmŶlm 7→ f(n) =
2s
∑

l=0

l
∑

m=−l

clmYlm(n), (7)

where the functions Ylm(n) are the usual spherical harmonics on the sphere, i.e. the eigenvectors of the
Laplacian operator on the sphere. By definition, this mapping Ms is linear and maps the Laplacian L2
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on Mat2s+1 onto the Laplacian on the sphere. In fact, the three derivatives on the sphere ∇l = iεjklxj∂k
are pulled back to simple derivations on the matrix algebra given by

Liφ = [Li, φ]. (8)

By construction, the action of the group SU(2) is preserved on both sides. Furthermore, since the
eigenvectors of the Laplacian on the matrix space and on the sphere form orthonormal bases on their
respective spaces, this mapping is an injective isometry. Its image, on which the mapping is one to one,
Ms(Mat2s+1) is given by all the functions with angular momentum only up to 2s and form a sequence
of increasing (for the inclusion) sets which become dense in C∞(S2) in the limit of infinite matrices. The
matrix product is mapped to a (non–commutative) product of functions on the sphere called a ∗–product

Ms(φψ)(n) = (Ms(φ) ∗s Ms(ψ))(n), (9)

which is evidently distinct from the usual (commutative) product of functions. It is possible to verify
that in the limit of infinite matrices s→ ∞, the star product tends to the usual product. More precisely,
for (fs, gs) ∈ (Ms(Mat2s+1))

2 two functions with angular momentum truncated at 2s, and t ≥ s,

(fs ∗t gs)(n) = fs(n)gs(n) +O(
1

t
). (10)

Note in passing that complex conjugation of a function on the sphere pulls back to hermitian conju-
gation on the matrix algebra. Consequently, as proposed in the introduction, real functions pull back to
hermitian matrices. Similarly, integration on the sphere which is similar to scalar product with the unit
function pulls back to the trace on the matrix algebra.

Thus, in the limit when s goes to infinity, the mapping Ms becomes an isomorphism of algebras
which preserves rotational invariance, the Laplacian and the scalar product (3). This proves that the
fuzzy spaces, as defined by the triple (Mat2s+1,L2, < ·, · >) go over to the sphere in the limit of infinitely
large matrices. Furthermore, we can deduce immediately the following approximation rule.

Approximation rule: given an algebraic expression on the sphere, it is possible to find a fuzzy approxi-
mation for it, which converges to it in the large matrix limit, by truncating all functions at momentum 2s,
replacing products by ∗s–products everywhere and pulling back the expression into the matrix algebras
with the mapping Ms.

Another mapping with similar properties which is generally introduced is the one obtained by looking
at the diagonal elements of a matrix in a coherent states representation. Compared to Ms, this mapping
trades the isometry property for the conservation of the notion of state, in the sense that it maps a state
of Mat2s+1 into a state of C∞(S2). In this case, the corresponding star product can also be expressed in
a simple exact form [12].

This introduction to the fuzzy sphere described spheres of radius one. Getting spheres of different
radius R, is just a matter of scaling the scalar product (1) and Laplacian (2) appropriately:

L2 → 1

R2
L2, (11)

4π

2s+ 1
Tr(φ†ψ) → 4πR2

2s+ 1
Tr(φ†ψ). (12)

With the fuzzy sphere now defined and understood, we can move on to defining a real scalar field
theory on it.
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3 The real scalar field theory

The φ4 scalar field theory on the two–dimensional sphere is given by the action1

S(φ) =

∫

S2

d2n(φ∆φ + rφ2 + λφ4), (13)

with φ a real scalar field, ∆ = −∇i∇i the Laplacian on the sphere, r a mass parameter and λ an
interaction constant. This particular model was chosen because it is simple and well studied. In fact, it
is known that the diagrammatic expansion of this theory has only one divergent diagram, the tadpole
diagram, is Borel resumable, and defines the field theory entirely.

Using the Approximation rule above, the action (3) for the real scalar field can be approximated by
[13]

S(φ) =
4π

2s+ 1
Tr(φL2φ+ rφ2 + λφ4), (14)

where φ must be an hermitian matrix. Again, it is possible to write a diagrammatic expansion for this
theory [13]. There are more diagrams than in the continuum since the legs of the vertices do not commute
anymore, although they can still be cyclically rotated. On the other hand, since the theory is defined on
a finite dimensional algebra, all diagrams must be finite. Furthermore, since the action was obtained by
the approximation rule, it is easy to check that all the fuzzy diagrams are just approximations of their
commutative counterparts obtained from the action (3). Thus, in the limit of infinite matrices, all finite
diagrams converge to their commutative counterparts, while the tadpole diagrams must also diverge.

The approximation rule says nothing of the sub-dominant contribution to the tadpole diagrams how-
ever. In fact, the constant contribution of one of the two diagrams (the “non–planar” one where the
exterior legs are not adjacent) does not converge to its usual continuum limit [13]. Thus, we see that
the field theory described by the action (14) is not an approximation of the continuum field theory (13).
This is what gives rise to the so called UV –IR mixing in the disordered phase, as studied in [13]. In
the following, I will generically refer to “theories with UV –IR mixing” as such theories which do not
converge to their commutative limits.

At this point, there are two interesting theories which can be studied. The first one described by the
fuzzy action (14) with its associated UV –IR mixing is a simple example of a non–commutative theory
such as those that have cropped up in particle theory recently. The other one is described by the same
action (14) plus an additional damping term to ensure that the fuzzy theory does indeed go over to the
commutative one [13]. Such a fuzzy theory will then be an alternative to the usual lattice discretisation
of a scalar field theory.

As the first step toward a possible new approximation method of field theory, the latter theory holds
the most potential. However, the former theory, which will be studied in this paper, proposes a non–
perturbative analysis of a non–commutative field theory with UV –IR mixing, and more prosaically is
simpler to implement. A similar study was done for this same model on the non–commutative lattice in
[8].

Even though the scalar field on the commutative or fuzzy spheres cannot have a phase transition since
both have finite volume, one may be found in the planar limit, i.e. in the limit where the matrices and
the sphere become infinite s,R → ∞. It is therefore convenient in the following to introduce explicitly
the sphere radius R in the problem.

From Eqs. (11,12), it is clear that the real scalar field action with variable radius must take the form

S(φ) =
4π

2s+ 1
Tr(φL2φ+ rR2φ2 + λR2φ4). (15)

1A more usual form of this action can be obtained by changing the field φ to φ/
√
2. Since the observables evaluated in

this paper are typically homogeneous of degree two in the field, they are simply multiplied by an overall factor of two in
this change of variable.
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It will also be convenient later on to define the potential part of the action given by

V (φ) =
4πR2

2s+ 1
Tr(rφ2 + λφ4). (16)

Of the three parameters r, λ and R, only two are independent, and in the following, according to the
situation, either the interaction parameter λ or the radius R will be set to one while the other parameter
is allowed to vary.

4 The simulations

The theory simulated here is the one described by the action (15) with fields φ which are hermitian
matrices. At least one critical line is expected to arise when the radius R goes to infinity, corresponding
to the critical behaviour of the scalar field on the plane. Thus, the goal of the simulation will be to draw
a phase diagram for this theory.

The simplest way to test for a continuous phase transition is to look for peaks of the finite–volume
susceptibility2 given by

χ =< Tr(φ)2 > − < |Tr(φ)| >2, (17)

where the expectation values are given by

< h(φ) >=

∫

dφ
e−S(φ)

Z
h(φ), (18)

with S the field action (15), h some algebraic expression in the field, and Z the partition function

Z =

∫

dφ e−S(φ). (19)

For our purpose, the normalisation of the susceptibility is unimportant, contrary to the observables
introduced next.

To get a better idea of the phase the field is in, it is also convenient to monitor a few other significant
quantities. Using the mapping M introduced in (7), it is possible to associate functions on the sphere to
matrices. Therefore, the coefficients clm in the expansion of a matrix on the basis of polarisation tensors
(4)

φ =
∑

l,m

clmŶlm, (20)

have an immediate classical interpretation. They will automatically average to zero though since they
are linear, and thus odd, in the field while the action is even in it. For this reason, we chose the following
quadratic even additional observables

< ‖φ‖2 > = <
∑

l,m

|clm|2 >=< 4π

2s+ 1
Tr(φ2) > (21)

< |c00|2 > =
4π

(2s+ 1)2
< (Tr(φ))2 > . (22)

<

1
∑

m=−1

|c1m|2 > =
12π

s(s+ 1)(2s+ 1)2
[ |Tr(φL+)|2 + (Tr(φL0))

2], (23)

2The usual susceptibility has no peak for finite volume because by symmetry < Tr(φ) >= 0. Instead the standard
finite–volume susceptibility is used where the latter term is replaced by < |Tr(φ)| > which has the right properties.
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where L+ = L1 + iL2 ∝ Ŷ11. The first two observables also happen to be invariant under U(n) transfor-
mations while the latter is only invariant under SU(2) transformations. These quantities can respectively
be related to the average of the total power of the field, and of its power in the modes 0, and 1.

The simulations themselves are realised in the standard way using a Metropolis Monte-Carlo method
with the jackknife method to evaluate the error on the calculated expected values [14]. To better control
thermalisation, simulations were run starting from both hot (i.e. random) and cold (i.e. the minimum of
the action) initial conditions.

This generates a sequence of random field configurations φ(t) with probability distribution given by
e−S/Z as found in the expectation values (18). The parameter t will be called “Monte–Carlo time”, and
the expectation values will then be calculated as standard averages

< h(φ) >=
1

T

T
∑

t=1

h(φ(t)). (24)

The update of the matrix φ(t) through one Monte–Carlo time step is done entry by entry as this is not
slower than a global matrix change. With the acceptance rate defined as the number of entries modifed
during a sweep over the total number of entries tested (which is all of them), the range of variation of
each matrix entry is fixed adaptatively by maintaining the acceptance rate between 15% and 30%.

The key model–dependent ingredient in this method is the calculation of the variation of the action
under a random variation of a matrix entry, δSij(x) = S(φij → φij + x) which is used to calculate the
probability min(e−δS , 1) of accepting φij + x as the matrix entry at the next Monte–Carlo timestep, and
the calculation of the observables which is used in the average formula (24) and is always negligible in
terms of the number of operations compared to δSij(x).

The scalar field on the fuzzy sphere is “non–local” in the sense that a matrix entry φij is coupled to
all the other entries on its line φik and column φkj through the interaction term of the potential λφ4.
As a result, the variation of the action δS requires a number of operations which grows linearly with
the matrix size 2s+ 1. Since each entry of the matrix must be updated from one Monte–Carlo timestep
to the next, the computation time of a matrix update for the fuzzy action (15) grows like O(s3). The
quadratic part of the action only couples it to a fixed number of other entries, so that φij only couples
to φi+1 j+1, φij and φi−1 j−1, and is therefore subdominant in this calculation.

By comparison, for a “local” action, such as that of a finite difference scalar field action on the lattice,
a degree of freedom (or lattice site) is only coupled to a constant number of other degrees of freedom,
i.e. independant of the total number of degrees of freedom, and the number of operations to update the
field through one Monte–Carlo timestep only grows like the number of degrees of freedom O(s2).

This calls for two observations. First, the only “non–local term” in the fuzzy action is actually the
self–interaction term λφ4. It should be noted in passing that the non–locality gets worse as the power
of the self–interacting term increases, such as adding a term in Tr(φ6), in the sense that the number
of operations to calculate δSij grows polynomially even faster. Second, although this model cannot be
compared to a lattice model because of the UV –IR mixing, a corrected action such as those proposed
in [13] which would converge towards the clasical real scalar field theory would seem to be intrinsically
slower than its lattice equivalent. This however does not generalise to other field theories, particularly
fermionic ones, and does not take into account the rate of convergence of the Monte–Carlo scheme itself.

Let us now go over the various phases which arise in the simulation. In the following, as a convention
when either of the two parameters λ or R is not mentionned as a variable, it is assumed to be equal to
one.

4.1 The uniform–disordered phase transition

This is the phase transition observed for a φ4 scalar field theory on the commutative plane. For the model
considered here, it appears for small interaction parameters λ. Figure 1 shows a typical example of this
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Figure 1: (a) Plot of the susceptibility from Eq. (17), calculated on 216 bins of 40 Monte–Carlo timesteps
for λ = 8 and 21× 21 matrices. Its maximum is evaluated at ru−dc (λ = 8) = −13.2± 0.6. (b) Plot of the
three observables described in Eqs. (21,22,23) for the same parameters.

phase transition. The critical point can readily be identified as the maximum of the susceptibility (17).
As seen on Figure 1b, the observables above the critical point r > ru−dc show no strong dependance on

r. The power in the 0 and 1 modes is also much smaller than the total power suggesting that the random
fluctuations are spread out over all the modes. This is characteristic of a disordered phase where the field
is composed entirely of random fluctuations around the constant average field φ = 0. This phase is found
when the mass parameter r is positive or negative and “small”, −r ∼< λ. These results are completely
consistent with what one would expect from a commutative scalar field theory.

The uniform phase arises when the mass parameter r is negative and “large”. It appears in Figure
1 below the critical point r < ru−dc . In this approximation, the action is completely dominated by the
regions around its minima at φ± = ±

√

−r/2λ1, where 1 denotes the unit matrix. In this limit, it is
possible to expand the action to dominant (quadratic) order around these two minima to derive the
observables. This gives an effective action which is basically the sum of two delta distributions centered
at each of the action minima φ±. In particular, as seen in Figure 1b,

< ‖φ‖2 >≃< |c00|2 >≃
−2πr

λ
(25)

<
∑

m

|c1m|2 >≪ < |c00|2 > . (26)

Checking the next order of expansion shows that the power in all the non–zero modes is suppressed as
1/(−r).

The corresponding critical line in the phase diagram is shown in Figure 2. The parameters r and λ
were chosen as variables because the critical line goes through the point (0, 0) around which it is delicate
to scale the parameters using the radius R2. This critical line scales like the square root of the matrix
size. Furthermore, a simple fit of the datas suggests that it is well approximated by

ru−dc (λ)√
2s+ 1

≃ −0.35λ. (27)
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Figure 2: Scaled phase diagram for the uniform–disordered phase transition for five distinct matrix sizes
(2s+ 1)× (2s+ 1) and the best fit given by (27).

The phase boundary line is well approximated by a linear function, but its slope seems to change slightly
with the matrix size. The fit proposed above has been done on the largest matrix size data, s = 15, which
is hopefully the best approximation to the large s limit.

It would be interesting to study in more detail this phase transition and how it compares to the
disordered–uniform phase transition of the commutative scalar field theory near the origin. However, the
focus of this paper is the new phase, which is found and described in the next subsection. This study is
therefore left for a future paper [15].

4.2 The disordered–matrix phase transition

The simulations show the appearance of a new phase for larger radii which I will call the “matrix phase”
for reasons explained in the paragraph “The pure potential model” of this subsection. Figures 3 and 4
show a typical example of this phase transition. Again the phase transition can be clearly identified as
occuring at the maximum of the susceptibility.

The new phase seems characterised by

<
1

2s+ 1
Tr(φ2) > ≃ −2πr

λ
(28)

< c200 > ≃ −2πr

λ(2s+ 1)2
≪<

1

2s+ 1
Tr(φ2) > (29)

<
∑

m

|c1m|2 > > < c200 > . (30)

This suggests strongly that in this new phase the field φ takes the form φ ∼ ±
√

−r/2λU †(1s⊕−1s+1)U
with U ∈ U(2s+ 1) and 1n the n× n unit matrix, which is a minimum of the potential (16).

Further examination of the raw data of a Monte–Carlo run with cold initial conditions shows that
during thermalisation Tr(φ(t)) (t being the Monte–Carlo time) goes through a series of plateaus at
(2l + 1)

√

−r/2λ, |l| ≤ s before settling down at its equilibrium value corresponding to l = 0, which is
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Figure 3: Plot of the susceptibility (17) calculated for 21 × 21 matrices on 216 bins of 40 Monte–Carlo
timesteps for R2 = 723. Its maximum is evaluated at rd−mc (723) = −0.019± 0.005.
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Figure 4: (a) Plots of the total power (21) and its proposed approximation (28) calculated for the same
parameters as in Figure 3. (b) Plots of the power in the 0 mode (22), its proposed approximation (29),
and the power in the 1 mode (23) calculated with the same parameters.

9



consitent with the value of < c200 > given in Eq. (29). This seems to confirm that the minima of the
potential part of the action given by

√

−r/2λU †(1l ⊕−12s+1−l)U with U ∈ U(2s+ 1) are local minima
of the action.

Normally in the uniform phase, the minimum corresponding to l ∈ {0, 2s+1} is automatically selected
by virtue of also minimizing the kinetic part of the action. The fact that in the matrix phase it is not
suggests that the kinetic term might be negligible. To test this assertion, the field theory described by
the action V (φ) from Eq. (16) has been studied and compared to the results for the fuzzy scalar field.

The pure potential model This model is actually much simpler than the fuzzy scalar field action by
virtue of being invariant under U(2s+ 1) transformations of the field φ→ U †φU , U ∈ U(2s+ 1).

Thus, considering only observables which are also invariant under these transformations, such as those
defined in Eqs. (17,21,22), the degrees of freedom associated with this invariance can be extracted in
the form φ = U †Diag(x1, . . . , x2s+1)U , which has a Jacobian given by the square of the Vandermonde
determinant where the Vandemonde determinant is given by ∆(x1, . . . , x2s+1) =

∏

i<j(xi − xj), and
integrated out to get an effective action given by

Veff (x1, . . . , x2s+1) =
4πR2

2s+ 1

2s+1
∑

i=1

(rx2i + λx4i )−
∑

1≤i<j≤2s+1

ln[(xj − xi)
2]. (31)

Furthermore, in the case of the observables defined in Eqs. (17,21,22), generically called F (r, λ,R), which
are quadratic in the field, a simple change of variable yi = R1/2λ1/4, shows that these averages effectively
depend only on one parameter

R
√
λF (r, λ,R) = F (r/(R

√
λ), 1, 1). (32)

This effective action (31) can be easily studied by Monte–Carlo simulations since it has a lot fewer
degrees of freedom. Figure 5 supports the assertion that around the phase transition considered here,
the kinetic term of the fuzzy scalar field model becomes negligible in the limit when the radius R2 tends
to infinity. This is why the new phase was called a “matrix phase”. In this phase, the kinetic term
which carries the geometrical content of the fuzzy sphere vanishes. It is likely that the “striped phase”
which has been found for the φ4 theory on the non–commutative lattice [8] arises for the same reason
and must therefore converge to the same matrix phase. In particular, for the same parameters and deep
in the matrix phase, the values of U(2s + 1) invariant observables, such as < Tr(φ) >, < Tr2(φ) >, or
< Tr(φ2) >, should be the same on the non–commutative lattice as on the fuzzy sphere.

The matrix phase Eq. (28) suggests that in the matrix phase the eigenvalues of the field settle in
a minimum of the potential. This suggests that only the neighbourhood of the minima of the potential
contribute to the expectation values (18).

The minima of the potential are 2s+ 1 disjoint orbits of the form

On = {
√

−r
2λ
U †(1n ⊕−12s+1−n)U |U ∈ U(2s+ 1)/[U(n)×U(2s+ 1− n)]}, (33)

where n ≤ s + 1/2 and 1n are the n × n unit matrices. These orbits are isomorphic to Grassmanians
G2s+1
n

∼= U(2s+1)/[U(n)×U(2s+1−n)]. When the kinetic term is negligible, the field distribution will
be dominated by the orbit with the largest phase space volume which corresponds to n the integer value
out of s and s+ 1/2.

By comparison, the kinetic term which was neglected will select the diagonal orbits, n ∈ {0, 2s+ 1},
which have the lowest phase space volume. Thus, the matrix phase can be interpreted as a phase where
the kinetic term is negligible with respect to the volume of the largest orbit Os.

10



1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-22 -20 -18 -16 -14 -12 -10 -8 -6

R
∗χ

r ∗R

(a)

R2 = 323

R2 = 523

R2 = 723

R2 = 923

(31)

1

1.5

2

2.5

3

3.5

4

4.5

-22 -20 -18 -16 -14 -12 -10 -8 -6

R
∗c

2 0
0

r ∗R

(b)

R2 = 323

R2 = 523

R2 = 723

R2 = 923

Model (31)
−2πrR
λ(2s+1)

Figure 5: (a) Plot of the susceptibility for 31 × 31 matrices, in units such that they do not depend on
the radius in the case of the pure potential action as shown in Eq. (32). Note that the critical point for
the pure potential model is at rd−mc R = −17.5± 0.5. (b) Plot of < c200 > and its approximation (29) for
the same parameters. In both figures (a) and (b), the observables calculated from the fuzzy scalar field
action seem to converge monotonically with R2 toward the pure potential observables.

This reasoning can be verified more rigorously, by looking carefully at the probability measure

dµ(φ) =
e−S(φ)

Z
dφ (34)

asociated with the field theory. The simulations indicated clearly that only the fields near the minimum
of the potential contribute to the distribution. Therefore, expanding φ around these minima in the form

φ = x0 U
†Diag(ǫj + xj)U, (35)

with U ∈ U(2s + 1), x0 =
√

−r/2λ the minimum of the potential, and ǫj ∈ {−1,+1}, the probability
distribution becomes

dµ(φ) ≈ 1

Z

∑

ǫj

δ(φ−x0 U †Diag(ǫj+xj)U) e−4π(rR)2x·x/[λ(2s+1)]−x2
0K(U,ǫj ,xj) V 2(ǫj+xj) dU d2s+1x, (36)

where

K(U, ǫj, xj) =
4π

2s+ 1
Tr[(U †Diag(ǫj + xj)U)L2(U †Diag(ǫj + xj)U)] (37)

is the kinetic term for the field expanded acording to Eq. (35) and Z is the partition function whose
value changes as needed to normalise the probability distribution it is part of. It is possible to simplify
this expression even further by ordering the eigenvalues xi since such permutations are also U(2s + 1)
transformation. Thus, dropping all subdominant terms, and scaling x,

dµ(φ) ≈ 1

Z

2s+1
∑

i=0

(

2s+ 1

i

)

δ

(

φ− x0 U
†Diag(sign(i − j + 1/2) +

√

(2s+ 1)λ

4π

yj
rR

)U

)

(38)

(

e−x
2
0K(U,sign(i−j+1/2),0) dU

)

(

(
16πr2R2

λ(2s+ 1)
)i(2s+1−i)e−y·yV 2(yj≤i)V

2(yj>i) dy

)

, (39)
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where each term of the sum corresponds to an integration of the action in the vicinity of the U(2s + 1)
orbit of 1i⊕−12s+1−i = sign(i− j+1/2). In this sum, the “kinetic” term (containing dU) decreases with
i while the “potential” term (containing dx) increases with i. Thus, the matrix phase corresponds to the
case when the potential term dominates, whereas the uniform phase would correspond to one where the
kinetic term dominates.

Note that, by reabsorbing the Vandermonde determinants into matrix integrations, the potential term
can be rewritten as a Gaussian measure

e−x·xV 2(xj≤i)V
2(xj>i) dx =

(

∫

SU(i)

dU1

V(SU(i))

)

V 2(xj≤i)(
i
∏

j=1

dxj) e
−
∑

i

j=1
x2
j (40)

(

∫

SU(2s−i)

dU2

V(SU(2s− i))

)

(

2s+1−i
∏

j=i+1

dxj) e
−
∑

2s+1−i

j=i+1
x2
j (41)

∝ V(Gri,2s+1) δ(ψ1 − U †
1Diag(xj≤i)U1) δ(ψ2 − U †

2Diag(xj>i)U2) (42)
∫

SU(i)×SU(2s−i)

dψ1dψ2 e
−Tr(ψ2

1+ψ
2
2), (43)

where V denotes the volume of a space. This Gaussian integral can be calculated exactly for most
expectation values. Furthermore, it makes explicit the volumes of the orbits Oi ∼ Gri,2s+1 which weights
these integrals. Not surprisingly now, the power i(n− i) which appears in the potential term is precisely
the dimension of this Grassmanian.

Note also that for the purely potential action, the terms i = s or i = s± 1/2, whichever are integer,
are always dominant over the others, and so in this limit (which excludes the disordered phase because
of the approximation (35)) only the matrix phase can arise.

This extra phase does not appear for the scalar field simulated on the lattice despite the fact that the
action has the same superficial properties. The potential has a large subset of minima given by φij = ±x0
at each lattice site. The minimum with the largest phase space is the one with half their sites with value

+x0 and half with the opposite value −x0 which has a degeneracy of
(

N2

N2/2

)

where N2 is the number

of lattice points, whereas the minimum of the action is the one with a uniform value at each site which
has just degeneracy two. However, on the lattice the kinetic term simply cannot be neglected because it
represents the only, and thus dominant, coupling between the degrees of freedom at each lattice point.
Thus, it must lift the degeneracy of the minimum of the potential in favour of the usual uniform phase.
By contrast, on the fuzzy sphere, the non–locality of the potential implies that the coupling of the matrix
degrees of freedom is ensured by both the kinetic and potential term.

The equilibrium configuration As described above, in the matrix phase, the field will settle in the
vicinity of the orbit Os. However, although this orbit is degenerate with respect to the potential term
(16), it is not with respect to the full action because the kinetic term will lift this degeneracy.

Taking into account the kinetic term, the most probable configuration of the field will be given by the
minimum of the kinetic term (or equivalently of the action) on the orbit Os. The theory described by
the scalar action restricted to the orbits Os has been studied in detail in [16]. The configurations found
to minimise the action on these orbits Oi were found to be of the form x0W

† (1i ⊕ −12s+1−i)W , with
W ∈ SUs(2) the 2s + 1 dimensional representation of SU(2). So, the equilibrium configuration in the
matric phase is found to be of the form ±x0W † (1s ⊕−1s+1)W , with W ∈ SUs(2).

Applying the mapping (7), it is possible to extrapolate from there the form this field will take in the
commutative limit. Since this mapping preserves the action of SU(2), the corresponding set of fields will
be given by ±x0W †Ms(1s ⊕ −1s+1)W , where W ∈ SO(3) is now a simple global rotation. Figure 6
shows the function with azimuthal symmetry

fs(θ) = Ms(−1s ⊕ 1s+1), (44)
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Figure 6: The function fs(θ) defined in Eq. (44) for various values of the matrix size 2s+ 1. Note how
the functions tend to a sign function.

with θ the zenith angle. Thus the matrix phase on the fuzzy sphere has a commutative limit similar to
the one observed on the torus [8]. It also suggests a posteriori that the name of “striped phase” might
also be appropriate for this phase.

The critical line The critical line for this phase transition scales linearly with the matrix size, i.e. like
s. Figure 7 shows the critical lines. For large radii, a fit can easily be deduced algebraically from the
collapse of the susceptibility curves and the critical point for the pure potential model shown in Figure
5a, and the scaling of the susceptibility for the pure potential model shown in (32). Indeed, for s = 15,
and R → +∞

rd−mc (R2) ∼ −17.5

R
, (45)

thus, putting back in the linear scaling found for the critical line,

rd−mc (R2)

2s+ 1
∼ −17.5

31R
≃ −0.56 (R2)−1/2, (46)

which fits the critical line quite well as shown in Figure 7.

4.3 The matrix–uniform phase transition

This transition is difficult to observe numerically because of thermalisation problems. To switch from
the matrix phase to the disordered phase requires a large change in the field between two local minima
of the action, which has numerically vanishing low probability of happening. In fact, starting from hot
initial conditions (i.e. random), this transition never appears and the field stays trapped in the matrix
phase. This is quite understandable since we have seen in Eq. (39) that the phase space asociated with
the matrix phase is so much bigger than the one asociated with the uniform phase.

Conversely, with cold initial conditions (i.e. the field is a minimum of the action or equivalently in the
uniform phase), when −r gets large enough, the field stays trapped near this locally stable configuration,
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Figure 7: Scaled phase diagram for the disordered–matrix phase transition for five distinct matrix sizes
(2s+ 1)× (2s+ 1) and the asymptotic limit (46) which fits the curves well for R2 ≥ 30.

and a matrix–uniform phase appears. However, since hot initial conditions give a different result, the
observed transition just pinpoints the parameter r when the inverse of the probability of tunneling to the
matrix phase becomes larger than the thermalisation time of the Monte–Carlo simulation.

This is why the uniform–disordered phase diagram 2 is truncated for R2 > 64. Beyond this point,
the three phases uniform, matrix, and disordered, start mixing and runs with the cold initial conditions
show the emergence of an uniform phase while the hot do not.

Still, it is possible to guess a few things about the large −r region. As discussed in subsection 4.2,
the term i = s in the sum of Eq. (39) corresponds to the matrix phase while the term i = 0 corresponds
to the uniform phase. When R and s are fixed and r increases, the potential term grows polynomially
whereas the kinetic one is suppressed exponentially. Thus, the uniform phase must dominate when −r
becomes large enough, and there is a matrix–uniform phase transition.

Furthermore, when the kinetic term start dominating over the potential term in (39), its exponential
dependence should ensure that the term i = 0 in the sum quickly becomes dominant. Thus, it is unlikely
that there be other intermediate phases, asociated with other minima of orbits Oi i 6∈ {0, s}, between the
matrix and uniform phases.

Note that the pure potential model is no help here as it can only have two phases: the disordered and
matrix phases. This is not surprising as the kinetic term is a key component in this region of the phase
diagram.

A systematic analysis of this phase transition, and by extension of the triple point where the three
phases coexist, will be presented in the future paper [15] already mentionned at the end of Section 4.1.

5 Conclusions

In conclusion, the scalar field action on the fuzzy sphere shows the emergence of a new phase and
exhibits a new aspect of the phenomenon commonly called UV –IR mixing. The critical line for the
uniform–disordered phase transition is identified and scales like the square root of the matrix dimension.
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The critical line for the matrix–disordered phase transition is also identified and found to scale linearly
with the matrix size and grows linearly for large sphere radii. Finally, the existence of a matrix–uniform
phase transition is ascertained algebraically, but could not be identified numerically due to thermalisation
problems. We also conjecture that there is no other intermediate phase between the matrix and uniform
phases.

The matrix phase was also studied in detail, showing that its emergence over the uniform phase is
linked to the dominance of the phase space volume of the largest orbit minimising the potential, over the
kinetic term. As a result, the matrix phase must be well approximated for large sphere radii by a pure
potential model, i.e. one with no kinetic term. This was confirmed numerically.

Since, for a scalar field theory, the geometry of a fuzzy space is determined by the choice of its
Laplacian or equivalently of the kinetic term of the scalar field action, the matrix phase appears to be
largely independant of the geometry. Thus, if it appears in other scalar matrix models, it must have
similar properties to those shown here, independantly of the geometry or dimension of the commutative
limiting space. In particular, it should be possible to verify this by comparing the results found for the
fuzzy sphere and the non–commutative lattice [8].

Finally, the equilibrium configuration was identified indirectly and shown to have a “striped” structure
similar to what has been observed on the non–commutative lattice.

This is of course a verification that the naive scalar field action studied in this paper cannot be used
as an approximation of the scalar field theory on the usual sphere. For the latter, one needs to look at a
more complicated action such as the one proposed in [13] which adds an extra damping term proportional
to Tr((L2φ)2) to the action to suppress UV –IR mixing. This is consistent with the analysis presented
here as such a term will reinforce the influence of the kinetic term and thus suppress the matrix phase.
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[1] H. Grosse and P. Prešnajder, Lett.Math.Phys. 33, 171 (1995); H. Grosse, C. Klimč́ık and P. Prešnajder,
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Summer School on Theoretical Physics, 1995, hep-th/9603071. See citations therein for further ref-
erences.

[2] S. Baez, A. P. Balachandran, S. Vaidya and B. Ydri Commun.Math.Phys. 208, 787-798
(2000); . P. Balachandran, T.R.Govindarajan and B. Ydri, Mod.Phys.Lett. A15 1279 (2000);
G.Alexanian, A.P.Balachandran, G.Immirzi and B.Ydri J.Geom.Phys. 42 28–53 (2002); Badis Ydri
hep-th/0110006.

[3] A. Connes, Non-commutative Geometry, Academic Press, (1994).

15

http://arxiv.org/abs/hep-th/9602115
http://arxiv.org/abs/hep-th/9603071
http://arxiv.org/abs/hep-th/0110006


[4] A.P. Balachandran, B. Dolan, J. Lee, X. Martin and D. O’Connor J.Geom.Phys. 43 184-204 (2002)
and hep-th/0107099; G. Alexanian, S. Pinzul and A. Stern Nucl.Phys. B600/3, 531 (2001) and
hep-th/0010187.

[5] Sachindeo Vaidya and Badis Ydri Nucl.Phys. B671 401–431 (2003); S. Vaidya and B. Ydri
hep-th/0209131.

[6] B. P. Dolan and D. O’Connor, JHEP 0310, 060 (2003).

[7] J. Medina and D. O’Connor, JHEP 0311, 051 (2003).

[8] J. Ambjorn and S. Catterall Phys.Lett. B549 253-259 (2002); W. Bietenholz, F. Hofheinz and J.
Nishimura, Acta Phys. Polon. 34 4711-4726 (2003), or hep-th/0309216; W. Bietenholz, F. Hofheinz
and J. Nishimura, JHEP 0209, 009 (2002).

[9] T. Azuma, S. Bal, K. Nagao and J. Nishimura hep-th/0401038.

[10] J. Madore, Class. Quant. Grav. 9, 69 (1992).

[11] D. O’Connor, Mod. Phys. Lett. A18, 2423-2430 (2003).
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