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ABSTRACT

We consider the c = 1 matrix model deformed by the operator 1
2M TrΦ−2, which was

conjectured by Jevicki and Yoneya to describe a two-dimensional black hole of mass M . We

calculate the exact non-perturbative S-matrix and show that all the amplitudes involving an

odd number of particles vanish at least to all orders of perturbation theory. We conjecture

that these amplitudes vanish non-perturbatively and prove this for the 2n → 1 scatter-

ing. For the 2– and 4–particle amplitudes we give some leading terms of the perturbative

expansion.
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There has been a considerable amount of speculation on the relation between the c = 1

matrix model and two-dimensional stringy black holes [1,2,3,4]. Recently Jevicki and Yoneya

[5] made an interesting proposal that a stationary black hole of mass M is described by the

large-N Hermitian matrix quantum mechanics with potential U(Φ) = 1
2 Tr(−Φ2 +MΦ−2).

The matrix eigenvalues act as free fermions, and their Fermi level µ is set to zero. The

deformation of the c = 1 matrix model by the operator TrΦ−2 is uniquely determined

by the requirement that it preserve the w∞ symmetry structure [6]. There are further

arguments why operators with negative powers of Φ should be identified with “wrongly

dressed” Liouville theory operators, of which the black hole mass perturbation is the leading

example [5,7–10]. In Ref. [5] some calculations were performed in the deformed matrix model

with a number of intriguing results. It was found that 1/
√
M plays the role of the string

coupling constant gst, in agreement with string theory in the two-dimensional black hole

background. The tree level odd-point functions were found to vanish, which provided one

more argument in favor of the black hole analogy. Further studies of the deformed model,

including some loop corrections, were performed in [9,10].

In this Letter we calculate the exact non-perturbative S-matrix of the fermion density

perturbations in the deformed matrix model. We find that all the odd-point functions

vanish at least to all orders in gst. Furthermore, we show that the 2k → 1 amplitudes

vanish non-perturbatively and conjecture that this is true for odd-point functions with other

kinematical structures. For the 2– and 4–point functions we give a few leading terms of the

loop expansion.

Our exact solution of the deformed matrix model is based on the powerful method of

Moore, Plesser and Ramgoolam [11], who constructed the S-matrix of the c = 1 matrix model

in terms of the single-fermion reflection coefficient. Remarkably, in the deformed model the

reflection coefficient can also be calculated exactly. The crucial observation is that the single

fermion wave function with energy (−ǫ), which satisfies the Schrödinger equation

(

d2

dx2
+ x2 − M

x2
− 2ǫ

)

ψǫ(x) = 0 , (1)

is explicitly given by

ψǫ(x) =
1√
2πx

e−
iπ

2
(α+ 1

2
) e−ǫπ/4 |Γ(12 + iǫ

2 + α)|
Γ(2α+ 1)

Miǫ/2,α(ix
2) , (2)
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where α = 1
4

√
1 + 4M and Miǫ/2,α is the Whittaker function. The wave function is properly

normalized and satisfies the correct boundary condition ψǫ(0) = 0. The scattering phase

shift can be read off from the asymptotic formula,

ψǫ(x→ ∞) =
1√
2πx

(

e−ix2/2 eiǫ lnx S + eix
2/2 e−iǫ ln x S∗

)

, (3)

where

S ≡ eiπ(2α+1)/4

√

Γ(12 − iǫ
2 + α)

Γ(12 +
iǫ
2 + α)

.

Now we can calculate the asymptotic behavior of the resolvent I(x1, x2) = 〈x1| 1
H−µ−iq |x2〉.

Introducing the classical time τ through x2(τ) = µ+
√

M + µ2 cosh(2τ), we find

I(x1, x2; q > 0) =
x1,x2→∞

i√
x1x2

{

ei |G(τ1)−G(τ2) | e−q|τ1−τ2|

+Rq e
i(G(τ1)+G(τ2) ) e−q(τ1+τ2)

}

,

(4)

where G(τ) = −1
4

√

M + µ2 e2τ + µτ + π/4 +O(e−2τ ) is the WKB phase factor for large τ .

The reflection coefficient is

Rq =

(

4

M + µ2

)|q|/2 Γ(12 −
iµ
2 +

|q|
2 + α)

Γ(12 +
iµ
2 − |q|

2 + α)
ei
[

1

2
µ log[(M+µ2)/4]−µ+πα

]

. (5)

As shown in Ref. [11], any scattering amplitude of the fermion density perturbations can be

written in terms of integrals of products of reflection coefficients. Schematically, the relation

is [11]

A(qi) =
∑

∫

∏

(

RQR
∗
Q

)

. (6)

The l → m amplitude is Al→m(q1, . . . , ql;−ql+1, . . . ,−ql+m), where all qi are taken to be

positive. For now we work in the Euclidean domain and later continue to the Minkowski
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signature. The explicit formula for the n→ 1 amplitude reads

An→1(q1, . . . , qn;−q) = in+1
{

∑

{i1}

q
∫

qi1

dxRq−xR
∗
x −

∑

{i1,i2}

q
∫

qi1+qi2

dxRq−xR
∗
x+

. . .+ (−1)n−1
∑

{i1,...,in−1}

q
∫

qi1+...+qin−1

dxRq−xR
∗
x −

q
∫

0

dxRq−xR
∗
x

}

,

(7)

where {i1, i2, . . . , ik} is a subset of {1, 2, . . . , n}. Similarly the 2 → 2 amplitude in the

kinematic region q1 = max{qi} is given by

A2→2(q1, q2;−q3,−q4) = −
q1+q2
∫

q1

dxRq1+q2−xR
∗
x −

q2
∫

0

dxRq1+q2−xR
∗
x

+
1

2

{

q2
∫

0

dxRq3−xRq2−xR
∗
x+q1−q3 R

∗
x +

q3
∫

q3−q2

dxRq3−xRq1−xR
∗
x+q2−q3 R

∗
x +

(

q3 → q4
)

}

.

(8)

Our goal is to generate the asymptotic expansions of correlation functions in powers of

gst = 1/
√
M . In the following we set the Fermi level µ to zero, according to the proposal

of Ref. [5]. Our methods work equally well for µ 6= 0, and we will report those results in

a later publication. Let us first find the asymptotic expansion of the reflection coefficient.

Introducing rq ≡ e−iπαRq, we have

rq =
(

1 +
1

4M

)|q|/2
F (α, q) ,

F (α, q) = α−|q| Γ(
1
2 +

|q|
2 + α)

Γ(12 −
|q|
2 + α)

.

(9)

It is easy to show that

F (−α, q) = F (α, q)
1 + e−2πiαe−πi|q|

1 + e−2πiαeπi|q|
. (10)

The fraction on the right-hand side is equal to 1, up to terms that are invisible in the

asymptotic expansion in powers of 1/α. Therefore, the odd powers are absent from the
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asymptotic expansion,

F (α, q) = 1 +

∞
∑

k=1

dk(q)α
−2k . (11)

It follows that there are no odd powers of 1/
√
M in the asymptotic expansion of the reflection

coefficient,

rq(M) = 1 +

∞
∑

k=1

ck(q)M
−k . (12)

The first few coefficients are given by

c1(q) =
1

24
q(7− 4q2) ,

c2(q) =
1

5760
q(q − 2)(501 + 128q − 536q2 − 128q3 + 80q4) ,

c3(q) =
1

2903040
q(q − 2)(q − 4)(115173 + 67968q − 137060q2

− 78720q3 + 25072q4 + 10752q5 − 2240q6) .

(13)

Simple scaling arguments indicate that all the odd-point functions are expanded in odd

powers of gst = 1/
√
M . However, these powers are missing from Eq. (12) and, therefore, from

Eq. (6) for the correlation functions. It follows immediately that all the odd-point functions

vanish to all orders in gst. In fact, all the 2k → 1 amplitudes vanish non-perturbatively. To

prove this, consider formula (7) for a general n→ 1 amplitude and perform the substitution

x → q − x in each of the integrals. Since the integrand rq−x rx is symmetric under this

substitution, it easily follows that

An→1 = (−1)n+1An→1 , (14)

and therefore A2k→1 = 0. This result depends on Rq being real, up to a q-independent

overall phase. For µ 6= 0 this property is lost, so that the odd-point functions no longer

vanish non-perturbatively [9]. For µ = 0, on the other hand, we expect that the odd-point

functions with all kinematical structures vanish non-perturbatively.
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Contrary to the odd-point functions, the even-point functions do not vanish and have

non-trivial loop expansions. Using Eqs. (7) and (12), we find for the 2–point function

A1→1(q,−q) =
q

∫

0

dx rxrq−x = q +
1

24M
q2(7− 2q2)

+
1

5760M2
q2(q − 2)(501 + 128q − 236q2 − 48q3 + 24q4)

+
1

2903040M3
q2(q − 2)(q − 4)(115173 + 67968q − 49490q2

− 29328q3 + 6088q4 + 2688q5 − 464q6) + . . .

(15)

The one-loop result agrees with the collective field theory calculation [9]. The form of the

higher-loop corrections is so intricate, however, that they would be virtually impossible to

obtain in the bosonized formalism. Our results, on the other hand, give the entire non-

perturbative answer in one compact formula. We also used Eq. (7) to find the expansion of

the 3 → 1 amplitude,

A3→1(q1, q2, q3;−q) = 2

q
∫

0

dx rxrq−x − 2
3

∑

i=1

qi
∫

0

dx rxrq−x

=
1

M
q1q2q3q

[

1 +
1

24M
(q − 2)

(

15 + 4q − q2 − 3(q21 + q22 + q23)
)

+ . . .
]

.

(16)

For the 2 → 2 kinematic structure we find, using Eq. (8),

A2→2(q1, q2;−q3,−q4) =
1

M
q1q2q3q4

[

1 +
1

24M

(

−30 + 7(q1 + q2)

+ 12(q1 + q2)
2 − 12(q1q2 + q3q4)− 2(q1 + q2)

3 − 2q31 + 6q1q3q4

)

+ . . .
]

.

(17)

Here the tree level answers agree with the collective field theory calculations of Ref. [5], but

the loop corrections are new.

The correlation functions we derived constitute the Euclidean continuation of the S-

matrix elements of the collective field theory. In order to continue back to the Minkowski

signature, we have to take |qi| → −iωi [12, 11]. For instance, the 3 → 1 amplitude becomes

A3→1(ω1, ω2, ω3;ω) =
1

M
ω1ω2ω3ω

[

1− 1

24M
(2+iω)

(

15−4iω+ω2+3(ω2
1+ω

2
2+ω

2
3)
)

+. . .
]

,

where all energies are assumed positive. This continuation takes Rq into a pure phase and,
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according to the arguments of Ref. [11], the non-perturbative S-matrix is unitary. This is,

of course, related to the total reflection from the potential which approaches ∞ as x→ 0.

For the Euclidean signature, the correlation functions of the “tachyon operators” of string

theory are simply related to A(qi) [13,14],

〈Tq1Tq2 . . . Tqn〉 = A(q1, q2, . . . , qn)

n
∏

i=1

L(qi) . (18)

The external leg factor L(q) can be calculated from a matrix model representation of the

tachyon operator [11],

Tq ∼ f(|q|)
∫

dt eiqt Tr e−lΦ2(t) , (19)

where f(|q|) is a smooth function which determines the normalization. One finds that

L(q) ∼
∞
∫

dτe−l
√
M cosh 2τe−|q|τ ∼ (l

√
M)|q|/2Γ(−q|/2) . (20)

We may chose the operator normalization f(|q|) so that

L(q) =M |q|/4 Γ(−|q|/2)
Γ(|q|/2) . (21)

Now L(iω) is a pure phase, as needed for the unitarity of the Minkowski signature S-matrix.

Note that L(q) has poles for |q| = 2n, n > 0, while for the conventional c = 1 model the

poles occur for |q| = n > 0. This agrees with an argument for the position of the poles based

on energy sum rules in the black hole conformal field theory [5,8]. Reproducing our exact

correlation functions in the context of conformal field theory poses an interesting challenge.

In this Letter we calculated the exact S-matrix of the deformed c = 1 matrix model

for M > 0, which has been conjectured to describe the stationary black hole background of

two-dimensional string theory. Even if the black hole analogy fails, this model is interesting

in its own right because it leads to a new non-perturbatively calculable unitary S-matrix.

There are many interesting extensions of this work. For example, one may consider the case

of M < 0, which has been conjectured to describe a “naked singularity” [5]. We hope to

return to these problems in a future paper.
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