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Abstract

We investigate the construction of the quantum commuting hamiltonians for the
Gaudin integrable model. We prove that [TrLk(z), T rLm(u)] = 0, for k,m < 4. However
this naive receipt of quantization of classically commuting hamiltonians fails in general,
for example we prove that [TrL4(z), T rL2(u)] 6= 0. We investigate in details the case of
the one spin Gaudin model with the magnetic field also known as the model obtained
by the ”argument shift method”. Mathematically speaking this method gives maximal
Poisson commutative subalgebras in the symmetric algebra S(gl(N)). We show that such
subalgebras can be lifted to U(gl(N)), simply considering TrL(z)k, k ≤ N for N < 5.
For N = 6 this method fails: [TrLMF (z)

6, LMF (u)
3] 6= 0. All the proofs are based on the

explicit calculations using r-matrix technique. We also propose the general receipt to find
the commutation formula for powers of Lax operator. For small power exponents we find
the complete commutation relations between powers of Lax operators.
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1 Introduction

This paper is devoted to the investigation of rational Lax operators of Gaudin type on
quantum the level. The Gaudin model was introduced by Gaudin in [1] (see section 13.2.2)
as a limit of the famous XXX-Heisenberg model, which describes interaction of spins in
one dimensional chain. It appears to be that Gaudin model related to various fields of
research in mathematics and mathematical physics: Knizhnik-Zamolodchikov equation [2]
and isomonodromy deformation theory (see [3]); Hitchin system [4] (see [5], also [6, 7]);
Langlands correspondence (see [8]); geometry of polygons (see [9, 10]). Also it seems to
be not so widely known that integrable systems obtained by argument shift method [11],
are the most simplest particular (one spin) cases of Gaudin model, more precisely one
should add to the Gaudin Lax operator constant matrix, (physically this means turning
on the magnetic field).

But despite lots of results concerning the Gaudin model it seems that some simple ques-
tions remain still open. One of such questions is explicit construction of higher Gaudin’s
hamiltonians on the quantum level. On the classical level the Gaudin hamiltonians can be
obtained as values at different z of TrLk(z), where L(z) is the Lax operator (see below).
They are not independent but the it can be chosen a basis in this family of functions
composed by coefficients of expansions at poles. We investigate the question whether the
same construction on the quantum level gives commuting hamiltonians, we prove that
[TrLk(z), T rLm(u)] = 0 for k ≤ 3, m ≤ 3, ∀z, u, but [TrL4(z), T rL2(u)] 6= 0. So by con-
siderations of TrLk(z) one can find enough commuting hamiltonians for gl(2), gl(3), but
not for the higher rank. We also find some general formulas for the commutation between
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matrix elements of powers (Lk(z))i,j . The special case of the one spin Gaudin model
(equivalent to the model constructed by the argument shift method) is more optimistic,
we obtain: [TrLk(z), T rL2(u)] = 0 for ∀k, z, u, [TrLk(z), T rL3(u)] = 0 for k ≤ 5∀z, u,
but [TrL6(z), T rL3(u)] 6= 0, which means that in this particular case one is also unable
to quantize the Poisson commuting subalgebra by considering the TrLk(z), starting from
gl(6).

Let us mention that the problem of lift of Poisson commutative subalgebra generated
by the argument shift method has been investigated before: in [12] the method of quanti-
zation was proposed on the basis of Yangian technique, another receipt was proposed in
[13], and it’s also worth to mention that in [14] the Vinberg’s conjecture (see [15]) that
the symmetrization map from S(gl(n)) → U(gl(n)) provides the necessary quantization
was proved. Despite all these results it seems that the solution of the problem is not in
the stage as one can hope: one can hope for some simple formula like TrLk(z) or some
modification of it for the quantization of such subalgebras.

The same can be said about the Gaudin model: in [8, 16, 17] it was shown that the
Gaudin hamiltonians can be obtained from the center on the critical level of the universal
enveloping of the corresponding Kac-Moody algebra. It was proved in [16] that the center
on the critical level is big enough, but there is no explicit construction of the center. On
the other hand one can try to obtain the higher Gaudin hamiltonians from the known
commuting hamiltonians of the XXX-Heisenberg spin chain.

Let us present the result of our paper in more explicit way. Let us recall some notations
first: let us denote by Φ the following n × n-matrix with coefficients in gl(n): we put
element eij on ij-th place of the matrix. We also consider the direct sum gl(n)⊕ ...⊕gl(n)
and denote by Φi the matrix defined as above but with the elements from the i-th copy
of gl(n) in gl(n)⊕ ...⊕ gl(n). Let us introduce the Lax operator for the Gaudin model:

L(z) = K +
∑

i=1...N

Φi

z − ai
(1)

where ai ∈ C,Φi...., K arbitrary constant matrix, (physically K corresponds to a magnetic
field.)

TrL2(z) =
∑

i

TrΦ2
i

(z − ai)2
+
∑

k

1

z − ak
(TrKΦk +

∑

j 6=k

2TrΦkΦj

(ak − aj)
) (2)

Hk = TrKΦk +
∑

j 6=k

2TrΦkΦj

(ak − aj)
∈ U(gl(n))⊗ ...⊗ U(gl(n)) (3)

- are called quadratic Gaudin Hamiltonians

It’s known that [TrL2(u), T rL2(z)] = 0 and so that [Hk, Hj] = 0. The Gaudin model
on quantum level consists of taking some representation V1⊗ ...⊗VN of gl(n)⊕ ...⊕ gl(n)
and asking for the spectrum of such operators, their matrix elements etc.

On the classical level one uses the symbol map symb : U(gl(n)) → S(gl(n)) and so the
images of Hi are functions on the gl(n)∗⊕ ...⊕gl(n)∗ so one can restrict them to the orbits
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O1× ...×ON , and so one obtains the phase space O1× ...×ON with Kirillov’s symplectic
form and functions symb(Hi) each of which can be taken as hamiltonian, so the classical
hamiltonian systems is described. It’s known that it is completely integrable: one can take
coefficients at (z − ai)

−m of symb(TrLk(z)) as hamiltonians which will Poisson commute
and (at least for the general choice of orbits, it seems that the question of considering
different non-general orbits has not been analyzed carefully) this will give the number of
independent hamiltonians equal to the half of the dimension of the phase space which
means the complete integrability in the Liouville sense.

The fact that Tr(Lk(z)) and Tr(Ll(u)) commute with each other for any z, u, k, l with
respect to the Poisson bracket can be proved by the r-matrix technique on the basis of
commutation relation between (Lk(z))kl, (L

l(u))qp. Leningrad’s notation seems to be very

useful for such calculation: we denote by T
1
= T⊗Id, T

2
= Id⊗T . So [A

1
, B

2
]ij,kl = [aij , bkl],

hence the commutation relation between A
1
and B

2
encodes all the commutation relations

between all aij and bkl. Matrix P is defined by the rule: P (a⊗ b) = b⊗ a.
Our first results are the following formulas for the commutation relation between

powers of Lax operator L(z) :

[L
1
n(z), L

2
(u)] = L

2
n(z)

P

z − u
− L

1
n(z)

P

z − u
+

n−1
∑

i=0

L
1
i(z)(L

1
(u)− L

2
(u))L

2
n−1−i(z)

P

z − u
(4)

[L
1
n(z), L

2
2(u)] = (L

1
(u) + L

2
(u))L

2
n(z)

P

z − u
− L

1
n(z)(L

1
(u) + L

2
(u))

P

z − u
+

+
n−1
∑

i=0

L
1
i(z)(L

1
2(u)− L

2
2(u))L

2
n−1−i(z)

P

z − u
(5)

[L
1
n(z), L

2
3(u)] =

n−1
∑

i=0

L
1
i(z)(L

1
3(u)− L

2
3(u))L

2
n−1−i(z)

P

z − u
+

+(L
1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))L

2
n(z)

P

z − u

−L
1
n(z)(L

1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))

P

z − u
+

+[
∂

∂u
L
1
(u) +

L
1
(u)

z − u
, L
1
n(z)]

1

z − u
(6)
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[L
1
n(z), L

2
m(u)] =

n−1
∑

i=0

L
1
i(z)(L

1
m(u)− L

2
m(u))L

2
n−1−i(z)

P

z − u
+

+(

m−1
∑

i=0

L
1
i(u)L

2
m−1−i(u))L

2
n(z)

P

z − u
−

−L
1
n(z)(

m−1
∑

i=0

L
1
i(u)L

2
m−1−i(u))

P

z − u
+

+ terms of lower degree (7)

Remark 1 Let us emphasize the importance of such formulas. The special kind of
normal ordering adapted to calculation of traces is realized therein. Indeed, in the

right hand side we see the sums of terms of the type A
1

1A
1

2...A
1

nB
2

1B
2

2...B
2

lP , and

there are no terms of the type: TrA
1
B
2
C
1
D
2
E
1
P . We need such formulas because our

main aim is to investigate the commutators of the form [TrLk(z), T rLp(u)] which can

be represented by the formula: [TrA, TrB] = Tr[A
1
, B

2
]. And it is easy to see that

TrA
1

1A
1

2...A
1

nB
2

1B
2

2...B
2

lP = Tr(A1A2...AnB1B2...Bl), but there is no simple formula for

the expression like TrA
1
B
2
C
1
D
2
E
1
.

On the basis of the formulas above we are able to obtain the following results on the
commutativity of traces:

[TrLk(z), T rLl(u)] = 0 for k ≤ 3, l ≤ 3∀z, u (8)

[TrL4(z), T rL2(u)] 6= 0 (9)

Tr[Lk(z), Ll(u)] = 0 for k ≤ 3, l ≤ 2∀z, u (10)

Tr[L4(z), L2(u)] 6= 0 (11)

(12)

(Let us mention that it can be seen from the proofs that [TrLk(z), T rLl(u)] = 0 is more
or less equivalent to the Tr[Lk(z), Ll−1(u)] = 0.)

We pay special attention to the case of the one pole Gaudin model (the system of
Mishchenko-Fomenko):

LMF (z) = K +
Φ

z
(13)

Considerations of symb[TrLk(z)] gives Poisson commutative subalgebra in S(gl(n)). This
method is known as the “argument shift method” [11]. We analyze to what extent TrLk(z)
can be used to obtain commutative subalgebras in U(gl(n)). We obtain that even in this
simplest case there is no commutativity on the quantum level at least for gl(n), n ≥ 6:

[TrLk
MF (z), T rL

2
MF (z)] = 0 ∀k (14)

[TrLk
MF (z), T rL

3
MF (z)] = 0 for k ≤ 5 (15)

[TrL6
MF (z), T rL

3
MF (z)] 6= 0 (16)
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We also prove that subalgebra generated by TrLk(z) contains the Cartan subalgebra,
moreover it commutes with the Cartan subalgebra.

Acknowledgements. We are indebted to A. Molev, E. Sklyanin, A. Zotov for useful
discussions and correspondence; to B. Jurco for sending us his paper [24]. Let us also
acknowledge reading very useful surveys [18, 19, 20].

2 Preliminaries

2.1 Leningrad’s notation

Let us denote by P the transposition matrix in the tensor product, so it acts as follows

P (v1 ⊗ v2) = v2 ⊗ v1

and in terms of matrix elements it could be expressed as:

P =
∑

i,j

eij ⊗ eji.

Notation 1 Leningrad’s notation T
1
= T ⊗ Id, T

2
= Id⊗ T .

Always it is meant the following index notation for an element of GLn ⊗ GLn ⊗ A
where A is an associative algebra

C =
∑

ij,kl

Cij,kleij ⊗ ekl

where eij are generators of GLn. Then (T
1
)ij,kl = Tijδkl and (T

2
)ij,kl = δijTkl.

Let us mention the following useful properties of such notation:

[A
1
, B

2
]ij,kl = [Aij, Bkl] (17)

hence one matrix commutation relation between A
1
and B

2
encodes all the commutation

relations between all matrix elements aij and bkl. We will see later (see formula 26) that
the commutation relations between basic elements of the Lie algebra gl(n) are encoded in
one simple relation, moreover this relation does not depend on n.

Let us mention the following useful properties of such notation:

PA
1
B
2
= A

2
B
1
P (18)

P [A
1
, P ] = −[A

1
, P ]P = [P,A

1
]P = [A

2
, P ]P = A

1
−A

2
(19)

P [A
1
, P ] = [P,A

2
]P (20)

TrPA
1
B
2
= TrA

1
B
2
P = TrPA

2
B
1
= TrA

2
B
1
P = Tr(AB) (21)

[TrA, TrB] = Tr[A
1
, B

2
] (Main useful property I) (22)

Tr[A,B] = Tr[A
1
, B

2
]P (Main useful property II) (23)
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For any matrix Xij,kl in tensor square of some space V , the following is true:

(XP )ij,kl = Xil,kj (24)

(PX)ij,kl = Xkj,il (25)

2.2 Formulas without spectral parameter

Let us recall the basic facts from the r-matrix technique in the case of r-matrix without
spectral parameter. We do this because our main aim will be to obtain analogous results
in the case or L-operator of the Gaudin model with spectral parameter.

Introduce matrix Φ which is matrix with coefficients in U(gl(n)), defined by the fol-
lowing rule: we just put the element eij on ij-th place of the matrix. It’s the simplest
prototype of L-operators in integrable systems.

Lemma 1 The commutation relations between elements eij ∈ gl(n) :

[eij , ekl] = eilδjk − ekjδli

can be encoded in the following way using Leningrad’s notation:

[Φ
1
,Φ

2
] = [Φ

1
, P ] = [P,Φ

2
] =

1

2
[Φ
1
− Φ

2
, P ] (26)

This commutation relation is of the so-called ”r-matrix” type without spectral parameter.
Matrix P is the simplest example of the classical r-matrix.

Corollary 1 The formula above can be rewritten as

[Φ
1
−

1

2
P,Φ

2
−

1

2
P ] = 0 (27)

this can be used to obtain formulas like [(Φ
1
− 1

2
P )l, (Φ

2
− 1

2
P )n] = 0, but we will not use

this here.
For any matrix Φ satisfying the formula in lemma 1 the following is true:

Lemma 2 By the Leibnitz rule one immediately obtains:

[Φ
1
n,Φ

2
] = [Φ

1
n, P ] = [P,Φ

2
n] (28)

Lemma 3 Using the formula above one obtains:

[Φ
1
r,Φ

2
s] =

min(r,s)
∑

a=1

PΦ
1
a−1Φ

2
r+s−a − PΦ

1
r+s−aΦ

2
a−1 (29)

As a demonstration of the ”r-matrix” technique we prove the following statement, which
is due to Gelfand [21].
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Lemma 4 The elements TrΦr ∈ U(gl(n)) lie in the center of the U(gl(n)), i.e. they are
Casimirs of U(gl(n)).
Proof

[TrΦr,Φi,j] =
∑

k

([Φ
1
r,Φ

2
])kk,ij =

∑

k

([Φ
1
r, P ])kk,ij =

∑

k

(Φ
1
rP − PΦ

1
r)kk,ij =

=
∑

k

(Φ
1
r)kj,ik − (Φ

1
r)ik,kj =

∑

k

(Φr
kjδik − Φr

ikδkj) = (Φr
i,j − Φr

i,j) = 0 (30)

�

Remark 2 In fact TrΦr, r = 1, ..., n generate the center of U(gl(n)) (see [21]).

Lemma 5 One can also prove the following (see for example [18]):

[Φ
1
r+1,Φ

2
s]− [Φ

1
r,Φ

2
s+1] = PΦ

1
rΦ
2
s − PΦ

1
sΦ
2
r (31)

2.3 Gaudin model and its Lax operator with spectral parameter

Let us recall the Gaudin model. Consider the direct sum gl(n) ⊕ ... ⊕ gl(n) and denote
by Φi the matrix n× n with values in this direct sum defined as follows: (Φi)kl is the ekl
generator of the i-th copy of gl(n) in the direct sum gl(n)⊕ ...⊕ gl(n). Let us introduce
the Lax operator for the Gaudin model:

L(z) = K +
∑

i=1...N

Φi

z − ai
(32)

where ai ∈ C, K is an arbitrary constant matrix (in original physical applications the case
of sl(2) was important, in this case variables Φ corresponds to spins and K corresponds
to magnetic field. Nowadays the range of physical applications of integrable spin chains
is quite reach and includes not only sl(2) case, see for example [22, 23]).
Let us consider

TrL2(z) =
∑

i

TrΦ2
i

(z − ai)2
+
∑

k

1

z − ak
(TrKΦk +

∑

j 6=k

2TrΦkΦj

(ak − aj)
) (33)

Hk = TrKΦk +
∑

j 6=k

2TrΦkΦj

(ak − aj)
∈ U(gl(n))⊗ ...⊗ U(gl(n)) (34)

- are called quadratic Gaudin Hamiltonians

It’s known that [TrL2(u), T rL2(z)] = 0 and so that [Hk, Hj] = 0. The Gaudin model on
quantum level consists of taking some representation V1 ⊗ ... ⊗ VN of gl(n) ⊕ ... ⊕ gl(n)
and asking for the spectrum of such operators, their matrix elements etc.
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On the classical level one uses the symbol map symb : U(gl(n)) → S(gl(n)). The
images of Hi can be interpreted as functions on gl(n)∗ ⊕ ... ⊕ gl∗(n). One restricts them
to the product of coadjoint orbits O1 × ... × ON which is by definition the phase space
of classical Gaudin model. The symplectic structure on this space is Kirillov’s symplectic
form. For the hamiltonian one can take any of functions symb(Hi). The classical Gaudin
model is known to be completely integrable: one can take coefficients at (z − ai)

−m of
symb(TrLk(z)) as hamiltonians which Poisson commute and at least for the general choice
of orbits (though it seems that the question of considering different non-general orbits has
not been analyzed carefully) this gives the family of independent hamiltonians. Their
number equals to the half the dimension of the phase space which means the complete
integrability in the Liouville sense.

More mathematically speaking one should mention that Gaudin hamiltonians generate
the maximal Poisson-commutative subalgebra in S(gl(n)) ⊗ ... ⊗ S(gl(n)), though it’s
difficult to give the reference for this result.

The Lax-pair representation for the Gaudin model on the both quantum and classical
level can be found in [24]. The Gaudin Lax operator was generalized to the trigonometric
[24] and elliptic [25] dependence on the spectral parameter. It was also generalized to
include higher poles in z see [26, 27, 28].

3 Commutativity and noncommutativity of traces

3.1 Commutation relations with spectral parameter

As it was mentioned before it’s known that Gaudin model is completely integrable on
the classical and quantum levels, moreover the commuting hamiltonians on the classical
level can be given as coefficients at (z − ai)

−m of symb(TrL(z)k), but no explicit formula
for the higher than quadratic quantum integrals is known. Our aim is to check whether
the TrL(z)k commute on the quantum level. Before doing this it is necessary to obtain
the commutation relations between powers of L(z), generalizing such relations in the case
without spectral parameter see formulas 28,29.

Lemma 6 Using formula 26 one immediately obtains:

[L
1
(z), L

2
(u)] = [L

1
(u), L

2
(z)] = [

P

z − u
, L
1
(z) + L

2
(u)] =

= [
P

z − u
, L
1
(z)− L

1
(u)] = [

P

z − u
,−L

2
(z) + L

2
(u)] (35)

This commutation relation is of the so-called linear r-matrix type. The matrix P
z−u

is the
simplest rational r-matrix. In most of known integrable systems the Lax operator satisfies
an analogous relation (with the other r-matrices and possibly with the ”linear” relation
changed to the ”quadratic” one). These relations provide a simple construction on the
classical and sometimes on the quantum level.
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Corollary 2 The formula above can be rewritten as

[L
1
(z) −

P

z − u
, L
2
(u) +

P

z − u
] = 0. (36)

Lemma 7 The r-matrix r(z, u) = P
z−u

satisfies classical Yang-Baxter equation:

[r12(u1, u2), r13(u1, u3) + r23(u2, u3)]− [r13(u1, u3), r32(u3, u2)] = 0 ∈ V ⊗ V ⊗ V (37)

where we use the standard notation rij which means linear operator in V ⊗ V ⊗ V which
act as operator r, but the action is on i-th and j-th components of the tensor product
V ⊗ V ⊗ V , for example P13(a⊗ b⊗ c) = (c⊗ b⊗ a).

Remark 3 There is some confusion in notation: one says ”classical r-matrix”, ”classical
Yang-Baxter equation” though we deal with the quantum problem (commutators instead
of Poisson brackets). This is due to the historical reasons: in the case of quadratic
commutation relations (which seems to be appeared before linear relations) quantum R-
matrix corresponds to the quantum case and classical to the classical case. In the case
of linear commutation relations classical Yang-Baxter equation and classical r-matrix
corresponds to both classical and quantum cases.

To go further we need for several technical lemmas:

Lemma 8 For the Gaudin Lax it’s true that:

[L
1
(u), L

2
(u)] = [P,

∂

∂u
L
1
(u)] (38)

Lemma 9 One has the following expressions for commutators:

[L
1
(z), L

2
(u)] = (L

1
(u)− L

2
(u))

P

z − u
+ (L

2
(z)− L

1
(z))

P

z − u
(39)

[L
1
(z), L

2
2(u)] = (L

1
2(u)− L

2
2(u))

P

z − u
+

L
2
(u)(L

2
(z)− L

1
(z))

P

z − u
+ (L

2
(z)− L

1
(z))L

1
(u)

P

z − u
(40)

[L
1
(z), L

2
n(u)] = (L

1
n(u)− L

2
n(u))

P

z − u
+

n−1
∑

i=0

L
2
i(u)(L

2
(z)− L

1
(z))L

1
n−1−i(u)

P

z − u
(41)
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Lemma 10 The expressions of the previous lemma can be rewritten in the ordered form5:

[L
1
(z), L

2
(u)] = (L

1
(u)− L

2
(u))

P

z − u
+ (L

2
(z)− L

1
(z))

P

z − u
(42)

[L
1
2(z), L

2
(u)] = (L

2
2(z)− L

1
2(z))

P

z − u
+

L
1
(z)(L

1
(u)− L

2
(u))

P

z − u
+ (L

1
(u)− L

2
(u))L

2
(z)

P

z − u
(43)

[L
1
n(z), L

2
(u)] = (L

2
n(z)− L

1
n(z))

P

z − u
+

n−1
∑

i=0

L
1
i(z)(L

1
(u)− L

2
(u))L

2
n−1−i(z)

P

z − u
(44)

Receipt to obtain the formulas for [Ln(z), Lm(u)]. Let us formulate the main nec-
essary observation which provides such formulas. It is easy to obtain the commutation

relation between L
1
n(z), L

2
(u) in the form presented above: i.e. as the sum terms of the

form A
1

1...A
1

pB
2

1...B
2

qP , but it is difficult to obtain the same answer as the sum of terms of

the form B
2

1...B
2

qA
1

1...A
1

pP . As soon as one is able to find such formula then the formula

for the commutator of L
1
n(z), L

2
m(u) follows immediately.

The reason is quite simple: assume that [A
1
, B

2
] = C

1
D
2
P then

[A
1
n, B

2
] =

n
∑

i=0

A
1
iC
1
D
2
PA

1
n−1−i =

n
∑

i=0

A
1
iC
1
D
2
A
2
n−1−i.P

One can see that the trick does not work if we have the formula like: [A
1
, B

2
] = X

2
Y
1
P. In

this case

[A
1
n, B

2
] =

n
∑

i=0

A
1
iX

2
Y
1
A
2
n−1−iP

and one is unable to calculate the trace of such expression in the simple form.
So in order to calculate the [Ln(z), L2(u)] (as explained above) we need to find the

formula for the [Ln(z), L2(u)] in such form that it is the sum of the type A
1
B
2
P . It’s done

in the following lemma.

5Our aim is to obtain the formula for [Ln(z), Lm(u)] in the form which is the sum of terms like

A
1

1A
1

2...A
1

nB
2

1B
2

2...B
2

lP
0 or 1

and there are no terms of the disordered type: TrA
1

B
2

C
1

D
2

E
1

P . We need such formulas because they are

well adapted to calculation of [TrLk(z), T rLp(u)], indeed, [TrA, T rB] = Tr[A
1

, B
2

] and it is easy to see
that

TrA
1

1A
1

2...A
1

nB
2

1B
2

2...B
2

lP = Tr(A1A2...AnB1B2...Bl)

but there is no simple formula for the expression like TrA
1

B
2

C
1

D
2

E
1

.
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Lemma 11

[L
1
(z), L

2
2(u)] = (L

1
2(u)− L

2
2(u))

P

z − u

+ (L
1
(u) + L

2
(u))L

2
(z)

P

z − u
− L

1
(z)(L

1
(u) + L

2
(u))

P

z − u
(45)

Lemma 12 From the lemma above one obtains the following formula:

[L
1
n(z), L

2
2(u)] = (L

1
(u) + L

2
(u))L

2
n(z)

P

z − u
− L

1
n(z)(L

1
(u) + L

2
(u))

P

z − u
+

+
n−1
∑

i=0

L
1
i(z)(L

1
2(u)− L

2
2(u))L

2
n−1−i(z)

P

z − u

(46)

Our next aim is to calculate [Ln(z), L3(u)]. As it was explained in our receipt we need to

find the formula for the [L(z), L3(u)] in such form that it is the sum of the type A
1
B
2
P .

It’s done in the following lemma.

Lemma 13

[L
1
(z), L

2
3(u)] = (L

1
3(u)− L

2
3(u))

P

z − u

+ (L
1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))L

2
(z)

P

z − u

− L
1
(z)(L

1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))

P

z − u

+ [
∂

∂u
L
1
(u) +

L
1
(u)

z − u
, L
1
(z)]

1

z − u
(47)

Going ahead let us note that as a corollary of the lemma above we see that
Tr[L2(u), L(z)] = 0.

Lemma 14 From the lemma above one also sees that:

[L
1
n(z), L

2
3(u)] =

n−1
∑

i=0

L
1
i(z)(L

1
3(u)− L

2
3(u))L

2
n−1−i(z)

P

z − u

+ (L
1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))L

2
n(z)

P

z − u

− L
1
n(z)(L

1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))

P

z − u

+ [
∂

∂u
L
1
(u) +

L
1
(u)

z − u
, L
1
n(z)]

1

z − u
(48)

11



Remark 4 In general one can guess the following sort of the formula:

[L
1
n(z), L

2
m(u)] =

n−1
∑

i=0

L
1
i(z)(L

1
m(u)− L

2
m(u))L

2
n−1−i(z)

P

z − u

+ (

m−1
∑

i=0

L
1
i(u)L

2
m−1−i(u))L

2
n(z)

P

z − u

− L
1
n(z)(

m−1
∑

i=0

L
1
i(u)L

2
m−1−i(u))

P

z − u

+ “unwanted terms of lower degree” (49)

But even in the case of m=4 it seems to be quite difficult to obtain such formula.

3.2 Commutativity of traces [TrLn(z), T rLm(u)] = 0, n,m ≤ 3

We will prove that [TrLn(z), T rLm(u)] = 0, for n ≤ 3, m ≤ 3, and speculate about the
general case. The case n = 2 = m is easy and quite well-known. In the next section we
will prove that [TrL4(z), T rL2(u)] 6= 0.

Lemma 15 The equality [TrLn(z), T rL2(u)] = 0 is equivalent to the equality
Tr[Ln(z), L(u)] = 0, moreover [TrLn(z), T rL2(u)] = 2Tr[L(u), Ln(z)] 1

z−u
.

Proof

[TrLn(z), T rL2(u)] = Tr[L
1
n(z), L

2
2(u)] = / by lemma 12 /

= Tr
(

(L
1
(u) + L

2
(u))L

2
n(z)

P

z − u
− L

1
n(z)(L

1
(u) + L

2
(u))

P

z − u

+
n−1
∑

i=0

L
1
i(z)(L

1
2(u)− L

2
2(u))L

2
n−1−i(z)

)

= by the formula 21

= 2Tr(L(u)Ln(z))
1

z − u
− 2Tr(Ln(z)L(u))

1

z − u
+

+

n−1
∑

i=0

TrLi(z)L2(u)Ln−1−i(z)− TrLi(z)L2(u)Ln−1−i(z)

= 2Tr[L(u), Ln(z)]
1

z − u
(50)

�

Lemma 16 The following equality holds:

Tr[Ln(z), L(u)] =
1

z − u

n−1
∑

i=1

(

TrLi(z)L(u)TrLn−1−i(z)− TrLn−1−i(z)TrL(u)Li(z)
)

=
1

z − u

(

n−1
∑

i=1

[TrLi(z)L(u), T rLn−1−i(z)]−
n−2
∑

i=0

TrLi(z)Tr[L(u), Ln−1−i(z)]
)

(51)
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Proof This is a straightforward application of formula 44 and formulas TrA
1
B
2

=

TrATrB and Tr[A,B] = Tr[A
1
B
2
]P :

Tr[Ln(z), L(u)] = Tr[L
1
n(z), L

2
(u)]P = by the formula 44

= Tr
(

(L
2
n(z)− L

1
n(z)) +

n−1
∑

i=0

L
1
i(z)(L

1
(u)− L

2
(u))L

2
n−1−i(z)

) 1

z − u

=
(

(TrId)(TrLn(z)− TrLn(z))

+
n−1
∑

i=0

TrLi(z)L(u)TrLn−1−i(z)− TrLi(z)TrL(u)Ln−1−i(z)
) 1

z − u

=
(

n−1
∑

i=0

TrLi(z)L(u)TrLn−1−i(z)−
n−1
∑

i=0

TrLn−1−i(z)TrL(u)Li(z)
) 1

z − u

when i=0 then TrL(u)TrLn−1(z)− TrLn−1(z)TrL(u) = 0

due to TrL(z) lies in the center of gl(n)⊕ ...⊕ gl(n)

=
(

n−1
∑

i=1

TrLi(z)L(u)TrLn−1−i(z)− TrLn−1−i(z)TrL(u)Li(z)
) 1

z − u

=
1

z − u

(

n−1
∑

i=1

[TrLi(z)L(u), T rLn−1−i(z)]−

n−1
∑

i=1

TrLn−1−i(z)Tr[L(u), Li(z)]
)

=
1

z − u

(

n−1
∑

i=1

[TrLi(z)L(u), T rLn−1−i(z)]−

n−2
∑

i=0

TrLi(z)Tr[L(u), Ln−1−i(z)]
)

(52)

�

Corollary 3

Tr[Ln(z), L(u)] = 0 for n=1,2,3 (53)

Proof
Let n = 1 - then by the lemma above we immediately obtain zero, because the summation
index i is out of range in the sum

∑n−1
i=1 .

Let n = 2, so by the lemma above

(z − u)Tr[L2(z), L(u)] =

1
∑

i=1

TrLi(z)L(u)TrLn−1−i(z)− TrLn−1−i(z)TrL(u)Li(z)

= (TrId)Tr[L(z), L(u)] = 0 in virtue of the corollary in the case n = 1

13



Let n = 3, so by the lemma above:

(z − u)Tr[L3(z), L(u)] =
2

∑

i=1

TrLi(z)L(u)TrLn−1−i(z)− TrLn−1−i(z)TrL(u)Li(z)

=
(

TrL(z)L(u)TrL(z)− TrL(z)TrL(u)L(z)
)

+
(

TrL2(z)L(u)(Tr(Id))− (Tr(Id))TrL(u)Li(z)
)

= 0

in virtue of the collorary in the case n = 1, n = 2

and the commutativity of TrL(z) with everything.

�

Corollary 4 One can simplify (reducing the range of summation) the expression in
lemma 16 in the following way:

Tr[Ln(z), L(u)] =
1

z − u

(

n−3
∑

i=1

[TrLi(z)L(u), T rLn−1−i(z)]

−
n−5
∑

i=0

TrLi(z)Tr[L(u), Ln−1−i(z)]
)

(54)

Corollary 5

Tr[L4(z), L(u)] =
1

z − u
[TrL(z)L(u), T rL2(z)] (55)

Corollary 6

[TrLn(z), T rL2(u)] = 0 for n = 1, 2, 3 (56)

Proof This follows from the corollary (3) and lemma 15. �

Lemma 17 The equality [TrLn(z), T rL3(u)] = 0 follows from the equalities
Tr[Ln(z), L2(u)] = 0 and Tr[Ln(z), L(u)] = 0, moreover

[TrLn(z), T rL3(u)] =

=
(

3Tr[L2(u), Ln(z)]
1

z − u
+ (TrId)Tr[

∂

∂u
L(u) +

L(u)

z − u
, Ln(z)]

1

z − u

)

. (57)
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Proof

[TrLn(z), T rL3(u)] = Tr[L
1
n(z), L

2
3(u)] = / by lemma 14 /

= Tr
(

n−1
∑

i=0

L
1
i(z)(L

1
3(u)− L

2
3(u))L

2
n−1−i(z)

P

z − u

+ (L
1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))L

2
n(z)

P

z − u

− L
1
n(z)(L

1
2(u) + L

1
(u)L

2
(u) + L

2
2(u))

P

z − u

+ [
∂

∂u
L
1
(u) +

L
1
(u)

z − u
, L
1
n(z)]

1

z − u

)

=
(

3(TrL2(u)Ln(z)
1

z − u
− TrLn(z)L2(u)

1

z − u
) +

+ (TrId)Tr[
∂

∂u
L(u) +

L(u)

z − u
, Ln(z)]

1

z − u

)

=
(

3Tr[L2(u), Ln(z)]
1

z − u
+ (TrId)Tr[

∂

∂u
L(u) +

L(u)

z − u
, Ln(z)]

1

z − u

)

�

Corollary 7 The following is true:

Tr[L2(z), L2(u)] = 0 (58)

Proof This follows from corollary 6 that [TrL2(z), T rL3(u)] = 0 and from corollary 3
that Tr[L(u), L2(z)] = 0, so according to the lemma above formula 57 applied to the case
n = 2 gives that:

0 =
3

z − u
[TrL2(u), T rL2(z)] + 0

�

Lemma 18 The following equality holds:

(z − u)Tr[Ln(z), L2(u)] =

= Tr[L(u), Ln(z)] +
∑n−3

i=0 [TrL
i(z)L2(u), T rLn−1−i(z)]− TrLi(z)Tr[L2(u), Ln−1−i(z)]

15



Proof

Tr[Ln(z), L2(u)] = Tr[L
1
n(z), L

2
2(u)]P = / by lemma 12 /

= Tr
(

(L
1
(u) + L

2
(u))L

2
n(z)

1

z − u
− L

1
n(z)(L

1
(u) + L

2
(u))

1

z − u

+

n−1
∑

i=0

L
1
i(z)(L

1
2(u)− L

2
2(u))L

2
n−1−i(z)

1

z − u

)

=
1

z − u

(

[TrL(u), T rLn(z)] + Tr[L(u), Ln(z)]

+

n−1
∑

i=0

TrLi(z)L2(u)TrLn−1−i(z)− TrLi(z)TrL2(u)Ln−1−i(z)
)

=
1

z − u

(

Tr[L(u), Ln(z)] +

n−1
∑

i=0

TrLi(z)L2(u)TrLn−1−i(z)

− TrLn−1−i(z)TrL2(u)Li(z)
)

=
1

z − u

(

Tr[L(u), Ln(z)] +

n−1
∑

i=0

[TrLi(z)L2(u), T rLn−1−i(z)]

− TrLn−1−i(z)Tr[L2(u), Li(z)]
)

by corollaries 3, 7

=
1

z − u

(

Tr[L(u), Ln(z)] +
n−3
∑

i=0

[TrLi(z)L2(u), T rLn−1−i(z)]

− TrLi(z)Tr[L2(u), Ln−1−i(z)]
)

(59)

�

Corollary 8 The following is true:

Tr[L3(z), L2(u)] = 0 (60)

Proof According to the lemma above we obtain:

(z − u)Tr[L3(z), L2(u)]

= Tr[L(u), L3(z)] +

0
∑

i=0

[TrLi(z)L2(u), T rL2−i(z)]− TrLi(z)Tr[L2(u), L2−i(z)]

= Tr[L(u), L3(z)] + [TrL2(u), T rL2(z)]− TrIdTr[L2(u), L2(z)] = 0 (61)

in virtue of corollaries 3, 6, 7. �

Corollary 9 The following is true:

[TrL3(z), T rL3(u)] = 0 (62)

Proof this is directly implied by lemma 17 because the conditions requested in this
lemma are true by corollaries 3, 8 �
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3.3 NONcommutativity of traces L4, L2

According to lemma 15 and corollary 5

[TrL4(z), T rL2(u)] =
2

z − u
Tr[L(u), L4(z)] =

−2

(z − u)2
[TrL(z)L(u), T rL2(z)] (63)

Let us consider for simplicity the case K = 0.

TrL2(z) =
∑

i

TrΦ2
i

(z − ai)2
+
∑

k

1

z − ak

∑

j 6=k

2TrΦkΦj

(ak − aj)
(64)

Hk =
∑

j 6=k

2TrΦkΦj

(ak − aj)
(65)

It follows from [TrL2(u), T rL2(z)] = 0 that [Hk, Hj] = 0.

TrL(z)L(u) =
∑

i

TrΦ2
i

(z − ai)(u− ai)
+
∑

m

1

u− am

∑

n 6=m

TrΦmΦn

z − an
(66)

The commutator [TrL(z)L(u), T rL2(z)] vanishes if

0 = [
∑

m

1

z − am

∑

n 6=m

TrΦmΦn

u− an
,
∑

k

1

u− ak

∑

j 6=k

2TrΦkΦj

(ak − aj)
] (67)

This expression is a rational function on variables z, u. It is zero iff its residues on z are
zeros. For example, its residue at z = am is a rational function on u with double poles at
u = ai, let us consider its coefficient at 1

(u−an)2

[TrΦmΦn,
∑

j 6=n

2TrΦnΦj

(an − aj)
] (68)

This could be zero for any ak only if the expression below should be zero for allm,n, j 6= m

[TrΦmΦn, T rΦnΦj ] = Tr[Φ
1

mΦ
1

n,Φ
2

nΦ
2

j ] = TrΦ
1

m[Φ
1

n,Φ
2

n]Φ
2

j = TrΦ
1

m[Φ
1

n, P ]Φ
2

j

= TrΦ
1

mΦ
1

nΦ
1

jP − TrPΦ
2

mΦ
1

nΦ
2

j = TrΦ
1

mΦ
1

nΦ
1

jP − TrPΦ
2

mΦ
2

jΦ
1

n

= TrΦmΦnΦj − TrΦmΦjΦn 6= ZERO !!! (69)

Let us note that there is no such a problem for the case of one- or two-poles Gaudin
system.

So we obtain that

0 6= [TrL4(z), T rL2(u)] =
2

z − u
Tr[L(u), L4(z)] =

−2

(z − u)2
[TrL(z)L(u), T rL2(z)] (70)

�
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3.4 One spin Gaudin model (argument shift method)

The one spin Gaudin’s model Lax operator is the following one:

LMF (z) = K +
Φ

z
(71)

It’s well-known that considering the coefficients at z−1 of symb(TrLk
MF (z)) ∈ S(gl(n)) one

obtains the maximal Poisson-commutative subalgebra in S(gl(n)) (for general K) [11, 15].
The restriction of such subalgebra to a generic coadjoint orbit gives a classical integrable
system.

The aim of this section is to discuss the lifting of this maximal commutative subalgebra
from S(gl(n)) to U(gl(n)), by considering TrLk

MF (z) ∈ U(gl(n)). In other words we
discuss the quantum integrability of the one spin Gaudin model. We prove commutativity
in the following restricted case:

[TrLk
MF (z)), T rL

l
MF (u))] = 0 for k, l ≤ 4

this is more optimistic than the general Gaudin model, however we also prove that

[TrL3
MF (z)), T rL

6
MF (u))] 6= 0.

3.4.1 Preliminary remarks

Lemma 19 The following holds:

[LMF (u), LMF (z)] = [K,Φ](
1

u
−

1

z
) = [K, LMF (z)](

z

u
− 1) (72)

Remark 5

LMF (u) =
z

u
LMF (z)−K(

z

u
− 1) LMF (z) = K(1−

u

z
) +

u

z
LMF (u) (73)

Let A be a linear operator in V ⊗ V. Let us denote Tr1A the trace taken only over the
first component, i.e. (Tr1A)ij =

∑

k
Akk,ij.

By a straightforward calculation one has

Lemma 20

Tr1(A
1
P ) = Tr1(A

2
P ) = A Tr1(A

1
B
2
P ) =

∑

ij

∑

k

AkjBikeij
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3.4.2 Quadratic Hamiltonians

Lemma 21 The following holds:

[TrLn
MF (z), T rL

2
MF (u)] = Tr[LMF (u), L

n
MF (z)] = 0 (74)

Proof

[TrLn
MF (z), T rL

2
MF (u)] = according to lemma 15

= 2Tr[LMF (u), L
n
MF (z)]

1

z − u
= Tr

2

z − u

n−1
∑

i=0

Li
MF (z)[LMF (u), LMF (z)]L

n−i−1
MF (z)

= Tr
2

z − u

n−1
∑

i=0

Li
MF (z)[K, LMF (z)](

z

u
− 1)Ln−i−1

MF (z)

=
2

z − u
(
z

u
− 1)Tr[K, Ln

MF (z)] = 0 because K is a C-valued matrix (75)

�

3.4.3 Cartan subalgebra

We will prove that Cartan subalgebra is contained is the subalgebra in U(gl(n)) generated
by the Tr(L(z)k) and Cartan subalgebra commutes with any element of type Tr(L(z)k).

Lemma 22 Let us assume that K = diag{kj}, then the Cartan subalgebra generated by
ejj is contained in the subalgebra generated by coefficients in z of TrLMF (z)

k.
Proof Let us consider the residue of TrLMF (z)

k at z = 0

Resz=0TrL
k
MF (z) = Resz=0Tr

(

K +
Φ

z

)k

= kTrKk−1Φ =
∑

j

kk−1
j ejj.

The general choice of K imply that all the kj are different. In this case the Vandermonde
matrix {kl

j} is not degenerate and by taking linear combinations of the residues above
one recovers ejj.

Lemma 23 ∀n, i one has

[TrLn
MF (z), (LMF (u))ii] = [TrLn

MF (z), eii] = 0.

Proof

[TrLn
MF (z), (LMF (u))ii] =

∑

j

[L
1
n
MF (z), (

2
LMF (u))]jj,ii

=
(

Tr1[L
1
n
MF (z), (

2
LMF (u))]

)

ii
= /by the formula 44/

=
(

Tr1

(

(L
2
n
MF (z)− L

1
n
MF (z))

P

z − u
+

n−1
∑

k=0

L
1
k
MF (z)(L

1

MF (u)− L
2

MF (u))L
2
n−1−k
MF (z)

P

z − u

))

ii
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= /by lemma 20 / = (Ln
MF (z))− (Ln

MF (z))ii
1

z − u

+
1

z − u

n−1
∑

k=0

∑

j

(Lk
MF (z)LMF (u))ji(L

n−1−k
MF (z))ij − (Lk

MF (z))ji(LMF (u)L
n−1−k
MF (z))ij

=
1

z − u

n−1
∑

k=0

∑

j

(Lk
MF (z)(

z

u
LMF (z)−K(

z

u
− 1)))ji(L

n−1−k
MF (z))ij

− (Lk
MF (z))ji(

z

u
LMF (z)−K(

z

u
− 1)Ln−1−k

MF (z))ij

=
1

z − u

z

u

n−1
∑

k=0

∑

j

(Lk
MF (z)LMF (z))ji(L

n−1−k
MF (z))ij

− (Lk
MF (z))ji(LMF (z)L

n−1−k
MF (z))ij −

1

z − u
(
z

u
− 1)

n−1
∑

k=0

∑

j

(Lk
MF (z)K)ji(L

n−1−k
MF (z))ij

− (Lk
MF (z))ji(KLn−1−k

MF (z))ij =
1

z − u

z

u

∑

j

(Ln
MF (z))jiδij − δij(L

n
MF (z))ij

−
1

z − u
(
z

u
− 1)

n−1
∑

k=0

∑

j

(Lk
MF (z)jikiL

n−1−k
MF (z)ij − Lk

MF (z)jikiL
n−1−k
MF (z)ij) = 0

�

3.4.4 Commutativity of traces [TrLn
MF (z), T rL

3
MF (u)] = 0 for n=1,...,5

Lemma 24

[TrLn
MF (z), T rL

3
MF (u)] =

3

u2

n−2
∑

i=3

([TrLi
MF (z), T rK

2Ln−1−i
MF (z)]) (76)

Corollary 10

[TrLn
MF (z), T rL

3
MF (u)] = 0, for n=1,...,5 (77)

Proof of the Corollary The corollary follows immediately for n = 1, ..., 4 from the
lemma above - because summation in the formula 76 is out of range for such n. The only
case is n = 5 then there is only one term in summation: [TrL3

MF (z), T rK
2LMF (z)], this

term equals to zero due to the lemma 23.
Proof of the lemma According to the lemma 21 one has Tr[Ln

MF (z), LMF (u)] = 0.
Hence using the lemma 17, we obtain

[TrLn
MF (z), T rL

3
MF (u)] =

3

z − u
Tr[L2

MF (u), L
n
MF (z)] (78)

20



Let us simplify this expression:

Tr[Ln
MF (z), L

2
MF (u)] = Tr[Ln

MF (z), (
z

u
LMF (z)−K(

z

u
− 1))2]

= −(
z

u
− 1)

z

u
Tr[Ln

MF (z), (KLMF (z) + LMF (z)K)]

= −(
z

u
− 1)

z

u
TrLn

MF (z)KLMF (z)− LMF (z)KLn
MF (z)

So we came to the expression which is considered in the lemma 27. Let us denote

B = Ln
MF (z), A = LMF (z).

Then using

[L
1

MF (z), L
2

MF (z)] =
1

z
[L
1

MF (z)−K
1
, P ] = (L

1

MF (z)−K
1
− L

2

MF (z) +K
2
)P

we obtain

[B
1
, A

2
] = [L

1
n
MF (z), L

2

MF (z)] =

=
n−1
∑

i=0

1

z
L
1
i
MF (z)(L

1

MF (z)−K
1
− L

2

MF (z) +K
2
)L
2
n−1−i
MF (z)P =

=
1

z
(L
1
n
MF (z)− L

2
n
MF (z))P +

n−1
∑

i=0

1

z
L
1
i
MF (z)(−K

1
+K

2
)L
2
n−1−i
MF (z)P. (79)

As the result we get

Tr(PK
2
+K

2
P )([B

1
, A

2
]) = Tr(PK

2
+K

2
P )[L

1
n
MF (z), L

2

MF (z)]

= Tr(PK
2
+K

2
P )(

1

z
(L
1
n
MF (z)− L

2
n
MF (z))P +

n−1
∑

i=0

1

z
L
1
i
MF (z)(−K

1
+K

2
)L
2
n−1−i
MF (z)P )

=
1

z
Tr(K

2
L
1
n
MF (z) +K

1
L
1
n
MF (z)−K

2
L
2
n
MF (z)−K

1
L
2
n
MF (z))

+
1

z
Tr(K

2
+K

1
)

n−1
∑

i=0

L
1
i
MF (z)(−K

1
+K

2
)L
2
n−1−i
MF (z)

=
1

z
Tr(K

2
L
1
n
MF (z) +K

1
L
1
n
MF (z)−K

2
L
2
n
MF (z)−K

1
L
2
n
MF (z))

+
1

z
Tr(K

2
+K

1
)

n−1
∑

i=0

L
1
i
MF (z)(−K

1
+K

2
)L
2
n−1−i
MF (z)

=
1

z

n−1
∑

i=0

Tr(−K
2
L
1
i
MF (z)K

1
L
2
n−1−i
MF (z)+
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+ K
2
L
1
i
MF (z)K

2
L
2
n−1−i
MF (z)−K

1
L
1
i
MF (z)K

1
L
2
n−1−i
MF (z) +K

1
L
1
i
MF (z)K

2
L
2
n−1−i
MF (z))

=
1

z

n−1
∑

i=0

(−TrLi
MF (z)KTrLn−1−i

MF (z)K

+ TrLi
MF (z)TrKLn−1−i

MF (z)K − TrKLi
MF (z)KTrLn−1−i

MF (z) + TrKLi
MF (z)TrKLn−1−i

MF (z))

=
1

z

n−1
∑

i=0

(TrLi
MF (z)TrKLn−1−i

MF (z)K − TrKLi
MF (z)KTrLn−1−i

MF (z))

=
1

z

n−1
∑

i=0

([TrLi
MF (z), T rKLn−1−i

MF (z)K]) = /using lemma 28 /

=
1

z

n−2
∑

i=3

([TrLi
MF (z), T rKLn−1−i

MF (z)K])

�

3.4.5 NONcommutativity of traces of L6 and L3

Lemma 25 [TrL6
MF (z), T rL

3
MF (z)] 6= 0

Proof According to lemma 24 one has

[TrL6
MF (z), T rL

3
MF (z)] =

3

z2
([TrL3

MF (z), T rK
2L2

MF (z)]) +
3

z2
([TrL4

MF (z), T rK
2LMF (z)])(80)

The second term equals to zero due to the lemma 23. Let us show that the first term is
non zero.

[TrL3
MF (z), T rK

2L2
MF (z)]

= [Tr
K2Φ

z
+

2KΦ2 + ΦKΦ

z2
, 2Tr

K3Φ

z
] + [Tr

K2Φ

z
+

2KΦ2 + ΦKΦ

z2
, T r

K2Φ2

z2
]

/ according to lemmas 32, 29 the first commutator equals to zero,

[TrK2Φ
z
, T rK2Φ2

z2
] = 0 by lemma 32/

=
1

z4
[Tr2KΦ2 + ΦKΦ, T rK2Φ2] =

1

z4
Tr[2K

1
Φ
1
2 + Φ

1
K
1
Φ
1
,K

2
2Φ
2
2]

=
1

z4
(2TrK

1
K
2
2[Φ

1
2,Φ

2
2] + Tr(K

2
2[Φ

1
,Φ

2
2]K

1
Φ
1
+ Φ

1
K
1
K
2
2[Φ

1
,Φ

2
2]))

=
1

z4
(2TrK

1
K
2
2(PΦ

2
3 − PΦ

1
3 + PΦ

1
Φ
2
2 − PΦ

1
2Φ
2
) + Tr(K

2
2[P,Φ

2
2]K

1
Φ
1
+ Φ

1
K
1
K
2
2[P,Φ

2
2]))

=
1

z4
(2(TrK

1
K
2
2Φ
1
3P − TrK

1
K
2
2Φ
2
3P + TrK

1
K
2
2Φ
2
Φ
1
2P − TrK

1
K
2
2Φ
2
2Φ
1
P )

+ Tr(K
2
2PΦ

2
2K

1
Φ
1
−K

2
2Φ
2
2PK

1
Φ
1
+ Φ

1
K
1
K
2
2PΦ

2
2 − Φ

1
K
1
K
2
2Φ
2
2P ))

=
1

z4
(2(TrK3Φ3 − TrK3Φ3 + TrK2ΦKΦ2 − TrK2Φ2KΦ)
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+ Tr(Φ2K3Φ−K2Φ2KΦ + ΦKΦ2K2 − ΦK3Φ2))

=
1

z4
(2(TrK2ΦKΦ2 − TrK2Φ2KΦ) + Tr(−K2Φ2KΦ + ΦKΦ2K2))

=
1

z4
3(TrK2ΦKΦ2 − TrK2Φ2KΦ)

We have used TrΦnKΦ−ΦKΦn = 0 for n = 3. This will be proved latter (see lemma 30).
So we have just obtained that

[TrL3(z), T rK2L2(z)] =
3

z4
(TrK2ΦKΦ2 − TrK2Φ2KΦ)

and
[TrKΦ2, T rK2Φ2] = [TrΦKΦ, T rK2Φ2] = TrK2ΦKΦ2 − TrK2Φ2KΦ.

Let us show that TrK2ΦKΦ2 − TrK2Φ2KΦ 6= 0.
Recall that we are considering the diagonal matrix K = {kj}, then:

TrK2ΦKΦ2 − TrK2Φ2KΦ =
∑

j,p

k2
jΦjpkp(Φ)

2
pj − k2

j (Φ)
2
jpkp(Φ)pj

=
∑

j 6=p

k2
jkp(Φjp(Φ)

2
pj − (Φ)2jp(Φ)pj).

For this expression to be zero it should be that

∀j, p : Φjp(Φ)
2
pj − (Φ)2jpΦpj = 0,

but it’s not true for the case of gl(3) and higher rank algebras, by the PBW property, due
to the following

Φjp(Φ)
2
pj − (Φ)2jpΦpj = Φjp

∑

l

ΦplΦlj −
∑

l

ΦjlΦlpΦpj .

Hence the term
∑

l Φj,pΦp,lΦl,j contains elements Φp,l which are not contained in the term:
−
∑

l Φj,lΦl,pΦp,j. �

Remark 6 For the case of gl(2) this is zero (we should check only j=1,p=2):

Φ12Φ21Φ11 + Φ12Φ22Φ21 − Φ11Φ12Φ21 − Φ12Φ22Φ21 = [Φ12Φ21,Φ11]

= [Φ12,Φ11]Φ21 + Φ12[Φ21,Φ11] = −Φ12Φ21 + Φ12Φ21 = 0

3.4.6 Commutativity [TrL4
MF (z), T rL

4
MF (u)] = 0

Lemma 26 The following is true:

[TrL4
MF (z), T rL

4
MF (u)] = 0. (81)

Combined with the results of the previous sections this lemma proves the following
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Theorem 1 Coefficients at 1
zi

of TrLl
MF (z), l ≤ N freely generates maximal commu-

tative subalgebra in U(gl(N)), N ≤ 4.
Let us explain that the maximality and free generation follows from the results of
Mishchenko and Fomenko [11], who proved that the coefficients at 1

z
of symb(TrLk

MF (z)) ∈
S(gl(n)) generate maximal Poisson-commutative subalgebra in S(gl(n)) (for general K).

Remark 7 According to the previous results the theorem above cannot be true for
N ≥ 6. We hope that it is still true for N = 5.
Proof of the lemma 26
We do not have the general formula for the commutators [Ln

MF (z), L
4
MF (u)] and propose

here a straightforward proof.

[TrL4
MF (z), T rL

4
MF (u)] = [Tr(K +

Φ

z
)4, T r(K+

Φ

u
)4]

= [Tr(3K2Φ2 + 2KΦKΦ + ΦK2Φ), 2Tr(KΦ3 + ΦKΦ2)](
1

z2u3
−

1

z3u2
)

= [Tr(4K2Φ2 + 2KΦKΦ + [Φ,K2Φ]), 2Tr(2KΦ3 + [Φ,KΦ2])](
1

z2u3
−

1

z3u2
)

= / by lemma 33 / = [Tr([Φ,K2Φ]), 2Tr(2KΦ3 + [Φ,KΦ2])](
1

z2u3
−

1

z3u2
)

+ [Tr(4K2Φ2 + 2KΦKΦ), 2Tr([Φ,KΦ2])](
1

z2u3
−

1

z3u2
)

= / by lemma 31 and the fact that TrΦk are Casimirs /

= [−Tr(K2Φ) TrId, 2Tr(2KΦ3)− Tr(KΦ2) TrId](
1

z2u3
−

1

z3u2
)

+ [Tr(4K2Φ2 + 2KΦKΦ),−2Tr(KΦ2) TrId](
1

z2u3
−

1

z3u2
)

/ which is zero due to the lemma 33 and 32. /

�

Analogously we can prove that

[Tr(2K2Φ2 +KΦKΦ), T r(ΦlKΦn)] = 0

[Tr(3K2Φ2 + 2KΦKΦ + ΦK2Φ), T r(ΦlKΦn)] = 0 (82)

hence the coefficient at 1
z2

of TrL4
MF (z) commutes with the coefficient at 1

zl+n of

TrLl+n+1
MF (z).

3.4.7 Auxiliary lemmas.

In this subsection we will prove some lemmas, which has been used in the calculations
above, but may also represent an independent interest.

Lemma 27

TrBKA− AKB = TrP (K
2
+K

1
)([B

1
, A

2
]) for A,B : [A,B] = 0 (83)
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Proof Let us assume that K = diag{kj}. Then

TrBKA− AKB =
∑

j

kj(
∑

i

BijAji − AijBji)

=
∑

j

kj(
∑

i

AjiBij −BjiAij + [Bij , Aji]− [Aij , Bji])

= / using [A,B] = 0 / =
∑

j

kj(
∑

i

[Bij , Aji]− [Aij , Bji])

=
∑

j

kj(
∑

i

[Bij, Aji]− [Aij, Bji]) =
∑

j

kj(
∑

i

[B
1
, A

2
]ij,ji − [A

1
, B

2
]ij,ji) =

=
∑

j

∑

i

kj(([B
1
, A

2
]P )ii,jj − ([A

1
, B

2
]P )ii,jj) = TrK

2
(([B

1
, A

2
]P )− ([A

1
, B

2
]P )) =

= TrK
2
(([B

1
, A

2
]P )− (P [A

2
, B

1
])) = TrK

2
(([B

1
, A

2
]P ) + (P [B

1
, A

2
]))

= TrP (K
2
+K

1
)([B

1
, A

2
]).

�

Lemma 28

[TrL2
MF (u), T rK

2Ln
MF (z)] =

2

u
[TrKΦ, T rK2Ln

MF (z)] = 0 (84)

Proof Let us note that

TrL2
MF (u) = TrK2 +

2

u
TrKΦ +

1

u2
TrΦ2.

Recalling that TrK2, T rΦ2 commute with everything we see that it is enough to prove

[TrKΦ, T rK2Ln
MF (z)] = 0

or equivalently
[TrKLMF (u), T rK

2Ln
MF (z)] = 0.

So let us calculate:

[TrK2Ln
MF (z), T rKLMF (u)] = Tr[K

1
2L
1
n
MF (z)), K

2
L
2

MF (u)]

= TrK
1
2K

2
[L
1
n
MF (z), L

2

MF (u)] = / by lemma 10 and formula 44 /

= TrK
1
2K

2
(L
2
n(z)− L

1
n(z))

P

z − u
+ TrK

1
2K

2
n−1
∑

i=0

L
1
i(z)(L

1
(u)− L

2
(u))L

2
n−1−i(z)

P

z − u

= TrK
1
2K

2
n−1
∑

i=0

L
1
i(z)(

z

u
L
1
(z)−K

1
(
z

u
− 1)−

z

u
L
2
(z) +K

2
(
z

u
− 1))L

2
n−1−i(z)

P

z − u

25



= TrK
1
2K

2
n−1
∑

i=0

L
1
i(z)(

z

u
L
1
(z)−

z

u
L
2
(z))L

2
n−1−i(z)

P

z − u

=
z

u
TrK

1
2K

2
(L
1
n(z)

P

z − u
− L

2
n(z)

P

z − u
)

=
z

u
(TrK2Ln(z)K − TrK2KLn(z))

1

z − u
) = 0

�

Lemma 29
[TrΦAΦ, T rBΦ] = 0, for A,B : [A,B] = 0

Proof By a straightforward calculation.

Lemma 30
TrΦnKΦ− ΦKΦn = 0.

Proof According to the formula 83:

TrΦnKΦ− ΦKΦn = TrP (K
2
+K

1
)([Φ

1
n,Φ

2
]) = TrP (K

2
+ K

1
)([Φ

1
n, P ])

= TrP (K
2
+K

1
)(Φ

1
nP − Φ

2
nP ) = Tr(K

2
Φ
1
n −K

2
Φ
2
n) + (K

1
Φ
1
n −K

1
Φ
2
n)

= TrKTrΦn − TrIdTrKΦn + TrKΦnTrId− TrKTrΦn) = 0

�

Lemma 31

Tr[Φ,KlΦm] = TrKl TrΦm − TrKlΦm TrId (85)

Proof

Tr[Φ,KlΦm] = Tr[Φ
1
,K

2
lΦ
2
m]P = TrK

2
l[Φ

1
,Φ

2
m]P = TrK

2
l[P,Φ

2
m]P =

= TrK
2
lΦ
1
m − TrK

2
lΦ
2
m = TrKl TrΦm − TrKlΦm TrId (86)

�

Lemma 32 (due to Skrypnyk [13]):

[TrAΦ, T rBΦn] = 0 where [A,B] = 0 (87)

Proof:

Tr[A
1
Φ
1
, B

2
Φ
2
n] = TrA

1
B
2
[P,Φ

2
n]

= TrA
1
B
2
Φ
1
nP − TrA

1
B
2
Φ
2
nP = TrAΦnB − TrABΦn = 0 (88)

�
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Lemma 33

[Tr(2K2Φ2 + KΦKΦ), T rKΦn] = 0 (89)

Proof

[TrK2Φ2, T rKΦn] = Tr[K
1
2Φ
1
2,K

2
Φ
2
n] = TrK

1
2K

2
[Φ
1
2,Φ

2
n]

= / by lemma 3 / = TrK
1
2K

2
(
∑

a=1,2

PΦ
1
a−1Φ

2
n+2−a − PΦ

1
n+2−aΦ

2
a−1)

= TrK
1
2K

2
(PΦ

2
n+1 − PΦ

1
n+1 + PΦ

1
Φ
2
n − PΦ

1
nΦ

2
) = TrK

1
2K

2
P (Φ

1
Φ
2
n − Φ

1
nΦ

2
)

= TrK
2
Φ
2
K
1
2Φ
1
nP − TrK

2
Φ
2
nK

1
2Φ
1
P = TrKΦK2Φn − TrKΦnK2Φ (90)

[TrKΦKΦ, T rKΦn] = TrK
1
Φ
1
K
1
K
2
[Φ
1
,Φ

2
n] +K

1
K
2
[Φ
1
,Φ

2
n]K

1
Φ
1

= / by lemma 2 /

= TrK
1
Φ
1
K
1
K
2
Φ
1
nP −K

1
Φ
1
K
1
K
2
Φ
2
nP +K

1
K
2
Φ
1
nK

2
Φ
2
PK

1
K
2
Φ
2
nK

2
Φ
2
P

= TrK2ΦKΦn −KΦK2Φn +KΦnK2Φ−K2ΦnKΦ

= Tr[K2Φ,KΦn]− 2KΦK2Φ3 + 2KΦnK2Φ− [K2Φn,KΦ]

= 2TrKΦnK2Φ− 2TrKΦK2Φn + Tr[K2Φ,KΦn]− Tr[K2Φn,KΦ] (91)

Tr[K2Φ,KΦn] = TrK
1
2K

2
[P,Φ

2
n]P = TrK

1
2K

2
Φ
1
n − TrK

1
2K

2
Φ
2
n

= TrK2ΦnTrK − TrK2TrKΦn (92)

Tr[K2Φn,KΦ] = TrK
1
2K

2
[Φ
1
n, P ]P = TrK

1
2K

2
Φ
1
n − TrK

1
2K

2
Φ
2
n

= TrK2ΦnTrK − TrK2TrKΦn (93)

Hence

Tr[K2Φ,KΦn] = Tr[K2Φn,KΦ] (94)

[TrKΦKΦ, T rKΦn] = 2TrKΦnK2Φ− 2TrKΦK2Φn (95)

[Tr(2K2Φ2 + KΦKΦ), T rKΦn] = 0 (96)

The lemma is proved. �
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