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1. Introduction and summary

D-branes have been the cornerstone to understand the non-perturbative aspects of string/M-

theory, and the “central” extensions of super Poincaré algebras provide a useful tool to

analyze the possible supersymmetric brane configurations. The identification of the cen-

tral charge with the magnetic charge of a monopole by Witten and Olive [2] was the first

crucial step in discovering many exact results in the supersymmetric gauge theories. Also

the celebrated Montonen-Olive duality conjecture [3] received the first support from the

analysis on the central charges in four dimensional N = 4 super Yang-Mills theory by

Osborn [4]. The method has been applied to the M-theory matrix model on the flat back-

ground [5] by Banks et al. [6], and further to the pp-wave matrix model [7] by Hyun and

Shin [8] in order to identify all the extended objects. In the supersymmetric field theories

the central charges appear as surface integrals in the expression of the anti-commutator of

the supercharges, while in the matrix models they come as traces of a commutator.
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Although much effort has been put to obtain the explicit expressions of the brane

charges in various theories, it seems that few questions have been addressed to their cen-

tral property, which can be, in principle, straightforwardly checked by investigating the

supersymmetry transformations of them. Historically, the central property was “proven”

in a more abstract way by Haag, Lopuszanski and Sohnius [9] studying the general struc-

ture of the Z2-graded symmetry algebras or the superalgebras. The proof was based on the

Coleman-Mandula theorem [10] on all the possible symmetry generators in the quantum

field theories not having trivial scattering amplitudes. Now the essential motivation to ques-

tion the central property of the brane charges comes from the fact that the brane charges

are not symmetry generators nor Noether charges. Rather, they are topological living

at the spatial infinity only, and hence free from the constraint by the Haag-Lopuszanski-

Sohnius theorem. In fact, some straightforward manipulations indicate that the generic

brane charges are not central.1

Recently, Peeters and Zamaklar considered some extensions of the AdS superalgebra

as well as the pp-wave superalgebra, and noticed that the brane charges are inevitably non-

central [1] (see also [11] for the related work). The AdS superalgebras are superconformal

algebras and bigger than the super Poincaré algebras. In particular, the anti-commutator

of the supercharges gives rotational generators, Mab, either for the anti-de-Sitter space

or for the internal space, under which the brane charges, say Za, transform nontrivially.

The crucial observation made in [1] follows from the Jacobi identity which contains two

supercharges and one brane charge,

[{Q, Q̄}, Za] = {Q, [Q̄, Za]}+ {Q̄, [Q, Za]} . (1.1)

By contracting the spinorial indices of the supercharges properly, the left hand side can be

set to be an infinitesimal rotation of the brane charge, which do not have any prior reason

to vanish. Thus, from the right hand side, one can see the noncentral property of the brane

charge. Namely the brane charge do not commute with the supercharges in general.

In the mathematics literature, all the semi-simple superalgebras were classified by

Kac [12, 13] (see also a review by Nahm [14]), but the systematic study of the noncentral

extensions of them remains an open problem. The primary goal of the present paper is

to explore the possible noncentral extensions of the AdS5 × S5 superalgebra or su(2, 2|4).

There are three types of BPS branes2 one can add to the anti-commutator of the super-

charges, as a starting point for the extension; F1/D1 and D5/NS5 charges combine into

complex charges, while D3 charges are real-valued. After developing the general method

for the extensions, we focus on the electro-magnetic (F1/D1) extension. We show that (i)

the corresponding extension is unique, (ii) apart from the su(2, 2|4) generators, there are

899 complex brane charges in the extended algebra, (iii) the brane charges form a supermul-

tiplet of the original unextended superalgebra, and we present all the super-commutation

1Nevertheless all the known solitonic objects seem to have the vanishing values for the novel charges.
2For the discussion of the branes on the AdS space, see for example [15].
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relations of them explicitly. Although in the paper we focus on the AdS5×S5 superalgebra,

our method can be straightforwardly applied to other superalgebras.

The organization as well as the summary of the paper is as follows.

Section 2 is to set up our notations to write down the su(2, 2|4) superalgebra in a

su(2, 2) ⊕ su(4) covariant way. In section 3, we analyze the root structure of the su(2, 2|4)

superalgebra and discuss its representations in a self-contained manner. In particular, we

focus on a class of representations which are realized by the adjoint actions of the su(2, 2|4)

generators. They are nonunitary and have finite dimensions.

Section 4 contains our main results. Motivated by the super Yang-Mills analysis, we

define brane charges to be the space integrals of the total derivative terms or the surface

integrals. We argue then that the super-commutator involving a brane charge is also a

brane charge, and that all the brane charges super-commute with each other. Finally,

by investigating all possible Jacobi identities, we find out that the brane charges form a

“adjoint representation” of the original unextended superalgebra, su(2, 2|4), and that it is

subject to some constraints. In subsection 4.2, the constraints are solved completely for

the electro-magnetic extension. We identify the explicit structure of the supermultiplet

and present all the nontrivial super-commutation relations.

In section 5, we describe how to translate our result to the four dimensional language:

first for the extended N = 4 superconformal algebra and second for the extended N = 4

super Poincaré algebra. We also comment how our extended superalgebra acts on the

quantum monopole states in the super Yang-Mills theory. For the purpose of the last

section, in Appendix we relate the twelve dimensional gamma matrices to the four and ten

dimensional ones.
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2. AdS5 × S5 superalgebra - unextended

This section is to set up the notations in order to write the AdS5 × S5 superalgebra in

terms of the su(2, 2) ⊕ su(4) spinorial conventions. The main formulae are (2.18), (2.19),

(2.20), (2.21), (2.22), (2.23).

2.1 Gamma matrices and spinors

In order to make the SO(2, 4) × SO(6) isometry of AdS5 × S5 geometry manifest, it is

convenient to employ the twelve dimensional gamma matrices of spacetime signature (−−

+ + + + + + + + ++), and write them in terms of two sets of six dimensional gamma

matrices, {γµ}, {γa},

Γµ = γµ ⊗ γ(7) for µ = 1, 2, 3, 4, 5, 6

Γa = 1 ⊗ γa for a = 7, 8, 9, 10, 11, 12 .

(2.1)

The two sets of the six dimensional gamma matrices satisfy

γµγν + γνγµ = 2ηµν , γaγb + γbγa = 2δab , (2.2)

where ηµν = diag(− −++++). With the choice

γ(7) = iγ1γ2 · · · γ6 = iγ7γ8 · · · γ12 =

(

1 0

0 −1

)

, (2.3)

all the six dimensional gamma matrices are in the block diagonal form,

γµ =

(

0 ρµ

ρ̄µ 0

)

, γa =

(

0 ρa

ρ̄a 0

)

, (2.4)

satisfying the hermiticity conditions,

ρ̄µ = ηµν ρ̄
ν = (ρµ)† , ρ̄a = (ρa)† , (2.5)

which ensure that Γ1, Γ2 are anti-hermitian and others hermitian.

If we further set all the 4× 4 matrices, ρµ, ρ̄µ ρa, ρ̄a to be anti-symmetric [16]

(ρµ)αβ = −(ρµ)βα , (ρ̄µ)αβ = −1
2ǫ

αβγδ(ρµ)γδ ,

(ρa)α̇β̇ = −(ρa)β̇α̇ , (ρ̄a)α̇β̇ = −1
2ǫ

α̇β̇γ̇δ̇(ρa)γ̇δ̇ ,

(2.6)

the relations, su(2, 2) ≡ so(2, 4) and su(4) ≡ so(6), become manifest. That is, the indices

α, β = 1, 2, 3, 4 and α̇, β̇ = 1, 2, 3, 4 denote the fundamental representations of su(2, 2) and

su(4), respectively.

It follows that {ρµ} and {ρ̄µ} separately form bases for the anti-symmetric 4 × 4

matrices with the completeness relation,

tr(ρµρ̄ν) = 4δµν , (ρµ)αβ(ρ̄µ)
γδ = 2(δα

δδβ
γ − δβ

δδα
γ) . (2.7)
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On the other hand, the choice of chirality matrices in Eq.(2.3) implies that3

ρ[µρ̄νρλ] = +i16ǫ
µνλστκρ[σρ̄τρκ] , ρ̄[µρν ρ̄λ] = −i16ǫ

µνλστκρ̄[σρτ ρ̄κ] , (2.8)

so each of the sets ρ[µρ̄νρλ] ≡ ρµνλ or ρ̄[µρν ρ̄λ] ≡ ρ̄µνλ has only 10 independent components

and forms a basis for symmetric 4× 4 matrices,

tr(ρµνλρ̄στκ) = −i4 ǫµνλστκ − 24δ
[µ
σδντδ

λ]
κ ,

(ρµνλ)αβ(ρ̄µνλ)
γδ = −24(δα

γδβ
δ + δβ

γδα
δ) .

(2.9)

Finally, {ρµν ≡ 1
2(ρ

µρ̄ν −ρν ρ̄µ)} or {ρ̄µν ≡ 1
2(ρ̄

µρν − ρ̄νρµ)} forms an orthonormal basis for

the general 4× 4 traceless matrices,

tr(ρµνρλκ) = 4(δµκδ
ν
λ − δνκδ

µ
λ) , −1

8(ρ
µν)α

β(ρµν)γ
δ + 1

4δα
βδγ

δ = δα
δδγ

β , (2.10)

satisfying

(ρ̄µν)αβ = −(ρµν)β
α . (2.11)

Note that precisely the same equations as (2.7)-(2.11) hold for the so(6) gamma matrices,

{ρa, ρ̄b} after replacing µ, ν, α, β by a, b, α̇, β̇, etc.

In the above choice of gamma matrices, the twelve dimensional charge conjugation

matrices, C±, are given by

±(ΓM)T = C±Γ
MC−1

± , M = 1, 2, · · · , 12, C± =

(

0 1

±1 0

)

⊗

(

0 1

∓1 0

)

, (2.12)

while the complex conjugate matrices, A± read

±(ΓM )† = A±Γ
MA−1

± , A± =

(

At 0

0 ∓A

)

⊗

(

1 0

0 ±1

)

, A = −iρ̄12 = A† = A−1 .

(2.13)

In particular, for µ = 1, 2, · · · , 6, we have

(ρµ)† = −Aρ̄µAt = ρ̄µ , (ρ̄µ)† = −AtρµA = ρµ . (2.14)

Now if we define the twelve dimensional chirality operator as Γ(13) ≡ γ(7) ⊗ γ(7), then

{Γ(13), ΓM} = 0 , C− = Γ(13)C+ , A− = Γ(13)A+ . (2.15)

In 2+10 dimensions it is possible to impose the Majorana-Weyl condition on spinors to have

sixteen independent complex components which coincides with the number of supercharges

in the AdS5 × S5 superalgebra, su(2, 2|4). Up to the redefinition of the spinor by a phase

factor, there are essentially two choices for the Majorana-Weyl condition depending on the

chirality,

Ψ = ±Γ(13)Ψ , and Ψ̄ = Ψ†A+ = ΨtC+ . (2.16)

3We put ǫ123456 = 1 and “[ ]” denotes the standard anti-symmetrization with “strength one”.
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2.2 The special unitary Lie superalgebra, su(2, 2|4)

Using the twelve dimensional convention, the special unitary Lie superalgebra, su(2, 2|4),

reads simply

{Q, Q̄} = P13

(

iΓµνMµν − iΓabMab

)

P13 , (2.17)

where Q satisfies the Majorana-Weyl condition (2.16) and P13 =
1
2(1± Γ(13)).

Explicitly, the sixteen component supercharges, Qαα̇, carry only the chiral indices for

su(2, 2) and su(4) so that the whole superalgebra, su(2, 2|4), reads

{Qαα̇ , Q̄ββ̇} = iδα̇
β̇(ρµν)α

βMµν − iδα
β(ρab)α̇

β̇Mab , (2.18)

{Qαα̇ , Qββ̇
} = 0 , {Q̄αα̇, Q̄ββ̇} = 0 , (2.19)

[Mµν , Qαα̇] = (i12ρµν)α
βQβα̇ , [Mµν , Q̄

αα̇] = Q̄βα̇(−i12ρµν)β
α , (2.20)

[Mab, Qαα̇] = (i12ρab)α̇
β̇Q

αβ̇
, [Mab, Q̄

αα̇] = Q̄αβ̇(−i12ρab)β̇
α̇ , (2.21)

[Mµν ,Mκλ] = i(ηµκMνλ − ηµλMνκ − ηνκMµλ + ηνλMµκ) , (2.22)

[Mab,Mcd] = i(δacMbd − δadMbc − δbcMad + δbdMac) , (2.23)

where Q̄αα̇ ≡ Aα
β(Q

†)βα̇, and all the bosonic generators are hermitian, (Mµν)
† = Mµν ,

(Mab)
† = Mab. A few remarks are in order. The relative sign difference for the so(2, 4) and

so(6) generators appearing in (2.18) is crucial for consistency, as required from the Jacobi

identity involving [Qαα̇, {Qββ̇ , Q̄
γγ̇}]. However, the overall sign as well as the chirality

choices, namely whether ρ12ρ34ρ56 is +1 or −1, are solely matter of conventions.4 Firstly

the over all sign can be flipped by rewriting the superalgebra in terms of the conjugate

supercharges, (Q′ = Q̄t, Q̄′ = Qt = (Q′)†A) [17]. The equivalence between the different

so(2, 4), so(6) chirality choices becomes clear when we rewrite the superalgebra by the

su(2, 2), su(4) generators,5

T(2,2) = −i14 ρ̄
µνMµν , T †

(2,2) = AT(2,2)A , trT(2,2) = 0 ,

Tsu(4) = −i14 ρ̄
abMab , T †

su(4) = Tsu(4) , trTsu(4) = 0 .

(2.24)

From the completeness relation (2.10) which does not depend on the chiralities, we get the

following expression for the su(2, 2|4) algebra regardless of the chirality choices,

[T(2,2)
α
β , Qγγ̇ ] = δαγQβγ̇ −

1
4δ

α
βQγγ̇ , [T(2,2)

α
β , T(2,2)

γ
δ] = δαδT(2,2)

γ
β − δγβT(2,2)

α
δ , (2.25)

4The freedom for different chiral choices reflects two different Majorana-Weyl conditions in 2 + 10 di-

mensions, (2.16).
5From (2.13), A = A†. In fact, as explained in the next section (3.7), one can set A =

diag(−1,−1,+1,+1).
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[Tsu(4)
α̇
β̇
, Qγγ̇ ] = δα̇γ̇Qγβ̇

− 1
4δ

α̇
β̇
Qγγ̇ , [Tsu(4)

α̇
β̇
, Tsu(4)

γ̇
δ̇
] = δα̇

δ̇
Tsu(4)

γ̇
β̇
− δγ̇

β̇
Tsu(4)

α̇
δ̇
.(2.26)

Essentially the different chiral choices are equivalent to each other up to the redefinition

of the so(2, 4), so(6) generators through (2.24), and (2.10), i.e. T(2,2) = −i14 ρ̄
µνMµν =

−i14 ρ̄
′µνM ′

µν .

3. u(1)Y extended superalgebra and its root structure

Before we proceed further to obtain the noncentral extensions of the AdS superalgebra,

here as an intermediate stage we consider the inclusion of an additional or “bonus” u(1)Y
charge into the su(2, 2|4) superalgebra which acts as an automorphism of the supergroup.

This u(1)Y symmetry appears both in the IIB supergravity and in the analysis of the

four dimensional N = 4 superconformal group. In IIB supergravity the u(1)Y symmetry

rotates the two chiral spinors (see e.g. [18]), while on superspace the superconformal

group is defined in terms of the superspace coordinate transformations so that the u(1)Y
phase rotation of the odd coordinates is a part of the superconformal transformations [19].

However the stringy α′ correction to the supergravity violates the u(1)Y symmetry [20, 21],

and in N = 4 super Yang-Mills theory more than three-point correlation functions do not

respect the u(1)Y symmetry generically [22, 23, 24, 25]. Nevertheless, in our analysis of

the extended superalgebra, the u(1)Y charge will always act as an automorphism to the

superalgebra either unextended or noncentrally extended, so that one can safely switch it

off any time. The main technical advantage to include the u(1)Y charge is to reduce the

number of the fermionic simple roots from two to one. As the formers involve one chiral

as well as one anti-chiral, while the latter corresponds to one chiral only, the inclusion

will allow us to utilize the chirality of the superalgebra and simplify the study of the

representations of the superalgebra drastically.

3.1 Inclusion of a u(1)Y symmetry

The additional u(1)Y charge assigns quantum numbers +1/2, −1/2 to the supercharges,

Qαα̇, Q̄
αα̇,

[Tu(1), Qαα̇] = +1
2Qαα̇ , [Tu(1), Q̄

αα̇] = −1
2Q̄

αα̇ , T †
u(1) = Tu(1) , (3.1)

which reflect the u(1)Y phase rotation of the chiral spinors. One of the bosonic subalgebras,

su(4), is now extended to u(4),

Tu(4)
α̇
β̇
= Tsu(4)

α̇
β̇
+ 1

2δ
α̇
β̇
Tu(1) , (3.2)

satisfying

[Tu(4)
α̇
β̇ , Qγγ̇ ] = δα̇γ̇Qγβ̇ , [Tu(4)

α̇
β̇ , Tu(4)

γ̇
δ̇] = δα̇

δ̇
Tu(4)

γ̇
β̇ − δγ̇

β̇
Tu(4)

α̇
δ̇ . (3.3)

The additional u(1)Y charge commutes with all the bosonic generators so that the resulting

superalgebra is a semi-direct sum of su(2, 2|4) and u(1)Y , or su(2, 2|4)⊕semi u(1)Y .
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3.2 The root structure of su(2, 2|4)⊕semi u(1)Y

In this subsection we analyze the root structure of su(2, 2|4)⊕semi u(1)Y . Our analysis is

meant to be self-contained and involves much detailed general discussions on the subject.

The experienced readers may skip to the next subsection and only refer to the present one

for complements.

We first start with the following 16× 16 representation of the bosonic part, su(2, 2)⊕

su(4)⊕ u(1)Y , acting on spinors,

(

R(Mµν) , R(Mab ) , R(Tu(1))
)

=
(

− i12 ρ̄µν ⊗ 1 , 1⊗−i12 ρ̄ab , 1⊗ 1
2

)

, (3.4)

which are orthonormal and satisfy the reality condition,

Tr(R†
IRJ) = 4δIJ , R†

I = (A⊗ 1)RI(A⊗ 1) , I, J = 1, 2, · · · , 31 . (3.5)

The above representation for su(2, 2) is nonunitary. This is unavoidable in order to have a

finite dimensional representation for the noncompact algebra, since any unitary represen-

tation of a noncompact algebra is always infinite dimensional.

Our choice of the Cartan subalgebra is

→
H = (Tu(1), M12, M34, M56, M78, M9 10, M11 12) . (3.6)

Using the SU(4) symmetry, ρµ → UρµU
T , UU † = 1, which preserves the anti-symmetric

property (2.6) of ρµ, we can take the representation of the Cartan subalgebra in a diagonal

form. Adopting the bra and ket notations we set

R(M12) =
1
2 (−|1〉〈1| − |2〉〈2| + |3〉〈3| + |4〉〈4| ) ⊗ 1 = 1

2A⊗ 1 ,

R(M34) =
1
2 (−|1〉〈1| + |2〉〈2| − |3〉〈3| + |4〉〈4| ) ⊗ 1 ,

R(M56) =
1
2 (−|1〉〈1| + |2〉〈2| + |3〉〈3| − |4〉〈4| ) ⊗ 1 ,

R(M78) = 1⊗ 1
2 (−|1〉〈1| − |2〉〈2| + |3〉〈3| + |4〉〈4| ) ,

R(M9 10) = 1⊗ 1
2 (−|1〉〈1| + |2〉〈2| − |3〉〈3| + |4〉〈4| ) ,

R(M11 12) = 1⊗ 1
2 (−|1〉〈1| + |2〉〈2| + |3〉〈3| − |4〉〈4| ) .

(3.7)

– 8 –



All the bosonic positive roots and their representations are then given by

R(Ex) = |2〉〈1| ⊗ 1 , x = (0, 0, 1, 1, 0, 0, 0) ,

R(Es) = |3〉〈2| ⊗ 1 , s = (0, 1,−1, 0, 0, 0, 0) ,

R(Ey) = |4〉〈3| ⊗ 1 , y = (0, 0, 1,−1, 0, 0, 0) ,

R(Es+x) = |3〉〈1| ⊗ 1 , s+ x = (0, 1, 0, 1, 0, 0, 0) ,

R(Ey+s) = |4〉〈2| ⊗ 1 , y + s = (0, 1, 0,−1, 0, 0, 0) ,

R(Ey+s+x) = |4〉〈1| ⊗ 1 , y + s+ x = (0, 1, 1, 0, 0, 0, 0) ,

(3.8)

R(Eu) = 1⊗ |2〉〈1| , u = (0, 0, 0, 0, 0, 1, 1) ,

R(Ev) = 1⊗ |3〉〈2| , v = (0, 0, 0, 0, 1,−1, 0) ,

R(Ew) = 1⊗ |4〉〈3| , w = (0, 0, 0, 0, 0, 1,−1) ,

R(Ev+u) = 1⊗ |3〉〈1| , v + u = (0, 0, 0, 0, 1, 0, 1) ,

R(Ew+v) = 1⊗ |4〉〈2| , w + v = (0, 0, 0, 0, 1, 0,−1) ,

R(Ew+v+u) = 1⊗ |4〉〈1| , w + v + u = (0, 0, 0, 0, 1, 1, 0) ,

(3.9)

where x, y, s and u, v, w are respectively the su(2, 2) and su(4) simple roots. For a given

root, χ, the corresponding negative root and its representation follow simply from

E−χ = E†
χ , R(E−χ) = (A⊗ 1)R(Eχ)

† (A⊗ 1) , (3.10)

so that

R(E−χ) =











−R(Eχ)
† for χ ∈ {s, s+ x, y + s, y + s+ x}

+R(Eχ)
† otherwise

. (3.11)

Note that {s, s+ x, y + s, y + s+ x} spans the noncompact directions of su(2, 2).

Just like RI in (3.5), R(
→
H), R(E+), R(E−) are also orthonormal. This implies that

those two are related by the unitary transformation. In particular, the objects appearing
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in the anti-commutator, {Q̄,Q}, read

1
2R(Mµν)Mµν = 1

2R(Mµν)
†Mµν = R(M12)M12 +R(M34)M34 +R(M56)M56

+
∑

χ∈∆+
(2,2)

(

R(Eχ)
†Eχ +R(E−χ)

†E−χ

)

,

1
2R(Mab)Mab =

1
2R(Mab)

†Mab = R(M78)M78 +R(M9 10)M9 10 +R(M11 12)M11 12

+
∑

χ∈∆+
su(4)

(

R(Eχ)
†Eχ +R(E−χ)

†E−χ

)

,

(3.12)

where ∆+
(2,2) and ∆+

su(4) denote the sets of all the su(2, 2) and su(4) positive roots respectively.

In fact, for the given set of orthonormal matrices, R(
→
H), R(E+), R(E−), (3.7), (3.8), (3.9),

(3.11), the formulae above define all the roots, E±, in terms of the hermitian generators,

Mµν ,Mab, and make sure that R(E±) are the representations for them.

In terms of the Cartan subalgebra and su(2, 2) ⊕ su(4) roots, χ ∈ ∆+
(2,2)∪ ∆+

su(4), the

u(1)Y extended AdS5 × S5 superalgebra, su(2, 2|4)⊕semi u(1)Y , reads

[
→
H, Eχ] = χEχ , [

→
H, E−χ] = −χE−χ ,

[Eχ, E−χ] =











−χ·
→
H for χ ∈ {s, s+ x, y + s, y + s+ x}

+χ·
→
H otherwise

,

(3.13)

[Es, Ex] = Es+x , [Ey, Es] = Ey+s ,

[Ey, Es+x] = [Ey+s, Ex] = Ey+s+x , [Ex, Ey] = 0 ,

[Ev, Eu] = Ev+u , [Ew, Ev] = Ew+v ,

[Ew, Ev+u] = [Ew+v, Eu] = Ew+v+u , [Eu, Ew] = 0 ,

(3.14)

[
→
H,Qαα̇] = Q

ββ̇
R(

→
H)ββ̇αα̇ , [

→
H, Q̄αα̇] = −R(

→
H)αα̇

ββ̇
Q̄ββ̇ ,

[E±χ, Qαα̇] = Q
ββ̇
R(E±χ)

ββ̇
αα̇ , [E±χ, Q̄

αα̇] = −R(E±χ)
αα̇

ββ̇
Q̄ββ̇ ,

(3.15)

and
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{Q̄αα̇, Q
ββ̇

} = 2δα̇
β̇











f1 Ex Es+x Ey+s+x

E−x f2 Es Ey+s

− E−s−x − E−s f3 Ey
−E−y−s−x − E−y−s E−y f4











α

β

− 2δαβ











f5 Eu Ev+u Ew+v+u

E−u f6 Ev Ew+v

E−v−u E−v f7 Ew
E−w−v−u E−w−v E−w f8











α̇

β̇

,

(3.16)

where the Cartan subalgebra is organized as

f1 =
1
2(−M12 −M34 −M56) , f2 =

1
2(−M12 +M34 +M56) ,

f3 =
1
2(M12 −M34 +M56) , f4 =

1
2(M12 +M34 −M56) ,

f5 =
1
2(−M78 −M9 10 −M11 12) , f6 =

1
2(−M78 +M9 10 +M11 12) ,

f7 =
1
2(M78 −M9 10 +M11 12) , f8 =

1
2(M78 +M9 10 −M11 12) .

(3.17)

In particular from (3.15), Q11 corresponds to the unique fermionic simple root,

[
→
H,Q11] = qQ11 , q = (+1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ) ,

[E−χ, Q11] = 0 for all χ ∈ ∆+
(2,2)∪ ∆+

su(4) .

(3.18)

Other fermionic positive roots are {q + χ, q + χ′, q + χ+ χ′ |χ ∈ ∆+
(2,2), χ

′ ∈ ∆+
su(4)}.

The second order Casimir operator, CAdS , reads

CAdS = C(2,2) − C su(4) −
1
2Qαα̇Q̄

αα̇ , (3.19)

where C(2,2) and C su(4) are the su(2, 2) and su(4) Casimirs respectively. With the su(2, 2)

roots for the noncompact directions, ∆+
s = {s, s+ x, y + s, y + s+ x}, they are

C(2,2) =
1
2M

µνMµν

= M2
12 +M2

34 +M2
56 + {Ex , E−x}+ {Ey , E−y} −

∑

χ∈∆+
s

{Eχ , E−χ} ,

C su(4) =
1
2M

abMab = M2
78 +M2

9 10 +M2
11 12 +

∑

χ∈∆+
4

{Eχ , E−χ} .

(3.20)
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3.3 Nonunitary finite representations

Starting with an eigenstate of Tu(1), by acting the negative fermionic roots, Q̄αα̇, as many

as possible - maximally sixteen times surely - one can obtain a state which is annihilated

by all the Q̄αα̇’s. Now under the action of the bosonic operators, the state opens up an

irreducible representation of u(1)Y ⊕ su(2, 2)⊕ su(4) or the zeroth floor multiplet. Further

from (3.15), any state in the multiplet is annihilated by all the fermionic negative roots.

Generic unitary representations of the noncompact Lie algebra, su(2, 2), are infinite

dimensional. However unitary representations are not of our interest. In the present paper

we focus on the nonunitary finite representations of su(2, 2|4)⊕semi u(1)Y , denoted by R,

satisfying

R→

H
= (R→

H
)† ,

R−χ =











−(Rχ)
† for χ ∈ {s, s+ x, y + s, y + s+ x}

+(Rχ)
† otherwise

.

(3.21)

Namely, just like R(Eχ) (3.11), the representations of the roots for the su(2, 2) noncompact

directions are anti-hermitian. This makes the su(2, 2) and su(4) Casimirs (3.20) nonneg-

ative definite and ensures finiteness of the representation. Essentially, one can regard

{Rχ, (Rχ)
† |χ ∈ ∆+

(2,2) ∪ ∆+
su(4)} as a unitary representation of su(4) ⊕ su(4), since, as an

alternative to (3.13), we have

[R→

H
,Rχ] = χRχ , [R→

H
, (Rχ)

†] = −χ(Rχ)
† , [Rχ, (Rχ)

†] = χ·R→

H
. (3.22)

Consequently for any such irreducible representation there exists a unique superlowest

weight, |ΛL〉, being annihilated by all the negative roots,

Q̄αα̇|ΛL〉 = 0 , E−χ|ΛL〉 = 0 , χ ∈ ∆+
(2,2) ∪∆+

su(4) . (3.23)

The superlowest weight vector is specified by an arbitrary real number, r and six non-

negative integers or the Dynkin labels, Jx, Js, Jy , Ju, Jv , Jw,

ΛL =
(

r , −1
2(Jx + 2Js + Jy) , −

1
2(Jx + Jy) , −

1
2(Jx − Jy) ,

−1
2(Ju + 2Jv + Jw) , −

1
2(Ju + Jw) , −

1
2(Ju − Jw)

)

,

(3.24)

satisfying for the su(2, 2) ⊕ su(4) simple roots, χ = x, s, y, u, v, w in (3.8) and (3.9),

−2
χ·ΛL

χ2
= Jχ , (Eχ)

Jχ+1|ΛL〉 = 0 . (3.25)

All the other states are generated by repeated applications of the positive roots on

|ΛL〉, and without loss of generality one can safely work with the simple roots only, Q11,

Eχ, χ = x, s, y, u, v, w. Using the commutator relations, [Eχ, Q] ∼ Q in (3.15), one can
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always move all the Q11’s appearing to either far right or far left allowing other fermionic

positive roots. Therefore the whole supermultiplet is spanned by

Eχm · · · Eχ1Qαnα̇n · · ·Qα1α̇1 |ΛL〉 , (3.26)

or equivalently

Qαnα̇n · · ·Qα1α̇1Eχm · · · Eχ1 |ΛL〉 . (3.27)

The latter form makes clear that the whole multiplet is built on the zeroth floor by repeated

application of the fermionic positive roots. As the zeroth floor multiplet has dimension [26]

d0 =
[

1
12(Jx + 1)(Js + 1)(Jy + 1)(Jx + Js + 2)(Js + Jy + 2)(Jx + Js + Jy + 3)

]

×
[

1
12 (Ju + 1)(Jv + 1)(Jw + 1)(Ju + Jv + 2)(Jv + Jw + 2)(Ju + Jv + Jw + 3)

]

,

(3.28)

Eq.(3.27) implies that the supermultiplet has a finite dimension, ds,

ds ≤ 216 × d0 . (3.29)

The application of a Qαα̇ changes the u(1)Y ⊕ su(2, 2) ⊕ su(4) multiplets, jumping

from one irreducible representation to another. In particular, the number of the applied

fermionic positive roots determines the floor number, zero to sixteen at most. Each floor

is specified by the u(1)Y charge,

rN = r + 1
2N , N = 0, 1, 2, · · · , 16. (3.30)

Each of the zeroth and the highest floors forms an irreducible representation of u(1)Y ⊕

su(2, 2)⊕ su(4), while other floors are in general reducible and decompose into irreducible

ones. All the irreducible representations for u(1)Y ⊕ su(2, 2) ⊕ su(4) are specified by their

own lowest weights, λL, annihilated by all the bosonic negative roots,

λL =
(

r + 1
2N , −1

2(jx + 2js + jy) , −
1
2(jx + jy) , −

1
2(jx − jy) ,

−1
2(ju + 2jv + jw) , −

1
2(ju + jw) , −

1
2(ju − jw)

)

.

(3.31)

The corresponding highest weight is then [27]

λH =
(

r + 1
2N , 1

2(jy + 2js + jx) ,
1
2 (jy + jx) ,

1
2 (jy − jx) ,

1
2(jw + 2jv + ju) ,

1
2(jw + ju) ,

1
2(jw − ju)

)

,

(3.32)

while the dimension is given by (3.28) with J ↔ j.

In general, different orderings in the multiplications of the positive roots on the su-

perlowest weight may result in degeneracy for states of the same weight vector. To verify
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the possible degeneracy one should check whether a state can be rewritten as the other

through changes of orderings using the super-commutation relations of the superalgebra.

Especially for irreducible representations, if a state is annihilated by all the negative simple

roots - hence by all the negative roots - the state must be either the superlowest weight or

trivial. This provides an alternative criteria to distinguish or identify any given two states

of the same weight vector in a representation.

The particular representation we have in mind for the noncentral extension of su(2, 2|4)

superalgebra to be carried out in the next section is a kind of adjoint representation where

su(2, 2|4) generators act in the adjoint manner on brane charges which carry finite number

of su(2, 2) ⊕ su(4) spinor indices, e.g. Zα1···αkα̇1···α̇l

β1···βmβ̇1···β̇n . Naturally the dimension

of the representation is finite and R→

H
, R±χ satisfy the condition (3.21), since they are

essentially given by R(
→
H), R(E±χ), −R(

→
H)t, −R(E±χ)

t, depending on whether the spinor

indices are lower or upper ones. Acting the fermionic positive roots, Qαα̇, on the ground

floor as in (3.27), all possible states in the supermultiplet are built up, which in fact by

definition gives representations of the fermionic positive roots, Rαα̇. On the other hand,

the representations of the fermionic negative roots, Rαα̇, should be read off from explicit

manipulation of their actions on all the existing states utilizing the anti-commutation

relation of the superalgebra until it hits the superlowest weight to terminate the procedure.

For the adjoint representation we have6

{Rαα̇,Rββ̇} = 2δα̇β̇











R1 Rx Rs+x Ry+s+x

R†
x R2 Rs Ry+s

R†
s+x R†

s R3 Ry

R†
y+s+x R†

y+s R†
y R4











α

β

− 2δαβ











R5 Ru Rv+u Rw+v+u

R†
u R6 Rv Rw+v

R†
v+u R†

v R7 Rw

R†
w+v+u R†

w+v R†
w R8











α̇

β̇

.

(3.33)

Note that, compared to (3.16), there is no minus sign for the generators of the noncompact

directions in su(2, 2).

As usual, for some small irreducible representations of the su(4) algebra, we may denote

6Note that if we assumed Rαα̇ = R†
αα̇, then our representation would coincide with the unitary represen-

tation of the su(4|4) superalgebra. However, then, from {Rαα̇,Rαα̇} = 0 and its positive definite property,

the representation should have been trivial. In fact, the precise relation of Rαα̇ to R†
αα̇ can be obtained

only when we complete the vector space of the representation by the complex conjugate.
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them simply by their dimensions, instead of the Dynkin labels,

4 ∼ (1, 0, 0) , 4̄ ∼ (0, 0, 1) , 6 ∼ (0, 1, 0) , 10 ∼ (2, 0, 0) ,

15 ∼ (1, 0, 1) , 20 ∼ (3, 0, 0) , 20′ ∼ (1, 1, 0) , 20′′ ∼ (0, 2, 0) ,

35 ∼ (4, 0, 0) , 36 ∼ (2, 0, 1) , 45 ∼ (2, 1, 0) , 60 ∼ (1, 2, 0) ,

70 ∼ (1, 0, 3) , 84 ∼ (3, 1, 0) .

(3.34)
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4. Noncentral extensions of the AdS5 × S5 superalgebra

One possible way to obtain the noncentral extension of the su(2, 2|4) superalgebra is to

perform the Witten-Olive type analysis on the four dimensional N = 4 super Yang-Mills

theory [2, 4]. Namely starting with the explicit expressions for the supercharges, including

the special superconformal charges too, one may evaluate the anti-commutators of them

to see what kinds of surface terms appear. In principle, one gets

{Q̄αα̇, Q
ββ̇

} = 4δα̇
β̇
T(2,2)

α
β − 4δαβTsu(4)

α̇
β̇
+Hαα̇

ββ̇
,

{Qαα̇ , Qββ̇
} = Z

αα̇ββ̇
.

(4.1)

Here Hαα̇
ββ̇

and Z
αα̇ββ̇

correspond to the possible surface integrals or the brane charges,

and they can further decompose into (15, 15)⊕ (1, 15)⊕ (15, 1)⊕ (1, 1) and (6, 6)⊕ (10, 10),

Hαα̇
ββ̇

= Hαα̇
ββ̇

+ 1
4δ

α̇
β̇
Hα

β − 1
4δ

α
βH

α̇
β̇
+ 1

16δ
α
βδ

α̇
β̇
H ,

Zαα̇ββ̇ = Z(6,6)

αβα̇β̇
+ Z(10,10)

αβα̇β̇
,

(4.2)

satisfying the traceless and symmetric properties,

Hα
α = 0 , H α̇

α̇ = 0 , Hαα̇
αβ̇ = 0 , Hαα̇

βα̇ = 0 ,

Z(6,6)

αβα̇β̇
= Z(6,6)

[αβ][α̇β̇]
, Z(10,10)

αβα̇β̇
= Z(10,10)

(αβ)(α̇β̇)
.

(4.3)

Using the 4× 4 matrices, ρµ, ρa, they can be rewritten as

Hα
β = −i12(ρ̄

µν)αβHµν , H α̇
β̇
= −i12(ρ̄

ab)α̇
β̇
Hab , Hαα̇

ββ̇
= 1

4(ρ̄
µν)αβ(ρ̄

ab)α̇
β̇
Hµνab ,

Z(6,6)

αβα̇β̇
= (ρµ)αβ(ρ

a)
α̇β̇

Zµa , Z(10,10)

αβα̇β̇
= 1

144 (ρ
µνλ)αβ(ρ

abc)
α̇β̇

Z−
µνλabc ,

(4.4)

where Hµνab, Hµν , Hab, H are all hermitian, and from (2.8), Z−
µνλabc is anti-self-dual for

each so(2, 4) and so(6) indices,

Z−
µνλabc = −i16ǫµνλ

κστZ−
κστabc = −i16ǫabc

defZ−
µνλdef . (4.5)

Physically, Hµνab, Zµa, Z
−
µνλabc correspond to the D3, F1/D1, D5/NS5 branes. A simple

way to see this is to begin with a single probe brane orthogonally intersecting with a stack

of D3 branes in flat space and to take the ‘near horizon limit’ for the D3 branes in the

sense of Maldacena’s original approach to the AdS/CFT correspondence [28]. The brane

configurations preserve eight supercharges in flat space, which is enhanced to sixteen in the

AdS limit, as they have four Neumann-Dirichlet directions for the D-branes (NS branes

are related by S-duality). More specifically, a brane charge with p indices for so(2, 4)

and q indices for so(6) corresponds to the (p + q − 1) brane wrapping an AdSp+1 × Sq−1

subspace maximally embedded in AdS5×S5 [15]. This result implies that there is no brane

configuration corresponding to Hµν , Hab, H charges.
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The brane analysis also agrees with the field theory result obtained by Osborn [4] who

showed that there appears no Hµν , Hab, H terms in the expression of the anti-commutator

between the two ordinary supercharges. This indicates that, at least, some components

of Hµν ,Hab are identically vanishing in the extended superalgebra. Then the covariance

under the so(2, 4) ⊕ so(6) rotation makes sure that all of them are indeed absent. Hence

we conclude

Hµν = 0 , Hab = 0 , H = 0 , Hαα̇
ββ̇

= Hαα̇
ββ̇

. (4.6)

As noted by Peeters and Zamaklar [1], due to the Jacobi identity involving Q, Q̄

and a brane charge, the commutators between the brane charges and supercharges should

not vanish, e.g. [Hµνab , Qαα̇] 6= 0 if Hµνab 6= 0. Naturally this leads to a noncentral

extension of the superalgebra, su(2, 2|4). In the rest of the present paper, we study the

noncentral extension in a group theoretical manner, rather than pursuing the Witten-Olive

type analysis on the four dimensional N = 4 super Yang-Mills theory.

4.1 Generic features of the extended superalgebra

In our terminology, brane charges are, by definition, the space integrals of the total deriva-

tive terms or the surface integrals. In particular, they are not symmetry generators of

the corresponding field theory, and hence they are not forbidden by the Coleman-Mandula

theorem [10]. Some immediate important consequences are as follows. Firstly the super-

commutator involving a brane charge is also a brane charge, since whatever comes

out should remain as a surface integral. Furthermore, all the brane charges super-

commute with each other, since one can take the two radii of the spatial infinite spheres,

S 2, to be finitely different so that the two surfaces have no contact point.7 As a result all

the bosonic brane charges can be diagonalized simultaneously and provide good quantum

numbers. Schematically we have8

[OA , OB} = cAB
COC + dAB

IBI ,

[BI , BJ} = 0 ,

[OA , BI} = fAI
JBJ ,

(4.7)

where OA denotes the old generators in the unextended superalgebra, su(2, 2|4), with the

structure constant, cAB
C , while BI corresponds to the brane charges.

For consistency, it is necessary and sufficient to require the extended superalgebra to

satisfy the Jacobi identity, as the structure constants which are ordinary c-numbers will

then realize a representation or the adjoint representation. In our case, the Jacobi identities

7One exceptional case is the square of a fermionic brane charge, which diverges in general. Either we

can take again two different radii at spatial infinities and set it vanish as a kind of regularization scheme,

or leave them undetermined. In any case, our main results are not affected by this subtlety.
8The super-commutator is defined to be [OA , OB} = OAOB − (−1)#A#BOBOA, where #A is zero or

one depending whether OA is bosonic or fermionic.
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involving more than one brane charges are trivial so that there exist essentially two types

of Jacobi identities to consider :

[OA , [OB , BI}} − (−1)#A#B [OB , [OA , BI}} = [[OA ,OB} , BI} , (4.8)

[OA , [OB ,OC}} − (−1)#A#B [OB , [OA ,OC}} = [[OA ,OB} ,OC} . (4.9)

The first identity clearly shows that the brane charges form a representation realized

by the adjoint actions of the generators in the original unextended superalge-

bra, while the second one indicates that the adjoint representation is subject to

some constraints. In particular, the dimension of the adjoint representation is finite,

meaning that there are only finitely many brane charges.

Requiring that the brane charges transform covariantly for the su(2, 2) ⊕ su(4) gener-

ators, as described in subsection (3.3), any Jacobi identity involving the su(2, 2) ⊕ su(4)

generators holds automatically. Therefore the only nontrivial constraints come from Jacobi

identities containing either three Q’s or two Q’s and one Q̄,

[Qαα̇ , Zββ̇γγ̇
] + [Q

ββ̇
,Zγγ̇αα̇] + [Qγγ̇ , Zαα̇ββ̇

] ≡ Ψ
αβγα̇β̇γ̇

= 0 , (4.10)

[Qαα̇ , H
γγ̇

ββ̇
] + [Q

ββ̇
, Hγγ̇

αα̇] + [Q̄γγ̇ , Z
αα̇ββ̇

] = 0 . (4.11)

To obtain the extended superalgebra, one needs to look for adjoint representations of the

original unextended superalgebra such that it contains Z
αα̇ββ̇

, Hαα̇
ββ̇

and satisfies the

constraints above. However, this group theoretically well defined problem does not lead

to a unique solution, essentially because the relevant superlowest weights are not specified

yet, and due to the nonunitary property of the adjoint representation, the states which

can decouple may not decouple. In fact, we expect the “correctly” extended superalgebra,

which can be in principle uniquely obtained from the Witten-Olive type analysis on the

N = 4 super Yang-Mills theory, leads to a reducible adjoint representation for the brane

charges, containing more than one irreducible supermultiplets. The physical reason is that

the D1, D3, D5 branes should be able to exist separately, not necessarily weaved by one

another.

The filtering of the reducible representation into each irreducible one can be done by

restricting the full Hilbert space of the Yang-Mills theory in a suitable way, and this will

enable us to obtain the physically relevant noncentral extensions.

Firstly we raise the question, ‘what is the relevance of the strictly unextended superal-

gebra, su(2, 2|4), to the Yang-Mills theory, if the “correct” superalgebra of the theory is an

extended one not the unextended one?’ The answer is simple. Consider a subspace of the

full Hilbert space which is annihilated by all the brane charges. Clearly such a subspace

forms an invariant subspace for the extended superalgebra, and on the subspace the brane

charges have the trivial representations. In other words, the unextended superalgebra is

only for the elementary particles in the theory not for the branes, as one can naturally

expect.
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Now we consider a less restricted subspace of the full Hilbert space. Namely, we focus

on the subspace, V , which satisfies the following two properties. First it is annihilated

by the D3 brane charges, Hµνab, and second it is invariant under the action of all the

supercharges,

HµνabV = 0 , Qαα̇V ⊂ V , Q̄αα̇V ⊂ V . (4.12)

It follows that V is in fact an invariant subspace for the fully extended superalgebra, since

all other generators can be constructed from the supercharges. Furthermore, we get

[Qαα̇ , H
γγ̇

ββ̇]V = 0 . (4.13)

Clearly on the subspace, V , the representations of Hαα̇
ββ̇ and [Qαα̇ , H

γγ̇
ββ̇] are trivial,

and Eq.(4.11) gets simplified to show that Z
αα̇ββ̇

forms the ground floors of the adjoint

representations we are looking for,

[ Q̄γγ̇ , Z
αα̇ββ̇

] = 0 . (4.14)

Moreover, as it decomposes into (6, 6) and (10, 10), there exist two superlowest weights,

and hence two irreducible adjoint representations. They can be treated separately, and we

only need to impose the remaining constraint, Ψ
αβγα̇β̇γ̇

= 0, (4.10).

Direct calculation, using (4.1) and (4.14) only, shows that

{ Q̄κκ̇,Ψ
αβγα̇β̇γ̇

} = 0 , identically . (4.15)

Surely this is a necessary condition for the consistent decoupling of Ψαβγα̇β̇γ̇ in the adjoint

representation.

4.2 Electro-magnetic extension

The aim of the present subsection is to obtain the noncentral extension of the superalgebra,

su(2, 2|4), which contains the F1/D1 or the electro-magnetic charge, Zµa, in the anti-

commutator of the supercharges,

{Qαα̇ , Qββ̇} = 1
4ǫαβγδǫα̇β̇γ̇δ̇B

γδγ̇δ̇ , {Q̄αα̇, Qββ̇} = 4δα̇
β̇
T(2,2)

α
β − 4δαβTsu(4)

α̇
β̇ , (4.16)

where, for the later convenience, we have raised the spinor indices of the electro-magnetic

charge by the totally anti-symmetric four form tensors,

Bαβα̇β̇ = 1
4ǫ

αβγδǫα̇β̇γ̇δ̇Z(6,6)

γδγ̇δ̇
= (ρ̄µ)αβ(ρ̄a)α̇β̇Zµa . (4.17)

As the brane charge, Bαβα̇β̇, can not be central, the superalgebra, su(2, 2|4), gets a noncen-

tral extension inevitably. The extension will be uniquely determined, and the corresponding

extended superalgebra can be regarded as the superalgebra of the N = 4 super Yang-Mills

theory restricted on the ‘D3, D5 free’ Hilbert space or Hαα̇
ββ̇

≡ 0, Z(10,10)

αβα̇β̇
≡ 0.
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From the decomposition of the tensor product,

(4, 4) ⊗ (6, 6) = (20, 20) ⊕ (4̄, 20)⊕ (20, 4̄)⊕ (4̄, 4̄) , (4.18)

we write, for the first floor of the adjoint representation,

[Qαα̇, B
βγβ̇γ̇ ] = Nαα̇

βγβ̇γ̇ + 1
9δ

β
α δ

β̇
α̇N

γγ̇ − 1
9δ

β
α δ

γ̇
α̇N

γβ̇ − 1
9δ

γ
α δ

β̇
α̇N

βγ̇ + 1
9δ

γ
α δ

γ̇
α̇N

ββ̇

−1
3δ

β
αBγ

α̇
β̇γ̇ + 1

3δ
γ
αBβ

α̇
β̇γ̇ − 1

3δ
β̇
α̇B

βγγ̇
α + 1

3δ
γ̇
α̇B

βγβ̇
α ,

(4.19)

where each tensor belongs to different su(2, 2) ⊕ su(4) irreducible representation as they

are traceless and anti-symmetric,

Nαα̇
αγβ̇γ̇ = 0 , Nαα̇

βγβ̇γ̇ = Nαα̇
[βγ][β̇γ̇] , : (20, 20) ,

Bγ
α̇
α̇γ̇ = 0 , Bγ

α̇
β̇γ̇ = Bγ

α̇
[β̇γ̇] , : (4̄, 20) ,

Bαγγ̇
α = 0 , Bβγγ̇

α = B[βγ]γ̇
α , : (20, 4̄) .

(4.20)

In terms of the decomposition, the six form tensor reads

Ψ
αβγα̇β̇γ̇

= 1
4ǫαβρεǫα̇β̇ρ̇ε̇Nγγ̇

ρερ̇ε̇+1
4ǫβγρεǫβ̇γ̇ρ̇ε̇Nαα̇

ρερ̇ε̇+1
4ǫγαρεǫγ̇α̇ρ̇ε̇Nββ̇

ρερ̇ε̇+1
3ǫαβγεǫα̇β̇γ̇ε̇N

εε̇ .

(4.21)

In particular,

Nαα̇ = 1
12ǫ

αβγδǫα̇β̇γ̇δ̇Ψβγδβ̇γ̇δ̇ . (4.22)

Hence the constraint, Ψ ≡ 0, is equivalent to

Nαα̇
βγβ̇γ̇ ≡ 0 , Nαα̇ ≡ 0 , (4.23)

which imply only the (4̄, 20) and (20, 4̄) tensors survive and others decouple.

Consequently the commutation relation for the first floor, (4.19), becomes simplified,

and other higher floors can be constructed recurrently. It turns out that the construction

terminates on the fourth floor, and the resulting adjoint representation is of the following

unique form,
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(10, 10)

B
α̇β̇αβ

� �

(36, 4)

Bα
α̇βγ

(4, 36)

B
α̇β̇

γ̇
α

� � � �

(45, 1)

Bαβ
γδ

(15, 15)

Bα
β̇
α̇
β

(1, 45)

B
α̇β̇

γ̇δ̇

� � � �

(20, 4̄)

Bαβα̇
γ

(4̄, 20)

Bα
α̇
β̇γ̇

� �

(6, 6)

Bαβα̇β̇

where the diagonal lines link the two neighboring su(2, 2) ⊕ su(4) multiplets which are

connected by the supercharges. The complex dimension of the supermultiplet is 899. Below

we explicitly present all the super-commutation relations of the extended superalgebra,

[Qκκ̇, B
αβα̇β̇] = −1

3δ
α
κ B

β
κ̇
α̇β̇ + 1

3δ
β
κ Bα

κ̇
α̇β̇ − 1

3δ
α̇
κ̇ B

αββ̇
κ +

1
3δ

β̇
κ̇ B

αβα̇
κ ,

{Qκκ̇, B
α
α̇
β̇γ̇} = 3

8δ
β̇
κ̇ B

α
α̇
γ̇
κ −

3
8δ

γ̇
κ̇B

α
α̇
β̇
κ −

1
8δ

β̇
α̇B

α
κ̇
γ̇
κ +

1
8δ

γ̇
α̇B

α
κ̇
β̇
κ +

1
4δ

α
κ Bκ̇α̇

β̇γ̇ ,

{Qκκ̇, B
αβα̇

γ} = −3
8δ

α
κ B

β
κ̇
α̇
γ +

3
8δ

β
κ Bα

κ̇
α̇
γ +

1
8δ

α
γ B

β
κ̇
α̇
κ −

1
8δ

β
γ Bα

κ̇
α̇
κ +

1
4δ

α̇
κ̇ B

αβ
γκ ,

[Qκκ̇, B
α
β̇
α̇
β] =

4
15δ

α
κ Bκ̇β̇

α̇
β − 1

15δ
α
β Bκ̇β̇

α̇
κ −

4
15δ

α̇
κ̇ B

α
β̇κβ + 1

15δ
α̇
β̇
Bα

κ̇κβ ,

[Qκκ̇, Bα̇β̇
γ̇δ̇]= 2

5δ
δ̇
κ̇Bα̇β̇

γ̇
κ−

2
5δ

γ̇
κ̇Bα̇β̇

δ̇
κ+

1
10δ

γ̇
α̇Bκ̇β̇

δ̇
κ+

1
10δ

γ̇

β̇
Bκ̇α̇

δ̇
κ−

1
10δ

δ̇
α̇Bκ̇β̇

γ̇
κ−

1
10δ

δ̇
β̇
Bκ̇α̇

γ̇
κ,

[Qκκ̇, B
αβ

γδ] = −2
5δ

α
κ B

β
κ̇γδ +

2
5δ

β
κ Bα

κ̇γδ +
1
10δ

α
γ Bβ

κ̇δκ + 1
10δ

α
δ B

β
κ̇γκ −

1
10δ

β
γ Bα

κ̇δκ − 1
10δ

β
δ B

α
κ̇γκ ,

{Qκκ̇, B
α
α̇βγ} = 5

18δ
α
κ Bκ̇α̇βγ −

1
18δ

α
β Bκ̇α̇κγ −

1
18δ

α
γ Bκ̇α̇κβ ,

{Qκκ̇, Bα̇β̇
γ̇
α} = 5

18δ
γ̇
κ̇Bα̇β̇κα

− 1
18δ

γ̇
α̇Bκ̇β̇κα

− 1
18δ

γ̇

β̇
Bκ̇α̇κα ,

[Qκκ̇, Bα̇β̇αβ
] = 0 .

(4.24)

All the brane charges are traceless, anti-symmetric for the upper indices, and symmetric

for the lower indices if they belong to the same species. The statistics of the brane charges

depends whether the number of the upper indices is even or odd. Furthermore, the upper

index can be lowered and converted to the different species using the positive supercharges,
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Qαα̇, from right to left. For example,

[Qγε̇ , B
αβα̇ε̇] = Bαβα̇

γ = B[αβ]α̇
γ , [Qεγ̇ , B

αεα̇β̇] = Bα
γ̇
α̇β̇ = Bα

γ̇
[α̇β̇] ,

{Q
εβ̇

, Bαεα̇
β} = Bα

β̇
α̇
β , {Qεα̇ , B

ε
β̇
γ̇δ̇} = B

α̇β̇
γ̇δ̇ = B(α̇β̇)

[γ̇δ̇] ,

{Qγε̇ , B
αβε̇

δ} = Bαβ
γδ = B[αβ]

(γδ) , [Qεα̇ , B
αε

βγ ] = Bα
α̇βγ = Bα

α̇(βγ) ,

[Qεα̇ , B
ε
β̇
γ̇
α] = Bα̇β̇

γ̇
α = B(α̇β̇)

γ̇
α , {Qεα̇ , B

ε
β̇αβ} = Bα̇β̇αβ = B(α̇β̇)(αβ) .

(4.25)

Note that the tracelessness follows from (4.23).

The super-commutators between the negative supercharges and the brane charges can

be also obtained recurrently, floor by floor, using the above expressions for the brane charges

and the superalgebra itself, (4.16). They are

[Q̄κκ̇, B
α̇β̇αβ

] = 72
5 δ

κ
αBα̇β̇

κ̇
β + 72

5 δ
κ
βBα̇β̇

κ̇
α − 72

5 δ
κ̇
α̇B

κ
β̇αβ

− 72
5 δ

κ̇
β̇
Bκ

α̇αβ ,

{Q̄κκ̇, Bα
α̇βγ} = 10δκ̇α̇B

κα
βγ − 15δκβB

α
α̇
κ̇
γ − 15δκγB

α
α̇
κ̇
β + 3δαβB

κ
α̇
κ̇
γ + 3δαγB

κ
α̇
κ̇
β ,

{Q̄κκ̇, B
α̇β̇

γ̇
α} = 10δκαBα̇β̇

γ̇κ̇ − 15δκ̇α̇B
κ
β̇
γ̇
α − 15δκ̇

β̇
Bκ

α̇
γ̇
α + 3δγ̇α̇B

κ
β̇
κ̇
α + 3δγ̇

β̇
Bκ

α̇
κ̇
α ,

[Q̄κκ̇, Bα
β̇
α̇
β] = −32

3 δ
κ̇
β̇
Bακα̇

β − 32
3 δ

κ
βB

α
β̇
α̇κ̇ + 8

3δ
α̇
β̇
Bακκ̇

β + 8
3δ

α
βB

κ
β̇
α̇κ̇ ,

[Q̄κκ̇, B
α̇β̇

γ̇δ̇]=−16δκ̇α̇B
κ
β̇
γ̇δ̇ −16δκ̇

β̇
Bκ

α̇
γ̇δ̇ −4δγ̇α̇B

κ
β̇
δ̇κ̇ −4δγ̇

β̇
Bκ

α̇
δ̇κ̇+ 4δδ̇α̇B

κ
β̇
γ̇κ̇+ 4δδ̇

β̇
Bκ

α̇
γ̇κ̇ ,

[Q̄κκ̇, Bαβ
γδ] = 16δκγB

αβκ̇
δ + 16δκδB

αβκ̇
γ − 4δαγB

κβκ̇
δ − 4δαδB

κβκ̇
γ + 4δβγBκακ̇

δ + 4δβδB
κακ̇

γ ,

{Q̄κκ̇, Bα
γ̇
α̇β̇} = −12δκ̇γ̇B

ακα̇β̇ − 4δα̇γ̇B
ακβ̇κ̇ + 4δβ̇γ̇B

ακα̇κ̇ ,

{Q̄κκ̇, Bαβα̇
γ} = 12δκγB

αβα̇κ̇ + 4δαγB
βκα̇κ̇ − 4δβγBακα̇κ̇ ,

[Q̄κκ̇, Bαβα̇β̇] = 0 .

(4.26)

Note that the D1 brane charge, Zµa, as well as the top floor brane charge, B
α̇β̇αβ

, are

annihilated by eight real supercharges, which shows that the adjoint supermultiplet formed

by the brane charges is “8/32 BPS multiplet”.
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5. Comments

5.1 Translation to the N = 4 superalgebra in four dimensions

In terms of the twelve dimensional conventions introduced in Section 2, the fully extended

AdS5 × S5 superalgebra, (4.1), reads

{Q, Q̄} = P13

[

iΓµνMµν − iΓabMab +
1
4Γ

µνabΓ(7)Hµνab + P7Γ
µaZµa − ΓµaP7Zµa

†

+ 1
144P7Γ

µνλabcZ−
µνλabc −

1
144Γ

µνλabcP7Z
−
µνλabc

†
]

P13 ,

(5.1)

where Γ(7) = iΓ123456 and P7 =
1
2 (1 + Γ(7)).

In order to translate our results to the four dimensional language, we need to write

all the higher dimensional objects in terms of the four dimensional conventions. For the

gamma matrices we refer (A.1) in Appendix. For the so(2, 4) generators we decompose

them into the four dimensional Lorentz generators, M̂mn, momenta, Pm, special conformal

transformation generators, Km and Dilation, D, with m,n = 0, 1, 2, 3,

M̂mn = M2+m 2+n , Pm = −M1m+2 +Mm+26 , Km = M1m+2 +Mm+2 6 , D = M1 6 .

(5.2)

The twelve dimensional Majorana-Weyl supercharge, Q, consists of the four dimensional

ordinary supercharges, q, q̄ = q†, and the conformal supercharges, s, s̄ = s†. As they have

the opposite mass dimensions, each of them can be singled out by the projection operator,
1
2 (1∓ Γ16). In our choice of the gamma matrices (A.1), Q1α̇, Q2α̇, Q̄

3α̇, Q̄4α̇ correspond to

the ordinary supercharges so that

Qαα̇ = ( q1α̇ , q2α̇ , −is̄1α̇ , −is̄2α̇ )
t , Q̄αα̇ = ( s1α̇ , s2α̇ , iq̄1

α̇ , iq̄2
α̇ ) . (5.3)

Provided the above dictionary, our extended AdS5 × S5 superalgebra, (4.16), (4.24),

(4.26), leads to a noncentral extension of the four dimensional N = 4 superconformal

algebra.9

5.2 On super Yang-Mills theory and more

In the standard approach to the N = 4 super Yang-Mills theory, different vacuum ex-

pectation values (vev) of the Higgs correspond to the different theory. Especially for the

nonzero values, the conformal symmetry is spontaneously broken, and the Hilbert space

parameterized by the Higgs vevs is not invariant under the conformal generators.10 The

truncation of our extended su(2, 2|4) superalgebra to an extended four dimensional N = 4

super Poincaré algebra can be achieved by the projection operator, 1
2(1 − Γ16). Essen-

tially the extended super Poincaré algebra reads, in terms of the ten dimensional gamma

9Our conventions have been chosen to agree with [19] for the unextended sector.
10Strictly speaking, this is for the super-Yang-Mills theory on R3,1. For the theories on compact spaces,

one should integrate over different vevs of the Higgs due to the normalizability of the zero modes.
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matrices, (A.5), and Majorana-Weyl supercharge, (A.9),

{Q̂,
¯̂
Q} = 2P+

[

Γ̂mPm + 1
2 Γ̂(5)Γ̂

mabHmab + Γ̂aT e
a + Γ̂(5)Γ̂

aT g
a

+ 1
24 Γ̂

mnabc T e−
mnabc +

1
24 Γ̂(5)Γ̂

mnabc T g−
mnabc

]

P− ,

(5.4)

where
¯̂
Q = Q̂†Γ̂0, P± = 1

2 (1± Γ̂(11)), Γ̂(5) = Γ̂0123, and all the brane charges are real having

the origin,

Z1a + Z6a = 2(T g
a − iT e

a ) , Z−
1m+2n+2 abc = 2(T g−

mnabc − iT e−
mnabc) ,

Hmab =
1
2 (H1m+2 ab +H6m+2 ab) .

(5.5)

In particular, Osborn identified T g
a and T e

a as the electric11 and magnetic charges

by investigating the supersymmetry transformation of the super-current in N = 4 super

Yang-Mills theory [4]

T g
a =

∫

d~S·tr( ~BΦa) , T e
a =

∫

d~S·tr( ~EΦa) . (5.6)

Straightforward manipulation can show that the ordinary supersymmetry transformation

of the electro-magnetic charges do not vanish even at the on-shell level.12 Our results,

(4.24) and (4.26), also confirm this, since the brane charges on the ground floor of the ad-

joint supermultiplet are annihilated by eight real supercharges out of 32. Surprisingly this

means the noncentral property of the electro-magnetic charge, in contrast to the conven-

tional wisdom due to the Haag-Lopuszanski-Sohnius theorem [9]. The original argument

for the electro-magnetic charge to be central is based on the Coleman-Mandula theorem [10]

on all the possible symmetry generators in the quantum field theories. The point for the

brane charges we discuss in the paper is that they are not symmetry generators nor Noether

charges. Rather, they are topological living at the spatial infinity only, and hence free from

the constraint by the Haag-Lopuszanski-Sohnius theorem.

Nevertheless, for the ordinary supersymmetric monopole configurations, our new brane

charges, at least for those coming from the ordinary supercharges, annihilate the corre-

sponding quantum states as follows. Although the classical monopole or solitons are given

by the bosonic configurations only, at the quantum level the fermions act nontrivially on

the quantum states essentially to respect the second quantization of them. In other words,

there is no quantum state which is annihilated by all the fermions, and one should always

keep in mind the fermions. Now for the supersymmetric monopoles, the fermionic zero

modes are given by the broken ordinary supersymmetry transformations of the gauginos,

11This electric charge should not be confused as the gauge symmetry Noether charge. The latter is given

by the Gauss’ law or the equation of motion for A0.
12Even Eq.(4.14) does not hold in general. This seems to imply that the expression of Zµa further de-

composes into several sectors which belong to different irreducible representations corresponding to various

configurations, (D1, D3), (D1, D3, D5), (D1, D3, D3), etc.
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λ ∼ FABΓ̂
ABε. The expressions for the new brane charges coming from the ordinary su-

percharges contain the gauginos, the field strengths, and the derivatives of the Higgs, but

not the Higgs itself, so that, from the asymptotic behavior, one can expect that the corre-

sponding new brane charges annihilate the monopole states.

It will be very interesting to find out novel configurations which have nontrivial realiza-

tion of the new brane charges, either on the super Yang-Mills side or on the supergravity

side. In the former case, the full expressions for the brane charges coming from all the

ordinary as well as the conformal supercharges are desirable, which deserves a separate

analysis. Certainly, nonvanishing vevs of any brane charge imply the dynamical breaking

of supersymmetry [29]. Another thing to be done is to classify the representations of the

extended AdS superalgebra as in [30, 31]. More detailed study of the extended superalge-

bra may shed light on the nonperturbative aspects of the string/M-theory on the AdS5×S5

background.
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A. Decomposition of the gamma matrices for lower dimensions

A.1 For the four dimensional N = 4 superconformal algebra

In order to translate our results to the four dimensional language, we need to write all the

higher dimensional objects in terms of the four dimensional conventions. First we let the

six dimensional gamma matrices satisfying (2.3) and (2.5) be

ρ1 =

(

0 +1

+1 0

)

, ρm+2 =

(

σm 0

0 σ̄m

)

, ρ6 =

(

0 −1

+1 0

)

,

ρ̄1 =

(

0 −1

−1 0

)

, ρ̄m+2 =

(

σ̄m 0

0 σm

)

, ρ̄6 =

(

0 +1

−1 0

)

,

(A.1)

where the 2 × 2 matrices, σm = (+1, ~τ ), σ̄m = (−1, ~τ ), m = 0, 1, 2, 3, satisfy the Clifford

algebra of the four dimensional spacetime on which the super Yang-Mills exists,

σmσ̄n + σnσ̄m = 2η̂mn , η̂ = diag(−+++) . (A.2)

The four dimensional gamma matrices are then

γ̂m =

(

0 σm
σ̄m 0

)

= B4
−1(γ̂m)∗B4 , B4 =

(

0 ǫ

ǫ−1 0

)

, (A.3)

where ǫ is the usual 2× 2 anti-symmetric matrix satisfying σt
m = σ∗

m = ǫσ̄mǫ, ǫ12 = 1.

The above ρµ matrices are not anti-symmetric, and to make them so one needs to take

some transformations such as

ρµ →

(

0 ǫ

ǫ−1 0

)

ρµ → U

(

0 ǫ

ǫ−1 0

)

ρµU
t , U = 1√

2

(

τ1 −iτ1
τ1 iτ1

)

. (A.4)

The first transformation makes ρµ’s anti-symmetric, while the next similarity transforma-

tion involving the unitary matrix, U , further ensures that the representation of the Cartan

subalgebra is diagonal, exactly as (3.7).
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A.2 For the four dimensional super Poincaré algebra

For the truncation of our extended AdS5×S5 superalgebra to an extended super Poincaré

algebra in four dimensions, we write the twelve dimensional gamma matrices in terms of

the ten dimensional ones, Γ̂A, A = m,a,

Γ1 = ǫ⊗ 1 , Γ6 = τ1 ⊗ 1 ,

Γm+2 = τ3 ⊗ Γ̂m , Γa = τ3 ⊗ Γ̂a .

(A.5)

Further the 10D gamma matrices decompose into the 4D and 6D ones,

Γ̂m = γ̂m ⊗ γ(7) , Γ̂a = 1⊗ γa , (A.6)

satisfying

(Γ̂M̂ )∗ = −B10Γ̂
M̂B10

−1 , B10 = B4 ⊗B6 , B6 =

(

0 1

1 0

)

. (A.7)

10D chirality matrix reads

Γ̂(11) =

(

1 0

0 −1

)

⊗ γ(7) . (A.8)

Majorana-Weyl supercharge carries the 4D and 6D chiral indices of the same chirality,

Q̂ = Γ̂(11)Q̂ = B−1Q̂∗ =
(

q1α̇ , q2α̇ , (ǫ
−1q̄t)1α̇ , (ǫ−1q̄t)2α̇

)t
. (A.9)
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