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ABSTRACT

There have been various attempts to identify groups of area-preserving

diffeomorphisms of 2-dimensional manifolds with limits of SU(N) as N → ∞.

We discuss the particularly simple case where the manifold concerned is the

two-dimensional torus T 2 and argue that the limit, even in the basis commonly

used, is ill-behaved and that the large-N limit of SU(N) is much larger than

SDiff(T 2).

I. INTRODUCTION

Groups of area-preserving diffeomorphisms and their Lie algebras have recently been the

focus of much attention in the physics literature. Hoppe [1] has shown that in a suitable

basis, the Lie algebra of the group SDiff(S2) of area-preserving diffeomorphisms of a sphere

tends to that of SU(N) as N → ∞. Similar arguments have been made associating various

infinite limits of Lie algebras of classical groups with Lie algebras of groups of area-preserving
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diffeomorphisms of 2-dimensional surfaces. This has obvious interest in connection with

gauge theories of SU(N) for large N. The use of SU(N) for finite N as an approximation to

groups of area-preserving diffeomorphisms has also been used in studies of supermembranes

[2–4] and in particular has been used to argue for their instability. The authors of references

[3] and [4] have especially emphasized the difficulties in relating such infinite limits with Lie

algebras of area-preserving diffeomorphisms. Various authors have considered special limits

and/or large-N limits of other classical Lie algebras [6–10] as relevant for 2-manifolds other

than spheres. The purpose of this Letter is to clarify the nature of the limiting procedure

by which SU(∞) has been related to SDiff(T 2).

II. THE LIE ALGEBRAS OF SDIFF (T 2)

We follow here the treatment of [7], which is particularly clear. The torus T 2 is repre-

sented by the plane R2 with coordinates x and y and the identifications

(x, y) = (x+ 2π, y) (1)

and

(x, y) = (x, y + 2π) (2)

A basis for functions on the torus is chosen as

Ymn(x, y) = exp [i(mx + ny)] (3)

with m,n running over all integers. The local area-preserving diffeomorphisms are then

generated by the vector fields
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Lmn = (ǫab∂bYmn)∂a = iexp [i(mx + ny)] (n∂x −m∂y) (4)

with indices a, b = 1, 2. In other words, the divergence-free vector fields are those which are

the curl of something else.

The generators clearly close under commutation, with the commutator

[Lmn, Lm′,n′] = (mn′ −m′n)Lm+m′,n+n′ (5)

III. THE LIE ALGEBRA OF SU(N)

To construct the Lie algebra of SU(N), again following [7], we sketch the basic idea. Fix

a positive integer N and a complex number ω such that ωN = 1 but ωr 6= 1 for 0 < r < N .

ω is called a primitive root of unity. Then we have ω = exp(2πik/N) for some k relatively

prime to N . Now we find unitary, traceless matrices g and h such that

hg = ωgh (6)

Then the set of matrices

Jm,n = ωmn/2gmhn (7)

for 0 ≤ m,n < N are linearly independent and are a basis for the N ×N matrices. J0,0 = 1,

and all the other Jm,n are traceless and satisfy J†
m,n = J−m,−n. Leaving out J0,0, the scaled

matrices J ′
m,n = iN/(2kπ)Jm,n generate SU(N) with the commutation relations

[

J ′
m,n, J

′
m′,n′

]

=
N

kπ
sin

(

kπ

N
(mn′ −m′n)

)

J ′
m+m′,n+n′ (8)
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IV. THE N → ∞ LIMIT

The claim now is that in the limit N → ∞ that the commutation relations in equation III

go over to those in equation II. Naively, of course, one would like to argue that as N → ∞,

N

kπ
sin

(

kπ

N
(mn′ −m′n)

)

= (mn′ −m′n) +O(1/N2) (9)

and drop the terms of order 1/N2 and higher. However, let us keep the next term and

examine whether or not it can indeed be taken to be small.

N

kπ
sin

(

kπ

N
(mn′ −m′n)

)

= (mn′ −m′n)−
1

3!

(kπ)2

N2
(mn′ −m′n)3 + . . . (10)

Now consider any choice of (m,n) = (N/a, 0) and (m′, n′) = (0, N/b) where a and b are

arbitrary integers that divide N (including one). Then

(kπ)2

N2
(mn′ −m′n)3 =

(kπ)2

a3b3
N4 (11)

which is clearly not negligible as N → ∞. It would seem that there are many elements of

the Lie algebra of SU(N) which do not belong to SDiff(T 2).

This is in keeping with ideas raised in [11] suggesting that SU(∞) is much larger than

the group of area-preserving diffeomorphisms of a surface, and perhaps descibes some sort of

theory incluing topology change. Other work demonstrating that topologically, SDiff(T 2),

and indeed all the area-preserving diffeomorphism groups, are inequivalent to SU(∞) is in

[12].
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