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Abstract: “Fuzzy CP2”, which is a four-dimensional fuzzy manifold analogous to the

fuzzy 2-sphere (S2), appears as a classical solution in the dimensionally reduced 8d Yang-

Mills model with a cubic term involving the structure constant of the SU(3) Lie algebra.

Although the fuzzy S2, which is also a classical solution of the same model, has actually

smaller free energy than the fuzzy CP2, Monte Carlo simulation shows that the fuzzy

CP2 is stable even nonperturbatively due to the suppression of tunneling effects at large

N as far as the coefficient of the cubic term (α) is sufficiently large. As α is decreased,

both the fuzzy CP2 and the fuzzy S2 collapse to a solid ball and the system is essentially

described by the pure Yang-Mills model (α = 0). The corresponding transitions are of first

order. The gauge group generated dynamically above the critical point turns out to be of

rank one for both CP2 and S2 cases. Above the critical point, we also perform perturbative

calculations for various quantities to all orders, taking advantage of the one-loop saturation

of the effective action in the large-N limit. By extrapolating our Monte Carlo results to

N = ∞, we find excellent agreement with the all order results.
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1. Introduction

Fuzzy spheres [1], which are simple compact noncommutative manifolds, have been recently

discussed extensively in the literature. One of the motivations comes from the general

expectation that noncommutative geometry provides a crucial link to string theory and

quantum gravity. Indeed Yang-Mills theories on noncommutative geometry appear in a

certain low energy limit of string theory [2]. There is also an independent observation

that the space-time uncertainty relation, which is naturally realized by noncommutative
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geometry, can be derived from some general assumptions on the underlying theory of

quantum gravity [3]. Another motivation is to use fuzzy spheres as a regularization scheme

alternative to the lattice regularization [4]. Unlike the lattice, fuzzy spheres preserve the

continuous symmetries of the space-time considered, and hence it is expected that the

situation concerning chiral symmetry [5–23] and supersymmetry might be improved.

As expected from the connection to string theory [24], fuzzy spheres appear as classical

solutions in matrix models with a Chern-Simons-like term [25–29] and their dynamical

properties have been studied in refs. [30–39]. One can actually use matrix models to

define a regularized field theory on the fuzzy spheres as well as on a noncommutative

torus [40], which enables nonperturbative studies of such theories from first principles [41].

These matrix models belong to the class of the so-called dimensionally reduced models (or

large-N reduced models), which is widely believed to provide a constructive definition of

superstring and M theories [42–44]. The space-time is represented by the eigenvalues of the

bosonic matrices, and in the IIB matrix model [43], in particular, the dynamical generation

of four-dimensional space-time (in ten-dimensional type IIB superstring theory) has been

discussed by many authors [45–58].

In ref. [59] we have studied the dimensionally reduced 3d Yang-Mills-Chern-Simons

(YMCS) model, which has the fuzzy 2-sphere (S2) as a classical solution [26]. Unlike

previous works we have performed nonperturbative first-principle studies by Monte Carlo

simulation. We observed a first-order phase transition as we vary the coefficient (α) of the

Chern-Simons term. For small α the large-N behavior of the model is the same as in the

pure Yang-Mills model, whereas for large α a single fuzzy S2 appears dynamically.

For obvious reasons it is interesting to extend this work to a matrix model which

accommodates a four-dimensional fuzzy manifold. In ref. [60] we have studied the dimen-

sionally reduced 5d Yang-Mills model with the quintic Chern-Simons term [27, 29], which

is known to have the fuzzy 4-sphere (S4) as a classical solution [61]. Unlike the fuzzy S2

case, however, the fuzzy S4 is unstable at the classical level, and Monte Carlo simulation

confirmed that it does not stabilize even at the quantum level. The negative result is es-

sentially due to the fact that the quintic Chern-Simons term has higher powers in Aµ than

the Yang-Mills term.

This motivates us to return to the class of models with a cubic term. As a candidate of

a four-dimensional fuzzy manifold, we study the fuzzy CP2 [28, 34, 62–65], which appears

as a classical solution in the dimensionally reduced 8d Yang-Mills model with a cubic term

involving the structure constant of the SU(3) Lie algebra. In fact the fuzzy S2, which is also

a classical solution of this model, has smaller free energy than the fuzzy CP2. Monte Carlo

simulation shows, however, that the fuzzy CP2 is stable even nonperturbatively due to the

suppression of tunneling effects at large N as far as the coefficient (α) of the cubic term

is sufficiently large. As we decrease α, both the fuzzy CP2 and the fuzzy S2 collapse to a

solid ball, and the system is essentially described by the pure Yang-Mills model (α = 0).

The corresponding phase transitions are of first order, and the lower critical point agrees

with the analytical result obtained from the one-loop effective action. Since the one-loop

effective action is saturated at one loop in the large-N limit, the analytical result for the

critical point is expected to be free from higher loop corrections.
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Above the critical point, we perform perturbation calculations for various quantities to

all orders, taking advantage of the one-loop saturation of the effective action in the large-N

limit. This technique was originally proposed for a supersymmetric model [37], where the

effective action is saturated only at two loop. In the bosonic case, one can obtain all order

results by performing essentially the one-loop calculation [66]. By extrapolating our Monte

Carlo results for various observables to N = ∞, we find excellent agreement with the all

order results.

In the large-N reduced models, not only the space-time [45] but also the gauge group

[67] is expected to appear dynamically. While there are certain evidences in the IIB matrix

model that indeed four-dimensional space-time appears dynamically [53–55,57,68,69], the

issue of the gauge group is totally unclear. The models we are studying may be considered

as a toy model in which one may obtain a definite answer to such a question, since the

gauge group of rank k naturally appears if the true vacuum is given by k coincident fuzzy

manifolds. The value of k should be determined dynamically, and the result may of course

depend on the model one considers. In the present model we find the gauge group to be

of rank one for both the fuzzy CP2 and the fuzzy S2. In arriving at this conclusion, the

existence of the first-order phase transition plays a crucial role as in our previous work [59].

This paper is organized as follows. In section 2 we define the model and show that the

fuzzy CP2 and the fuzzy S2 appear as classical solutions. In sections 3 and 4 we study the

properties of the fuzzy CP2 and the fuzzy S2, respectively. In section 5 we compare the free

energy for the fuzzy CP2 and the fuzzy S2 to discuss which is the true vacuum whenever

they exist. In section 6 we study the properties of the k coincident fuzzy CP2. In section

7 we determine the rank of the dynamical gauge group for the fuzzy CP2 and the fuzzy

S2. Section 8 is devoted to a summary and discussions. In appendix A we present the

explicit form of the fuzzy CP2 configuration. In appendix B we formulate the perturbation

theory around fuzzy manifolds and obtain an expression for the one-loop free energy. In

appendices C and D we show the perturbative calculations for the fuzzy CP2 and the fuzzy

S2, respectively.

2. The model and its classical solutions

The model we study is defined by the action

S = N tr

(

−1

4
[Aµ, Aν ]

2 +
2

3
i α fµνρAµAν Aρ

)

, (2.1)

where Aµ (µ = 1, · · · , 8) are N ×N traceless hermitian matrices. Here and henceforth we

sum over repeated indices. The coefficient fµνρ is the structure constant of the SU(3) Lie

algebra, whose nonzero components are given explicitly by

f123 = 1 , f458 = f678 =

√
3

2
, f147 = f246 = f257 = f345 = f516 = f637 =

1

2
. (2.2)

The pure Yang-Mills model (α = 0) and its obvious generalization to D dimensions

with D matrices Aµ (µ = 1, . . . ,D) have been studied by many authors. In particular, the
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large-N dynamics of the model have been studied by the 1/D expansion and Monte Carlo

simulation [70]. The partition function was conjectured [71] and proved [72] to be finite for

N > D/(D− 2). (See refs. [73–75] for the supersymmetric case.) The partition function in

the presence of the Chern-Simons term has been studied analytically for N = 2 [76], and

it turned out to be convergent in the supersymmetric case, but not in the bosonic case.

It is also proved that adding a Myers term (the cubic term in the present case) does not

affect the convergence as far as the original path integral converges absolutely [77], which

means, in particular, that the partition function of our model is convergent for N ≥ 4.

The classical equation of motion of the model (2.1) is given by

[Aν , [Aµ, Aν ]]− i α fµνρ[Aν , Aρ] = 0 . (2.3)

One can easily see that there exists a solution of the form

Aµ = αTµ , (2.4)

where Tµ satisfies the SU(3) Lie algebra

[Tµ, Tν ] = ifµνρTρ . (2.5)

Hence one obtains a classical solution for each of the N -dimensional representations of the

SU(3) Lie algebra. Let us consider the case in which Tµ is given by the irreducible (m,n)

representation T
(m,n)
µ . Such a solution exists when the size of the matrices Aµ is

N =
1

2
(m+ 1)(n+ 1)(m + n+ 2) . (2.6)

The explicit form of T
(m,n)
µ is given in the appendix A.

The space represented by the matrices Aµ = αT
(m,n)
µ has SU(3) isometry. There

are two kinds of manifold whose isometry is SU(3). One is SU(3)/U(2), and the other

is SU(3)/(U(1) × U(1)). In fact the SU(3)/U(2) space corresponds to the (m, 0) or the

(0, n) representation, whereas the SU(3)/(U(1) × U(1)) space corresponds to the (m,m)

representation.

In what follows we consider the CP2 = SU(3)/U(2) space, which is given by

A(CP2)
µ ≡ αT (m,0)

µ . (2.7)

Note that this solution exists only for

N =
1

2
(m+ 1)(m+ 2) = 3, 6, 10, 15, 21, · · · . (2.8)

This is in contrast with the fuzzy S2 case [59], where the corresponding solution exists for

arbitrary N . As in ref. [59] we define the “radius-squared matrix”

Q = (Aµ)
2 , (2.9)

which is useful for distinguishing various solutions. Using the identity (A.8), we obtain

Q = ρ2 1N , ρ = α

√

m(m+ 3)

3
(2.10)
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for the CP2 solution, which implies that the fuzzy CP2 has the radius ρ.

We note that the model also has the fuzzy S2 type of classical solutions. As an example,

let us consider

A(S2)
µ ≡

{

αL
(N)
µ for µ = 1, 2, 3 ,

0 otherwise ,
(2.11)

where L
(N)
µ is the N -dimensional irreducible representation of the SU(2) Lie algebra. The

radius-squared matrix Q is given in this case as

Q = R2 1N , R =
1

2
α
√

N2 − 1 . (2.12)

Although there are other fuzzy S2 solutions with a smaller radius, the one given above is

considered the most relevant since it has the smallest action among them.

3. Properties of the fuzzy CP2

In order to study the properties of the fuzzy CP2, we simulate the model (2.1) using (2.7)

as the initial configuration. We apply the heat bath algorithm developed in ref. [70] for

the pure Yang-Mills model by implementing the cubic term as explained in the appendix

A of ref. [59].
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Figure 1: The quantities 1

N2 〈S〉 and 1
√

N
〈 1

N
tr(Aµ)

2〉 are plotted against ᾱ = αN
1

4 for N =

10, 15, 21, 28 (m = 3, 4, 5, 6) for the fuzzy CP2 start. The dotted, dashed and solid lines represent

the classical, one-loop and all order results, respectively, at large N .

From perturbative calculations, it turns out natural to fix the rescaled parameter

ᾱ = αN
1
4 , (3.1)

when we take the large-N limit. In figure 1 we plot the Monte Carlo results for the action

〈S〉 and the “extent of space-time” 〈 1
N tr(Aµ)

2〉 (with an appropriate normalization factor)
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Figure 2: The quantities 1

N2 〈S〉 (left) and 1
√

N
〈 1

N
tr(Aµ)

2〉 (right) are plotted against 1

N
for ᾱ = 3.0

for the fuzzy CP2 start. The dotted lines represent a linear fit, and the horizontal solid (dashed)

lines represent the all order (one-loop) results obtained analytically at N = ∞. The large-N

extrapolation demonstrates excellent agreement with the all order result.

against the rescaled parameter ᾱ for N = 10, 15, 21, 28 (m = 3, 4, 5, 6). We observe a

discontinuity around

ᾱ = ᾱ(CP2)
cr ≃ 2.3 , (3.2)

which suggests the existence of a first-order phase transition. An analogous first-order

phase transition has been found also in the 3d YMCS model [59]. The critical point (3.2)

agrees well with the analytical result (C.10) with k = 1.

Below the critical point, the Monte Carlo results are almost independent of α. This is

because the cubic term in the action (2.1) takes small values, and hence it does not play any

role in this regime. Note, in particular, that 1
N 〈tr(Aµ)

2〉 ≃ O(1) as in the pure Yang-Mills

model (α = 0) [70], which means that 1
N 〈tr(Aµ)

2〉 has different large-N behaviors in the

two phases, as clearly seen in figure 1.

Above the critical point, we observe that Monte Carlo results approach the all order

results (C.40), (C.41) with k = 1 as N increases. In order to clarify the finite-N effects, in

figure 2 we plot the same quantities against 1
N for N = 10, 15, 21, 28 (m = 3, 4, 5, 6) with

fixed ᾱ = 3.0 > ᾱ
(CP2)
cr . The data can be nicely fitted to a straight line, which implies that

the leading finite-N effect is of O( 1
N ). This allows us to make a reliable extrapolation to

N = ∞, and we find excellent agreement with the all order results.

4. Properties of the fuzzy S2

In this section we study the properties of the fuzzy S2 by Monte Carlo simulation us-

ing (2.11) as the initial configuration. Perturbative calculations suggest that the natural

definition of the rescaled parameter in this case is

α̃ = αN
1
2 , (4.1)
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Figure 3: The quantities 1

N2 〈S〉 and 1

N
〈 1

N
tr(Aµ)

2〉 are plotted against α̃ = αN
1

2 for N =

10, 15, 21, 28 with the fuzzy S2 start. The dotted, dashed and solid lines represent the classical,

one-loop and all order results, respectively, at large N .
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Figure 4: The quantities 1

N2 〈S〉 (left) and 1

N
〈 1

N
tr(Aµ)

2〉 (right) are plotted against 1

N2 for α̃ = 5.0

with the fuzzy S2 start. The dotted lines represent a linear fit, and the horizontal solid (dashed)

lines represent the all order (one-loop) results obtained analytically at N = ∞. The large-N

extrapolation demonstrates excellent agreement with the all order result.

unlike (3.1) in the fuzzy CP2 case. In figure 3 we plot 1
N2 〈S〉 and 1

N 〈 1
N tr(Aµ)

2〉 against α̃.
We observe a discontinuity at

α̃ = α̃(S2)
cr ≃ 3.2 , (4.2)

which suggests the existence of a first-order phase transition. The critical point (4.2) agrees

well with the analytical result (D.6) with k = 1. In terms of the unrescaled parameter α,

the critical point for the fuzzy CP2 and the fuzzy S2 are α
(CP2)
cr ≃ 2.3

N1/4 and α
(S2)
cr ≃ 3.2

N1/2 ,

respectively, which means that α
(S2)
cr < α

(CP2)
cr . Below the critical point, Monte Carlo

results are identical to those for the fuzzy CP2 start presented in the previous section, as

expected.
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Above the critical point α̃ > α̃
(S2)
cr , Monte Carlo results are quite close to the all order

results (D.13), (D.14) with k = 1. In figure 4 we plot the two quantities against 1
N2 for

N = 6, 10, 15, 21 with fixed α̃ = 5.0 > α̃
(S2)
cr . Monte Carlo results can be nicely fitted to

a straight line, which implies that the leading finite-N effect is O( 1
N2 ), as compared with

O( 1
N ) for the fuzzy CP2 case. The large-N extrapolation demonstrates perfect agreement

with the all order results obtained in the large-N limit.

5. CP2 versus S2 —which is the true vacuum? —

In the previous two sections, we have seen that both the fuzzy CP2 and the fuzzy S2 are

stable for sufficiently large α. In this section we discuss which of the two describes the true

vacuum. For that purpose we compare the free energy for the fuzzy CP2 and the fuzzy S2,

which are obtained to all orders in perturbation theory in the large-N limit as (C.37) and

(D.12), respectively. Setting k = 1 and rewriting in terms of the unrescaled parameter α,

the free energy reads

W (CP2) ≃ N2

(

−α4N

6
+ 6 log α+ log(8N7)− 9

α4N
− 63

α8N2
− 1485

2α12N3
− · · ·

)

, (5.1)

W (S2) ≃ N2

(

−α4N2

24
+ 6 log α+ logN10 − 36

α4N2
− 1008

α8N4
− 47520

α12N6
− · · ·

)

. (5.2)

Thus in the region α ≥ α
(CP2)
cr = 2.3

N1/4 , where both the fuzzy CP2 and the fuzzy S2 exist,

we find that the fuzzy S2 has smaller free energy than the fuzzy CP2 at large N . Therefore

the fuzzy CP2 cannot be the true vacuum in the present model.

We note, however, that the fuzzy CP2 appears to be very stable. For instance, we have

performed a simulation with the fuzzy CP2 start for N = 10 (m = 3) and α = 1.4, which

is just above the critical point. The fuzzy CP2 does not decay into the fuzzy S2 even after

107 sweeps of the heat bath algorithm. This suggests the existence of a potential barrier

between the two vacua, which presumably increases with N . We therefore consider that

the fuzzy CP2 stabilizes due to the suppression of tunneling effects in the large-N limit.

6. Properties of the k coincident fuzzy CP2

In this section we discuss the properties of the k coincident fuzzy CP2 configuration

A(kCP2)
µ ≡ αT (m,0)

µ ⊗ 1k , (6.1)

which is also a classical solution of the model. The size of the matrices should now be

N =
1

2
k (m+ 1)(m+ 2) . (6.2)

Such a configuration is important since it gives rise to a gauge theory on the fuzzy CP2

with the gauge group of rank k.

We have performed Monte Carlo simulation with the initial configuration given by

(6.1) with k = 2. In figure 5 we plot the action S and the eigenvalues of the radius-squared

– 8 –
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Figure 6: The quantities 1

N2 〈S〉 and 1
√

N
〈 1

N
tr(Aµ)

2〉 are plotted against ᾱ = αN
1

4 for N =

20, 30, 42 (m = 3, 4, 5) with the k = 2 coincident fuzzy CP2 start. The dotted, dashed and solid

lines represent the classical, one-loop and all order results, respectively, at large N .

matrix Q defined by (2.9) against the number of “sweeps” in the heat bath algorithm [70].

We observe that the k = 2 fuzzy CP2 decays after 600 sweeps.

Although the k = 2 coincident fuzzy CP2 is thus only meta-stable, we may measure

various observables before it actually decays in Monte Carlo simulation. In figure 6 we plot

the results against ᾱ for N = 20, 30, 42 (m = 3, 4, 5). We observe a discontinuity at

ᾱ = ᾱ(k=2CP2)
cr ≃ 2.7 , (6.3)

which agrees with the analytical result (C.10). Above the critical point, our Monte Carlo

results agree well with the all order results (C.40), (C.41) with k = 2.
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7. Dynamical gauge group

In the previous section, we have seen in Monte Carlo simulation that the k coincident fuzzy

CP2 is unstable in the k = 2 case. This instability is related to the zero modes that appear

in the perturbation theory around these configurations. (See appendix C.1.) Although we

cannot exclude the possibility that the instability disappears in the large-N limit, we show

that the multi-fuzzy CP2 cannot be the true vacuum anyway, by comparing the free energy

calculated omitting the zero modes. The explicit form of the free energy to all orders in

perturbation theory is obtained as (C.37) above the critical point (C.10), which we plot for

k = 1, · · · , 6 in figure 7 (left). We find that the k = 1 case gives the smallest free energy

for all values of ᾱ. Thus, we conclude that the dynamical gauge group for the fuzzy CP2

is of rank one.

We repeat the same analysis for the fuzzy S2 case. The free energy for the k coincident

fuzzy S2 is given to all orders in perturbation theory above the critical point (D.6) by

(D.12), which we plot for k = 1, · · · , 6 in figure 7 (right). We find that the k = 1 case

gives the smallest free energy for all values of α̃. Therefore, the dynamical gauge group is

of rank one in this case as well.

Let us emphasize that the existence of the first-order phase transition plays an im-

portant role in arriving at these conclusions. As one can see from the free energy (C.37),

(D.12), the classical term favors small k, while the one-loop term proportional to log k fa-

vors large k. Therefore, if we disregard the existence of the first-order phase transition, the

rank of the dynamical gauge group could be k > 1 at small α. What actually happens is

that the critical point (C.10), (D.6) increases with k, and since we have to restrict ourselves

to the region above the critical point, the one-loop term cannot compensate the effect of

the classical term.
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Figure 7: The free energy obtained to all orders in perturbation theory is plotted above the critical

point for the k coincident fuzzy CP2 (left) and fuzzy S2 (right) with k = 1, · · · , 6. We have taken

the large-N limit after subtracting the irrelevant constant term proportional to logN . In both

cases, the k = 1 case represented by the solid line gives the smallest free energy.
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8. Summary and discussions

In this paper we have applied nonperturbative techniques and ideas, which have been

developed in ref. [59], to a four-dimensional fuzzy manifold, the fuzzy CP2. The present

model may be considered as a natural extension of our previous model in the sense that

the epsilon tensor, which is nothing but the structure constant of SU(2), is now replaced

by that of SU(3). Since the number of bosonic matrices should be equal to or larger

than the dimensionality of the algebra, it is taken to be 8 instead of 3. Unlike the fuzzy

S4 in the matrix model with a quintic term [60], the fuzzy CP2 in the present model

is nonperturbatively stable in the large-N limit despite the fact that it has larger free

energy than the fuzzy S2 in the same model. Thus the model provides a nonperturbative

definition of a gauge theory on the fuzzy CP2. It would be interesting to investigate the

field theoretical aspects of this model as in the case of noncommutative torus [41].

From the viewpoint of the dynamical generation of space-time, however, we should

note that the fuzzy CP2 cannot be realized as the true vacuum since it has larger free

energy than the fuzzy S2. This conclusion is in contrast to the results [53–55,57] obtained

in the IIB matrix model [43], where four-dimensional space-time is shown to have smaller

free energy than the space-time with other dimensionality. We should also note that the

gauge group dynamically generated for the cases studied in this paper as well as in the

previous work [59] turns out to be of rank one, although there is no reason for it a priori.

Indeed ref. [78] presents an explicit model in which the gauge group with higher rank is

realized in the true vacuum. In the IIB matrix model, we feel that supersymmetry plays

an important role in obtaining four-dimensional space-time as well as a gauge group of

sufficiently high rank that can accommodate the Standard Model. We would like to report

on these issues in the near future.
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A. Explicit form of the CP2 configuration

In this section we present the explicit form of the representation matrix T
(m,n)
µ of the

SU(3) algebra. This, in particular, provides us with the explicit form of the fuzzy CP2

configuration A
(CP2)
µ in eq. (2.7).

For that purpose we need to introduce the so-called (anti-)symmetric tensor product.

Let us denote the matrix element of the matrix A for the orthonormal states |i〉 and |j〉 as
(A)ij = 〈i|A|j〉. The usual tensor product is defined by

〈i1, i2|A⊗B|j1, j2〉 = 〈i1|A|j1〉〈i2|B|j2〉 , (A.1)
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where |j1, j2〉 = |j1〉|j2〉. The (anti-)symmetric tensor product are defined through their

matrix elements

sym〈i1, i2|A⊗B|j1j2〉sym , (A.2)

asym〈i1, i2|A⊗B|j1j2〉asym , (A.3)

where |j1, j2〉sym and |j1, j2〉asym are the orthonormal (anti-)symmetrized state defined by

|j1, j2〉sym =

{

|j1〉|j2〉 for j1 = j2 ,
1√
2
(|j1〉|j2〉+ |j2〉|j1〉) for j1 6= j2 ,

(A.4)

|j1, j2〉asym =
1√
2
(|j1〉|j2〉 − |j2〉|j1〉) for j1 6= j2 , (A.5)

respectively. The size of the matrices representing the symmetric tensor product (A⊗B)sym
and the anti-symmetric tensor product (A⊗B)asym is k+1C2 and kC2 , respectively, where

k is the size of the matrices A and B. The (anti-)symmetric tensor product can be gener-

alized straightforwardly to a product of more than two matrices. Then the representation

matrix of the (m, 0) representation is given as

T (m,0)
µ =

m∑

j=1

(

13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

j−1

⊗tµ ⊗ 13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

m−j

)

sym
, (A.6)

where tµ denotes the fundamental (1, 0) representation of the SU(3) Lie algebra, which is

given explicitly as

t1 =
1

2






0 1 0

1 0 0

0 0 0




 , t2 =

1

2






0 −i 0

i 0 0

0 0 0




 , t3 =

1

2






1 0 0

0 −1 0

0 0 0




 , t4 =

1

2






0 0 1

0 0 0

1 0 0




 ,

t5 =
1

2






0 0 −i

0 0 0

i 0 0




 , t6 =

1

2






0 0 0

0 0 1

0 1 0




 , t7 =

1

2






0 0 0

0 0 −i

0 i 0




 , t8 =

1

2
√
3






1 0 0

0 1 0

0 0 −2




 .

The (0, n) representation can be obtained by simply replacing the fundamental represen-

tation tµ by the anti-fundamental representation, sµ = −t∗µ, in the above definition.

In order to obtain the (m,n) representation, we have to define an orthonormal state

|j1, · · · , jm; k1, · · · , kn〉mix with a mixed symmetry such that it is symmetric with respect

to the first m indices and the last n indices, separately, and anti-symmetric with respect

to the exchange of one of the first m indices and one of the last n indices. (This symmetry

is exactly the symmetry of the Young tableaux for the (m,n) representation.) We denote

the tensor product defined with these states as (A1 ⊗ · · · ⊗Am ⊗B1 ⊗ · · · ⊗Bn)mix. Then

the representation matrix of the (m,n) representation is given as

T (m,n)
µ =

( m∑

j=1

13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

j−1

⊗tµ ⊗ 13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

m−j

⊗13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

n

+

n∑

k=1

13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

m

⊗13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

k−1

⊗sµ ⊗ 13 ⊗ · · · ⊗ 13
︸ ︷︷ ︸

n−k

)

mix
. (A.7)
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Note also that

(

T (m,n)
µ

)2
=



((tµ)
2 ⊗ 13 ⊗ · · · ⊗ 13) + · · ·

︸ ︷︷ ︸

m terms

+(13 ⊗ · · · ⊗ 13 ⊗ (sµ)
2) + · · ·

︸ ︷︷ ︸

n terms

+(tµ ⊗ tµ ⊗ 13 ⊗ · · · ⊗ 13) + · · ·
︸ ︷︷ ︸

m(m−1) terms

+(13 ⊗ · · · ⊗ 13 ⊗ sµ ⊗ sµ) + · · ·
︸ ︷︷ ︸

n(n−1) terms

+(tµ ⊗ · · · ⊗ 13 ⊗ sµ ⊗ · · · ⊗ 13) + · · ·
︸ ︷︷ ︸

2mn terms





mix

=

(
4

3
(m+ n) +

1

3
(m(m− 1) + n(n− 1)) +

1

6
× 2mn

)

1N

=
m(m+ 3) + n(n+ 3) +mn

3
1N , (A.8)

where we have used the formulae

(tµ ⊗ tµ)sym =
1

3
(13 ⊗ 13)sym , (A.9)

(tµ ⊗ sµ)asym =
1

6
(13 ⊗ 13)asym , (A.10)

(tµ)
2 = (sµ)

2 =
4

3
13 . (A.11)

B. Perturbative expansion around fuzzy manifolds

In this section we formulate the perturbation theory around the classical solution Xµ given

either by (6.1) representing k coincident fuzzy CP2 or by (D.1) representing k coincident

fuzzy S2. The single fuzzy CP2 and the single fuzzy S2 are included as a special case k = 1.

Let us evaluate the partition function Z =
∫
dAe−S around the classical solution

Aµ = Xµ at the one-loop level. We define the measure of the path integral as

dA =

8∏

µ=1

N2−1∏

a=1

dAa
µ , (B.1)

where Aµ =
∑N2−1

a=1 Aa
µ t

a with ta being the generators of SU(N) normalized as tr(tatb) =

δab. We need to fix the gauge since there are flat directions corresponding to the transfor-

mation

Aµ → Ag
µ = g Aµ g

† , (B.2)

where g is an element of the coset spaceH = U(N)/U(k). In order to remove the associated

zero modes, we introduce the gauge fixing term and the corresponding ghost term

Sg.f. = −N

2
tr [Xµ, Aµ]

2 , (B.3)

Sghost = −N tr
(

[Xµ, c̄][Aµ, c]
)

, (B.4)
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where c and c̄ are the ghost and anti-ghost fields, respectively. These ghost fields take

values in the tangent space of H. We perform the integration over Aµ by decomposing it

into the classical background and the fluctuation as Aµ = Xµ+ Ãµ. The partition function

can be rewritten as

Z = vol(H)N
∫

dÃ dc dc̄ e−Stotal , (B.5)

where the total action is defined by

Stotal = S + Sg.f. + Sghost , (B.6)

and it is given explicitly as

Stotal = S[X] + Skin + Sint , (B.7)

Skin =
1

2
N tr

(

Ãµ[Xλ, [Xλ, Ãµ]]
)

+N tr
(

c̄ [Xλ, [Xλ, c]]
)

, (B.8)

Sint = −N tr
(

[Ãµ, Ãν ][Xµ, Ãν ]
)

− 1

4
N tr

(

[Ãµ, Ãν ]
2
)

+
2

3
i αfµνρ N tr

(

ÃµÃνÃρ

)

+N tr
(

c̄ [Xµ, [Ãµ, c]]
)

. (B.9)

The normalization factor N = (2πN)−(N2−k2)/2 in (B.5) can be obtained by following the

usual gauge fixing procedure as in ref. [78]. The linear terms in Ãµ cancel since Xµ is

assumed to satisfy the classical equation of motion. Since the classical solution Xµ we

are considering is proportional to α, we can rescale the matrices as Aµ 7→ αAµ, c 7→ α c,

c̄ 7→ α c̄, so that all the terms in the total action Stotal become proportional to α4. This

means that the expansion parameter of the present perturbation theory is 1
α4 . The volume

of the coset space H in (B.5), vol(H) = vol(U(N))/vol(U(k)), can be obtained by using

the formula

vol(U(p)) =
(2π)p(p+1)/2

(p − 1)! (p − 2)! · · · 1! 0! . (B.10)

We calculate the free energy W = − logZ as a perturbative expansion W =
∑∞

j=0Wj,

where Wj = O(α4(1−j)) comes from the j-loop contribution. The classical part is obtained

as W0 = S[X], which is nothing but the action evaluated at the classical solution Aµ = Xµ.

Introducing the operator Pµ

PµM
def
= [Xµ,M ] , (B.11)

which acts on a N ×N traceless hermitian matrix M , the kinetic term (B.8) reads

Skin = N tr

{
1

2
Ãµ(Pλ)

2Ãµ + c̄(Pλ)
2c

}

. (B.12)

The one-loop term can therefore be obtained as

W1 = 3T r log{N(Pλ)
2} − log{vol(H)N} , (B.13)

where the symbol T r denotes the trace in the space of traceless hermitian matrices.
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C. Perturbative calculations for the fuzzy CP
2

In this section we focus on the case where the classical solution Xµ is taken to be the k

coincident fuzzy CP2 (6.1). The results for the single fuzzy CP2 can be readily obtained

by setting k = 1.

C.1 One-loop calculation of free energy

Let us calculate the free energy up to one-loop. The classical part is obtained as

W0 = −1

6
N2α4(n− 1) , (C.1)

where we have defined

n ≡ N

k
=

1

2
(m+ 1)(m+ 2) , (C.2)

and used the relation

fµνρ fµνρ′ = 3 δρρ′ . (C.3)

Next we evaluate the one-loop contribution W1 in (B.13). In order to solve the eigen-

value problem of the operator (Pλ)
2, we introduce an analog of matrix spherical harmonics

in the fuzzy S2 case [59]. Let us denote it as {Yst}, where the indices s and t run over

s = 0, 1, · · · ,m and t = 1, · · · , (s+1)3, respectively. It gives a complete basis for the space

of n×n matrices. (Note, for instance,
∑m

s=0(s+1)3 = n2.) For a given s, Yst transforms as

a (s, s)-type irreducible representation of SU(3) under the adjoint operation [T
(m,0)
µ , · ].

For more details of Yst, see refs. [28,62–65]. We also introduce k× k matrices e(a,b), whose

(a, b) element is 1 and all the other elements are zero. Then, as a complete basis of N ×N

matrices, we define

Y(a,b)
st ≡ Yst ⊗ e(a,b) , (C.4)

which satisfies the relation

tr
(

Y(a,b)†
st Y(a′,b′)

s′t′

)

= δss′δtt′δaa′δbb′ . (C.5)

The eigenvalue problem of the operator (Pλ)
2 can be solved as

(Pλ)
2Y(a,b)

st = α2s (s+ 2)Y(a,b)
st . (C.6)

Note that Y(a,b)
00 for all the (a, b) blocks are the zero modes. In the k = 1 case, the zero

mode should be excluded since Aµ are traceless. For k ≥ 2 the tracelessness condition

removes only one of the k2 zero modes. Here we omit the rest of them by hand 1. Then

the one-loop contribution W1 is given by

W1 = 3k2
m∑

s=1

(s+ 1)3 log
[
Nα2s(s+ 2)

]
− log{vol(H)N} . (C.7)

1In fact these zero modes are responsible for the instability of the multi-fuzzy CP2 discussed in section 6.

(See appendix D of ref. [59] for more in-depth discussions on this point in an analogous model.) However,

the number of zero modes, k2
− 1, is negligible compared with the dimension of the configuration space,

which is of O(N2). Indeed figure 6 shows that the results obtained by omitting the zero modes are in

reasonable agreement with Monte Carlo results obtained before the decay of the multi-fuzzy CP2 actually

takes place.
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The one-loop free energy is obtained at large N as

W0 +W1 ≃ N2

(

− ᾱ4

6k
+ 6 log ᾱ+ log

8N
11
2

k3
− 9

4

)

, (C.8)

where the rescaled parameter ᾱ is defined by (3.1).

C.2 Derivation of the critical point

In section 3 we observed a phase transition in Monte Carlo simulation starting from the

fuzzy CP2 configuration. We can derive the critical point in the same way as in the 3d

YMCS model [59]. Let us consider the effective action for a one-parameter family of

configurations Aµ = β T
(m,0)
µ ⊗ 1k. At the one-loop level, it is obtained at large N as

Γ1−loop(β̄) ≃ N2

{

2

3k

(
3β̄4

4
− ᾱβ̄3

)

+ 6 log β̄ + log
8N

11
2

k3
− 9

4

}

, (C.9)

where β̄ = βN
1
4 . The function of β̄ on the right hand side has a local minimum for

ᾱ > ᾱ(kCP2)
cr =

4√
3
k

1
4 = 2.3094011 · · · × k

1
4 , (C.10)

which determines the (lower) critical point of the first-order phase transition. In fact it is

known that the effective action is saturated at one loop in the large-N limit in the case of

fuzzy S2 or fuzzy S2 × S2 [32, 57]. This is the case also for the fuzzy CP2. Therefore, the

critical point obtained above is expected to be correct to all orders in perturbation theory.

C.3 One-loop calculation of various observables

In this section we extend the perturbative calculation to various observables including those

which are studied by Monte Carlo simulation in section 3 and 6. The zero modes, which

appear for k ≥ 2, is omitted as in the evaluation of the free energy given in appendix C.1.

We note that the number of loops in the relevant diagrams can be less than the order of
1
α4 in the perturbative expansion since we are expanding the theory around a nontrivial

background. At the one-loop level, the only nontrivial task is to evaluate the tadpole

〈(Ãµ)ij〉 explicitly.

C.3.1 Propagators and the tadpole

The propagators for Ãµ and the ghosts are given as

〈

(Ãµ)ij(Ãν)kl

〉

0
= δµν

∑

ab

m∑

s=1

(s+1)3
∑

t=1

1

Nα2s(s+ 2)

(

Y(a,b)
st

)

ij

(

Y(a,b)
st

†
)

kl

, (C.11)

〈

(c)ij(c̄)kl

〉

0
=
∑

ab

m∑

s=1

(s+1)3
∑

t=1

1

Nα2s(s+ 2)

(

Y(a,b)
st

)

ij

(

Y(a,b)
st

†
)

kl

, (C.12)

where the symbol 〈 · 〉0 refers to the expectation value calculated using the kinetic term

Skin in (B.8) only.
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Due to the symmetries, the tadpole 〈Ãµ〉 can be expressed as

〈Ãµ〉 = cXµ (C.13)

with some coefficient c. Using the identity

tr
(

Xµ〈Ãµ〉
)

= c tr(XµXµ)

=
cN

3
α2m(m+ 3) , (C.14)

the coefficient c can be determined by calculating the left hand side of (C.14).

At the leading order in 1
α4 , we have

1

N
tr
(

Xµ〈Ãµ〉1−loop

)

=
〈

tr(XµÃµ) tr
(

[Ãν , Ãρ][Xν , Ãρ]
)〉

0

−
〈

tr(XµÃµ) tr

(
2

3
i αfνρσÃνÃρÃσ

)〉

0

−
〈

tr(XµÃµ) tr
(

c̄ [Xν , [Ãν , c]]
)〉

0
. (C.15)

Using the fact that Xµ is a linear combination of (Ys=1,t ⊗ 1k), we can calculate (C.15)

similarly to the previous section. After some algebra we arrive at

tr
(

Xµ〈Ãµ〉1−loop

)

= − 2k2

Nα2
(n2 − 1) . (C.16)

Using (C.14) we obtain

〈Ãµ〉1−loop = − 6

α4

n2 − 1

n2m(m+ 3)
Xµ ≃ − 3

nα4
Xµ . (C.17)

C.3.2 One-loop results for various observables

Using the propagator and the tadpole obtained in the previous section, we can evaluate

various observables easily at the one-loop level.

The “extent of space-time” 〈 1
N tr(Aµ)

2〉 can be evaluated as

〈
1

N
tr(Aµ)

2

〉

1−loop

=
1

N

[

tr(XµXµ) + 2 tr
(

Xµ〈Ãµ〉1−loop

)

+ 〈tr(Ãµ)
2〉0
]

= α2

[

1

3
m(m+ 3)− 4

α4

n2 − 1

n2
+

8

n2α4

m∑

s=1

(s+ 1)3

s(s+ 2)

]

. (C.18)

At large N with fixed ᾱ, we obtain

1√
N

〈
1

N
tr(Aµ)

2

〉

1−loop

≃ 2ᾱ2

3k
− 4

ᾱ2
. (C.19)

The expectation value of the Chern-Simons term

M =
2 i

3N
fµνρtr(AµAνAρ) (C.20)
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can be evaluated as

〈M〉1−loop =
2i

3N
fµνρ

[

tr(XµXνXρ) + 3 tr
(

XµXν〈Ãρ〉1−loop

)]

= −α3

3
m(m+ 3) +

6(n2 − 1)

αn2
. (C.21)

At large N with fixed ᾱ, we get

1

N
1
4

〈M〉1−loop ≃ −2ᾱ3

3 k2
+

6

ᾱ
. (C.22)

The observable 〈 1
N tr(Fµν)

2〉 can be calculated in a similar manner, but it is easier to make

use of the Schwinger-Dyson equation
〈

1

N
tr(Fµν)

2 + 3αM

〉

= 8

(

1− 1

N2

)

, (C.23)

from which we obtain
〈

1

N
tr(Fµν)

2

〉

1−loop

= 8

(

1− 1

N2

)

− 3α〈M〉1−loop ≃ 2ᾱ4

k
− 10 . (C.24)

Combining (C.21) and (C.24), we get

1

N2
〈S〉1−loop =

1

4

〈
1

N
tr(Fµν)

2

〉

1−loop

+ α 〈M〉1−loop ≃ − ᾱ4

6 k
+

7

2
. (C.25)

C.3.3 An alternative derivation

Since tr(Fµν)
2 and M are the quantities that appear in the action S, we can obtain their

expectation values easily by using the free energy (C.8) calculated for the k coincident

fuzzy CP2. Let us consider the action

S(β1, β2;α) = Ntr

(

−β1
4
[Aµ, Aν ]

2

)

+ β2N
2αM , (C.26)

where we have introduced two free parameters β1 and β2, and define the corresponding

free energy by

e−W (β1,β2;α) =

∫

dA e−S(β1,β2;α) . (C.27)

By rescaling the integration variables as Aµ 7→ β
− 1

4
1 Aµ, we find

W (β1, β2;α) = 2(N2 − 1) log β1 +W (1, 1;αβ2β
− 3

4
1 ) . (C.28)

Then 〈tr(Fµν)
2〉, 〈M〉 and 〈S〉 can be obtained by

〈
1

N
tr(Fµν)

2

〉

=
4

N2

∂W (β1, β2;α)

∂β1

∣
∣
∣
∣
β1=β2=1

= 8

(

1− 1

N2

)

− 3ᾱ

N2

∂W (1, 1;α)

∂ᾱ
,

(C.29)

〈M〉 =
1

αN2

∂W (β1, β2;α)

∂β2

∣
∣
∣
∣
β1=β2=1

=
1

N
7
4

∂W (1, 1;α)

∂ᾱ
, (C.30)

1

N2
〈S〉 =

1

4

〈
1

N
tr(Fµν)

2

〉

+ α〈M〉 = 2

(

1− 1

N2

)

+
ᾱ

4N2

∂W (1, 1;α)

∂ᾱ
.

(C.31)
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Using the one-loop result

W (1, 1;α)1−loop = −1

6
N2α4(n− 1) + 3k2

m∑

s=1

(s + 1)3 log
[
Nα2s(s+ 2)

]
− log{vol(H)N} ,

(C.32)

which follows from (C.1) and (C.7), we can reproduce (C.21) and (C.24).

C.4 All order results from one-loop calculation

Taking advantage of the one-loop saturation of the effective action mentioned at the end of

appendix C.2, we can obtain all order results for various quantities in the large-N limit by

simply shifting the center of expansion in the one-loop calculation [37]. Similar calculations

have been done previously in the 3d YMCS model [66].

Since the free energy and the effective action are related to each other by the Legendre

transformation, we can obtain the free energy by evaluating the effective action at its

extremum. We consider the expansion around a configuration Aµ = β T
(m,0)
µ ⊗ 1k. The

value of β̄ that gives the local minimum of the effective action can be obtained by solving

∂Γ1−loop

∂β̄
= N2

{
2

k
(β̄3 − ᾱβ̄2) +

6

β̄

}

= 0 . (C.33)

The solution exists for ᾱ > ᾱ
(kCP2)
cr = 4√

3
k

1
4 , and it is given explicitly as

β̄ = f(ᾱ) ≡ ᾱ

4

(

1 +
√
1 + δ +

√

2− δ +
2√
1 + δ

)

, (C.34)

where

δ = ᾱ− 4
3 (96k)

1
3







(

1 +

√

1− 256k

9ᾱ4

) 1
3

+

(

1−
√

1− 256k

9ᾱ4

) 1
3






. (C.35)

At large ᾱ, the solution (C.34) can be expanded as

f(ᾱ) = ᾱ



1−
∞∑

j=1

cjᾱ
−4j



 = ᾱ

(

1− 3k

ᾱ4
− 27k2

ᾱ8
− 405k3

ᾱ12
− · · ·

)

. (C.36)

Plugging this solution into (C.9), we obtain the free energy to all orders as

1

N2
W ≃ − ᾱ4

6k
+ 6 log ᾱ+ log

8N
11
2

k3
− 9

4
− 9k

ᾱ4
− 63k2

ᾱ8
− 1485k3

2ᾱ12
− · · · . (C.37)

Using (C.29), (C.30) and (C.31), we obtain the all order results
〈

1

N
tr(Fµν)

2

〉

≃ 2ᾱ

k
f(ᾱ)3 + 8 =

2ᾱ4

k
− 10− 108k

ᾱ4
− 1512k2

ᾱ8
− 26730k3

2ᾱ12
− · · · .

(C.38)

1

N
1
4

〈M〉 ≃ −2f(ᾱ)3

3k
= −2ᾱ3

3k
+

6

ᾱ
+

36k

ᾱ5
+

504k2

ᾱ9
+

8910k3

ᾱ13
+ · · · . (C.39)

1

N2
〈S〉 ≃ − 1

6k
ᾱf(ᾱ)3 + 2 = − ᾱ4

6k
+

7

2
+

9k

ᾱ4
+

126k2

ᾱ8
+

4455k3

2ᾱ12
+ · · · . (C.40)
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Similarly to the case of the 3d YMCS model [66], we can also calculate various ob-

servables directly to all orders in perturbation theory in the large-N limit. For instance,

the observable 1√
N

〈
1
N tr(Aµ)

2
〉

is obtained at one loop as (C.19), whose first and second

terms correspond to the classical and one-loop contributions, respectively. As we see from

(C.18), however, the one-loop contribution comes from the tadpole diagram, which is not

one-particle irreducible. Therefore, by replacing ᾱ by f(ᾱ) in the classical contribution,

we obtain the all order result as

1√
N

〈
1

N
tr(Aµ)

2

〉

≃ 2f(ᾱ)2

3k
=

2ᾱ2

3k
− 4

ᾱ2
− 30k

ᾱ6
− 432k2

ᾱ10
− 7722k3

ᾱ14
− · · · . (C.41)

D. Perturbative calculations for the fuzzy S2

In this section we perform the perturbative analysis for the k coincident S2 solution

Xµ = A(k S2)
µ ≡

{

αL
(n)
µ ⊗ 1k for µ = 1, 2, 3 ,

0 otherwise ,
(D.1)

which generalizes (2.11). The total size of the matrix is now given by N = nk. Let

us calculate the free energy as a perturbative expansion W =
∑∞

j=0Wj, where Wj =

O(α4(1−j)) comes from the j-loop contribution. From (B.13) the free energy is obtained at

the one-loop level as

W0 +W1 = −α4N2

24
(n2 − 1) + 3k2

n−1∑

l=1

(2l + 1) log[Nα2l(l + 1)]− log{vol(H)N}

≃ N2

(

− α̃4

24k2
+ 6 log α̃+ log

N7

k6
− 15

4

)

, (D.2)

where the rescaled parameter α̃ is defined by (4.1).

Similarly, the effective action for a one-parameter family of configurations

Aµ =

{

β L
(n)
µ ⊗ 1k for µ = 1, 2, 3 ,

0 otherwise
(D.3)

can be obtained at the one-loop level as

Γ1−loop(β̃) ≃ N2

(

β̃4

8k2
− α̃β̃3

6k2
+ 6 log β̃ + log

N7

k6
− 15

4

)

, (D.4)

where β̃ = βN
1
2 . The effective action has a local minimum

β̃ = g(α̃) ≡ α̃

4

(

1 +
√
1 + ε+

√

2− ε+
2√
1 + ε

)

,

ε = α̃− 4
3 (384k2)

1
3







(

1 +

√

1− 1024k2

9α̃4

) 1
3

+

(

1−
√

1− 1024k2

9α̃4

) 1
3






, (D.5)
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if α̃ is larger than the critical point

α̃(k S2)
cr =

√

32k

3
= 3.2659863 · · · ×

√
k . (D.6)

Since the effective action is saturated at the one-loop level in the large-N limit [32], the

critical point obtained above should be correct to all orders in perturbation theory.

The propagators for Ãµ and the ghosts are exactly the same as (C.1) and (C.2) in

ref. [59]. The tadpole is given by

〈Ãµ〉1−loop = − 12k2

N2α3
Xµ . (D.7)

The one-loop results for various observables are obtained as

1

N
1
2

〈M〉1−loop = −α3(n2 − 1)

6N
1
2

+
6

αN
1
2

(

1− 1

n2

)

≃ − α̃3

6k2
+

6

α̃
, (D.8)

〈
1

N
tr(Fµν)

2

〉

1−loop

= 8

(

1− 1

N2

)

− 3α〈M〉1−loop

=
1

2
α4(n2 − 1)− 10 +

1

N2

{

8(3k2 − 1)− 6k2
}

≃ α̃4

2k2
− 10 , (D.9)

1

N2
〈S〉1−loop =

1

4

〈
1

N
tr(Fµν)

2

〉

1−loop

+ α〈M〉1−loop

= −α4

24
(n2 − 1) +

7

2
+

1

2N2

{

−4(k2 + 1) + k2
}

≃ − α̃4

24k2
+

7

2
, (D.10)

1

N

〈
1

N
tr(Aµ)

2

〉

1−loop

= α2

{

1

4N
(n2 − 1)− 6k2(n2 − 1)

N3α4
+

8

Nn2α4

n−1∑

l=1

2l + 1

l(l + 1)

}

≃ α̃2

(
1

4k2
− 6

α̃4
+

16

n2α̃4
log n

)

≃ α̃2

(
1

4k2
− 6

α̃4

)

. (D.11)

Exploiting the one-loop saturation of the effective action in the large-N limit, we can

calculate various quantities to all orders. The free energy is obtained as

1

N2
W ≃ − α̃4

24k2
+ 6 log α̃+ log

N7

k6
− 15

4
− 36k2

α̃4
− 1008k4

α̃8
− 47520k6

α̃12
− · · ·

(D.12)
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by plugging (D.5) into (D.4). Various observables are calculated as

1

N2
〈S〉 ≃ − 1

24k2
α̃ g(α̃)3 + 2 = − α̃4

24k2
+

7

2
+

36k2

α̃4
+

2016k4

α̃8
+

142560k6

α̃12
+ · · · ,

(D.13)

1

N

〈
1

N
tr(Aµ)

2

〉

≃ 1

4k2
g(α̃)2 =

α̃2

4k2
− 6

α̃2
− 180k2

α̃2
− 10368k4

α̃6
− 741312k6

α̃10
− · · · , (D.14)

1

N
1
2

〈M〉 ≃ − 1

6k2
g(α̃)3 = − α̃3

6k2
+

6

α̃
+

144k2

α̃5
+

8064k4

α̃9
+

570240k6

α̃13
+ · · · , (D.15)

〈
1

N
tr(Fµν)

2

〉

≃ 1

2k2
α̃ g(α̃)3 + 8 =

α̃4

2k2
− 10− 432k2

α̃4
− 24192k4

α̃8
− 1710720k6

α̃12
− · · · .

(D.16)
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