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Abstract

The tensor product of the division algebras, which is a kernel for the struc-
ture of the Standard Model, is also a root for the Clifford algebra of (1,9)-
space-time. A conventional Dirac Lagrangian, employing the (1,9)-Dirac
operator acting on the Standard Model hyperfield, gives rise to matter into
antimatter transitions not mediated by any gauge field. These transitions
are eliminated by restricting the dependencies of the components of the
hyperfield on the extra six dimensions, which appear in this context as a
complex triple.
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This article is an extension of my work on applying the tensor product
of the division algebras to the lepto-quark Standard Model [1-4] and be-
yond. Although it is selfcontained, many results derived previously are not
rederived here.

Applications of the division algebras to particle physics [5-10] are not
new, nor are all the same. This application, to the best of my knowledge,
while owing a debt to the work of Gürsey and Günaydin, is the only one of
its kind. Like all applications of these algebras, however, it is motivated by
the attractive notion that the special structures of mathematics play a role
in the design of reality. Most theorists share a faith - or at least a hope - of
this sort; here it has been allowed to become a guiding principle.

In this article I present the first radical extension of my ideas beyond
the Standard Model and its foundation. Because it combines the Standard
Model with (1,9)-space-time (R1,9), it may well prove a step toward the
development of a connection to, and a narrowing of, string theory, the initial
euphoria to which has - in the fashion of GUTs and SUSY - succumbed to
the curse of multiple realities.

The nontrivial real division algebras with unity are the complexes, C,
quaternions, Q, and octonions, O. They are 2-, 4-, and 8-dimensional. Mul-
tiplication tables for Q and O are constructable from the following elegant
rules:

Division
Algebra

Q O

Imaginary
Units

qi, 1 = 1, 2, 3, ea, a = 1, ..., 7,

Anti-
commutators

qiqj + qjqi = 2δij , eaeb + ebea = 2δab,

Cyclic
Rules

qiqi+1 = qi−1 = qi+2, eaea+1 = ea−2 = ea+5,

Index
Doubling

qiqj = qk =⇒
q(2i)q(2j) = −q(2k),

eaeb = ec =⇒
e(2a)e(2b) = e(2c),

(1)

where Q-indices run from 1 to 3, modulo 3, and O-indices run from 1 to 7,
modulo 7.
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C⊗Q is spanned by the 8 elements {1, i, qj , iqj}. It is isomorphic to the
Pauli algebra, C(2), which is the Clifford algebra of R3,0 space. Represented
by C(2), the spinors of that Clifford algebra are 2× 1 over C, the so-called
Pauli or Weyl spinors. The spinor space of C⊗Q, however, is 1 × 1 over
C⊗Q, hence is C⊗Q itself. In this case, to distinguish the Clifford algebra
from its spinor space, we denote the formerCL⊗QL, the subscript indicating
action from the left on the spinor space, which we denote C⊗Q.

C⊗Q is twice as large as it needs to be. It is the direct sum of two
2-dimensional (over C) Weyl spinor spaces unmixed by CL ⊗ QL (just as
[

x1 y1
x2 y2

]

inC(2) is the direct sum of the Weyl spinor spaces

[

x1 0
x2 0

]

and

[

0 y1
0 y2

]

). If ~x ∈ Q satisfies ~x2 = −1, then multiplication from the right on

C⊗Q by the idempotents 1
2 (1±i~x) projects two suchWeyl spinor spaces (just

as multiplication from the right by the idempotents 1
2(

[

1 0
0 1

]

±

[

1 0
0 −1

]

)

on

[

x1 y1
x2 y2

]

projects the C(2) Weyl spinor spaces above). QR, which acts

from the right on C⊗Q, mixes these two independent spinor spaces. QR

commutes with CL ⊗QL, so it is an ”internal” algebra, where the Clifford
(geometric) algebra is ”external”. The elements of unit length of QR form
the group SU(2), which in previous work along these lines was manifested
as the isospin gauge symmetry [1].

The octonion algebra is generally considered ill-suited to Clifford algebra
theory because O is nonassociative, and Clifford algebras are associative.
This problem disappears once we identify O as the spinor space of OL, the
adjoint algebra of actions of O on itself from the left. OL is associative. OL

is linear in actions of the form

eLab...c[x] = ea(eb(...(ecx)...)), (2)

x ∈ O. For example, although e1e2 = e6,

eL12[x] = e1(e2x) 6= e6x = eL6[x]

in general; and although e1(e2e4) = e7,

eL124[x] = e1(e2(e4x)) 6= e7x = eL7[x]
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in general. These are consequences of nonassociativity. The elements eLab...c
satisfy

eLabcc...d = −eLab...d,

eLab...c = ±eLpq...r, (3)

pq...r an even-odd permutation of ab...c, and

eLab...ceLdf...g = eLab...cdf...g. (4)

It is also not difficult to prove that eL7654321[x] = x for all x in O. Therefore,
for example, using (4) and (5) one can easily prove

eL4567 = eL4567eL7654321 = eL321. (5)

That is, any element of OL with four or more indices can be reduced to an
element with three indices or less. So a complete basis for OL consists of
the elements

1, eLa, eLab, eLabc. (6)

Therefore OL is 1+7+21+35=64-dimensional, and OL ≃ R(8). The em-
bedding of parentheses in the definition (2), implying (4), trivially implies
OL is associative.

OL is isomorphic to the Clifford algebra of the space R0,6, the spinor
space of which is 8-dimensional over R. In this case the spinor space is O

itself, the object space of OL. It is significant that the dimensionality of O
is correct in this case. This is tied to the remarkable fact that the algebra
OR of right adjoint actions of O on itself is the same algebra as OL. Every
action in OR can be written as an action in OL.

A 1-vector basis for OL, playing the role of the Clifford algebra of R0,6,
is {eLp, p = 1, ..., 6}. The resulting 2-vector basis is then {eLpq, p, q =
1, ..., 6, p 6= q}. This subspace is 15-dimensional, closes under the com-
mutator product, and is in that case isomorphic to so(6). The intersection
of this Lie algebra with the Lie algebra of the automorphism group of O,
G2, is su(3), with a basis

su(3) → {eLpq − eLrs, p, q, r, s distinct, and from 1 to 6}. (7)

The group SU(3) generated by these elements arises as the color gauge group
in applications [1] (note that SU(3) is the stability group of e7, hence the
index doubling automorphism of O is an SU(3) rotation).
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Finally we let C⊗Q⊗O play the role of spinor space to CL⊗QL⊗OL,
which is isomorphic to C(16), hence isomorphic to the Clifford algebra of the
space R0,9. With respect to the gauge symmetry SU(2) × SU(3) outlined
above, which expands to U(2) × U(3) [1], the spinor space C ⊗ Q ⊗ O

transforms exactly like the direct sum of a family and antifamily of lepto-
quark Weyl spinors. Quantum numbers for the (family) spinors can be
manifested in two ways, one corresponding to righthanded particles, one to
lefthanded. They can be simultaneously incorporated by expanding CL ⊗
QL ⊗ OL to CL ⊗ QL ⊗ OL(2) (2 × 2 over CL ⊗ QL ⊗ OL), the ”Dirac”
algebra for R1,9 space-time (just as CL ⊗QL(2), isomorphic to C(4), is the
Dirac algebra for R1,3). The spinor space in this case is 2×1 over C⊗Q⊗O.

Let Ψ be such a spinor, and give it a functional dependence on R1,9

space-time. Let
ρ± = (1± ie7)/2. (8)

Then ρ+Ψ is the matter half of Ψ, and ρ−Ψ the antimatter half. ρ+Ψρ+
is an SU(2) lepton doublet, and ρ+Ψρ− is a quark SU(2) doublet, SU(3)
triplet (reverse signs for antimatter).

Define in R(2):

ǫ =

(

1 0
0 1

)

, α =

(

1 0
0 −1

)

, β =

(

0 1
1 0

)

, ω =

(

0 1
−1 0

)

.

A 1-vector basis for the Clifford algebra of R1,9 consists of the elements:

γ0 = β, γj = qjeL7ω, j = 1, 2, 3, γh = ieh−3ω, h = 4, ..., 9. (9)

These satisfy:
γhγl + γlγh = 2ηhlǫ,

ηhl diagonal (1(+), 9(−)).
The (1,9)-Dirac operator is 6∂1,9 = γf∂

f , f = 0, 1, ..., 9, and I define
6∂1,3 = γµ∂

µ, µ = 0, 1, 2, 3, 6∂0,6 = 6∂1,9− 6∂1,3. Define

ρL± = (1± ieL7)/2 (10)

(the left adjoint version of ρ±). Using these adjoint idempotents we can
decompose 6∂1,9 into its (1,3)- and (0,6)-Dirac operator parts, one of each
for both matter and antimatter:
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6∂1,9 = ρL+ 6∂1,9ρL+ + ρL− 6∂1,9ρL− + ρL+ 6∂1,9ρL− + ρL− 6∂1,9ρL+

= ρL+ 6∂1,3ρL+ + ρL− 6∂1,3ρL− + ρL+ 6∂0,6ρL− + ρL− 6∂0,6ρL+,

= 6∂1,3ρL+ + 6∂1,3ρL− + 6∂0,6ρL− + 6∂0,6ρL+ (11)

(note that 6∂1,3ρL± are the matter/antimatter Dirac operators for (1,3)-
space-time, and that because eL7ρL± = ∓iρL±, the partials of the latter are
space-reflected relative to the former). Therefore,

6∂1,9Ψ = (6∂1,3ρL+ + 6∂1,3ρL− + 6∂0,6ρL− + 6∂0,6ρL+)Ψ

= 6∂1,3(ρ+Ψ) + 6∂1,3(ρ−Ψ) + 6∂0,6(ρ−Ψ) + 6∂0,6(ρ+Ψ). (12)

To form a Lagrangian for the field we use the inner product of C⊗Q⊗O

[1]:

L =< Ψ, 6∂1,9Ψ >
=< ρ+Ψ+ ρ−Ψ, 6∂1,3(ρ+Ψ) + 6∂1,3(ρ−Ψ) + 6∂0,6(ρ−Ψ) + 6∂0,6(ρ+Ψ) >

=< ρ+Ψ, 6∂1,3(ρ+Ψ) > + < ρ−Ψ, 6∂1,3(ρ−Ψ) >
+ < ρ+Ψ, 6∂0,6(ρ−Ψ) > + < ρ−Ψ, 6∂0,6(ρ+Ψ) >

(13)
(the last equality arising from the algebra of the inner product). The first
two terms after the last equality in (13), < ρ±Ψ, 6∂1,3(ρ±Ψ) >, are ordinary.
One can obtain a list of viable particle transitions from such Lagrangians, as
each Weyl component of Ψ has an obvious particle identification. For exam-
ple, after gauging U(2)× U(3), algebraic combinations of spinor and gauge
fields that survive the inner product correspond to viable transitions (this as-
pect won’t be developed further here; see [1],[11]). These first two terms con-
nect matter/antimatter to matter/antimatter (ρ±Ψ= matter/antimatter),
and upon gauging U(2) × U(3) give rise to an unconventional looking ver-
sion of the Standard Model.

The last two terms of (13), < ρ∓Ψ, 6∂0,6(ρ±Ψ) >, are a problem, even
without gauge fields, for they imply matter/antimatter (ρ±Ψ) into anti-
matter/matter (ρ∓Ψ) transitions, mediated algebraically by 6∂0,6. As such
transitions are unobserved, the rest of the article will be devoted to getting
rid of the last two terms of (13).

The 2-vector basis for the Clifford algebra of R1,9, derived from the
1-vectors in (8), is

qjǫ, qjeL7α, ieLpα, iqjeLp7ǫ, eLpqǫ, (14)
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j=1,2,3, p,q∈ {1, ..., 6}. This 45-dimensional subspace closes under the com-
mutator product and is in that case isomorphic to so(1, 9). The first six
elements, {qjǫ, qjeL7α}, form a basis for so(1, 3), the last fifteen, {eLpqǫ}, a
basis for so(6). This is the same so(6) we saw earlier, and it contains color
su(3) (see (7)). That is, the space R0,6, hence 6∂0,6, carry color charges
(one consequence of these charges: in none of the unwanted transitions im-
plied by (13) can a particle make a transition to its own antiparticle; hence,
for example, quarks may mix with anitleptons, violating baryon and lepton
number conservation).

Consider the element 6∂0,6(ρ+Ψ) which appears in the last term of (13).
Because

ρ±e7 = ∓iρ±, ρ±e5 = ∓iρ±e1, ρ±e3 = ∓iρ±e2, ρ±e6 = ∓iρ±e4, (15)

ρ+Ψ may be decomposed into

ρ+Ψ = ρ+[Ψ
0
+ +Ψ1

+e1 +Ψ2
+e2 +Ψ4

+e4], (16)

where the Ψm
+ , m=0,1,2,4, are 2 × 1 over C ⊗Q. These four fields can be

designated lepton, red-, green-, and blue-quark.
Now consider 6∂0,6(ρ+Ψ+), and in particular, for example, the term (sum

p=1,...,6)

6∂0,6(ρ+Ψ
1
+e1) = iωep∂

p+3[ρ+Ψ
1
+e1]

= iω(ρ−e1∂
4 + ρ+e2∂

5 + ρ+e3∂
6 + ρ+e4∂

7 + ρ−e5∂
8 + ρ+e6∂

9)[Ψ1
+e1]

= iω(ρ−e1(∂
4 + i∂8) + ρ+e2(∂

5 − i∂6) + ρ+e4(∂
7 − i∂9))[Ψ1

+e1]

= iω(e1(∂
4 + i∂8) + e2(∂

5 − i∂6) + e4(∂
7 − i∂9))[ρ+Ψ

1
+e1]

≡6∂6+−−[ρ+Ψ
1
+e1] (17)

(in the second line the nonassociativity of O plays a part in altering the
sign subscripts of ρ±; in general nonassociativity plays an essential role in
keeping the mathematics consistent with phenomenology). 6 ∂6+−− (gener-
alized below) is defined in the penultimate line. In like manner one can
demonstrate that

6∂6ρ+Ψ
0
+ = 6∂6+++ρ+Ψ

0
+,

6∂6(ρ+Ψ
2
+e2) = 6∂6−+−(ρ+Ψ

2
+e2)

6∂6(ρ+Ψ
4
+e4) = 6∂6−−+(ρ+Ψ

4
+e4) (18)

(no parentheses are needed in the first of these equations (lepton term), for
nonassociativity only becomes an issue on the quark terms). For any real
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variables x and y, and differentiable f: (∂x + i∂y)f(x + iy) = 0. Therefore,
ignoring R1,3 coordinates, if

Ψ0
+ = Ψ0

+(x4 + ix8, x5 + ix6, x7 + ix9),

Ψ1
+ = Ψ1

+(x4 + ix8, x5 − ix6, x7 − ix9),

Ψ2
+ = Ψ2

+(x4 − ix8, x5 + ix6, x7 − ix9),

Ψ4
+ = Ψ4

+(x4 − ix8, x5 − ix6, x7 + ix9), (19)

then
6∂0,6(ρ+Ψ) = 0. (20)

The antimatter fields of ρ−Ψ would have functional dependencies con-
jugate to those above. Any fluctuation from these would give rise to unob-
served matter-antimatter mixing.

Under U(3) the lepton term Ψ0
+ is supposed invariant, but its 3 complex

coordinates in (19) are not. In making U(3) a local gauge symmetry, de-
pendent upon R1,3 coordinates, the complex coordinates of Ψ0

+ also acquire
a functional dependence on R1,3. The orbit of U(3) is S5, the 5-sphere.
Because Ψ0

+ is dependent on 3 complex coordinates, and not 6 real, this
precludes a variation of Ψ0

+ by even so much as a phase factor under U(3).
It would seem then that the colorless lepton term Ψ0

+ must be independent
entirely of the color-carrying coordinates of R0,6.

The complex triple associated with Ψ1
+ in (19) has a more complicated

SU(3) transformation, further complicated by the fact that Ψ1
+ is itself si-

multaneously transformed. However, Ψ1
+ is invariant under the action of

the SU(2) subgroup of SU(3) that leaves e1 and e5 invariant. Following the
same reasoning used above we now conclude that Ψ1

+ must be independent,
not of all of R0,6 as was Ψ0

+, but of xr, r=5,6,7,9.
In general we may now conclude, inorder to preserve (20), that

Ψ0
+ = Ψ0

+(xµ, ..., ..., ...),

Ψ1
+ = Ψ1

+(xµ, x4 + ix8, ..., ...),

Ψ2
+ = Ψ2

+(xµ, ..., x5 + ix6, ...),

Ψ4
+ = Ψ4

+(xµ, ..., ..., x7 + ix9), (21)

where (,...) indicates independence of the complex coordinate in that slot,
and xµ denote the coordinates of R1,3.

Does any of this have anything to do with string theory? I confess my-
self not a string theorist, so I can not supply a definitive answer to that
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question. String theory uses R1,9, and it deals with the extra 6 dimensions
by balling them up into a complex 3-manifold too small to be observed. My
route to R1,9 is certainly different, but in requiring (20) the space R0,6 is
forced to appear in the guise of a complex 3-space. It has not yet been inves-
tigated if some specific compactification is required of the model, much less
if there is an associated SU(3) holonomy group [13]. As to its unobservabil-
ity, everything in this model (specifically quarks and R0,6) associated with
the octonion units ep, p = 1, ..., 6 (also associated with nonassociativity) is
unobserved. There may be some nice algebraic/quantum mechanical expla-
nation for this, but even so one finds such subtlety is generally manifested
by more prosaic explanations as well, like infrared slavery, and, presumably,
compactification.
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