
ar
X

iv
:h

ep
-t

h/
94

12
04

0v
1 

 5
 D

ec
 1

99
4

EFI 94-39
MPI-Ph/94-52

Analytic Structure of Amplitudes

in Gauge Theories with Confinement 1

Reinhard Oehme

Enrico Fermi Institute and Department of Physics

University of Chicago, Chicago, Illinois, 60637, USA 2

and

Max-Planck-Institut für Physik

- Werner-Heisenberg-Institut -

80805 Munich, Germany

Abstract

For gauge theories with confinement, the analytic structure of amplitudes
is explored. It is shown that the analytic properties of physical amplitudes
are the same as those obtained on the basis of an effective theory involving
only the composite, physical fields. The corresponding proofs of dispersion
relations remain valid. Anomalous thresholds are considered. They are re-
lated to the composite structure of particles. It is shown, that there are
no such thresholds in physical amplitudes which are associated with con-
fined constituents, like quarks and gluons in QCD. Unphysical amplitudes
are considered briefly, using propagator functions as an example. For gen-
eral, covariant, linear gauges, it is shown that these functions must have
singularities at finite, real points, which may be associated with confined
states.
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I. INTRODUCTION

The analytic structure of amplitudes is of considerable importance in all

quantum field theories, from a physical as well as a conceptional point of

view. It has been studied extensively over many years, but mainly for field

theories with a state space of definite metric, and in situations where the in-

terpolating Heisenberg fields are closely related to the observable excitations

of the theory. Within a relativistic framework of this type, the commutativ-

ity or anti-commutativity of the Heisenberg fields, at space-like separations,

gives rise to tubes (wedges) of holomorphy for retarded and advanced ampli-

tudes, which are Fourier transforms of tempered distributions. Lower bounds

for the spectrum of eigenstates of the energy momentum operator provide

real domains where these amplitudes coincide at least in the sense of dis-

tributions. One can then use the Edge of the Wedge theorem [1] to show

that there exists an analytic function which is holomorphic in the union of

the wedges and a complex neighborhood of the common real domain, and

which coincides with the advanced and retarded amplitudes where they are

defined. Then the envelope of holomorphy [2, 1] of this initial region of ana-

lyticity gives the largest domain of holomorphy obtainable from the general

and rather limited input. Further extensions require more exhaustive use of

unitarity [3], which is often rather difficult. Although the theory of functions

of several complex variables is the natural framework for the discussion of

the analytic structure of amplitudes, for special cases, like those involving

one complex four-vector, more conventional methods, like differential equa-

tions and distribution theory, can be used in order to obtain the region of

holomorphy [4, 5]. Many more technical details are involved in the deriva-

tion of analytic properties and dispersion relations [6, 7], [5, 1, 8, 9], but the
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envelopes mentioned above are at the center of the problem.

It is the purpose of this paper to discuss essential aspects of the analytic

structure of amplitudes for gauge theories, which require indefinite metric in

a covariant formulation, and for which the physical spectrum is not directly

related to the original Heisenberg fields. Rather, these fields correspond to

unphysical, confined excitations in the state space of indefinite metric. We

will be mainly concerned with physical amplitudes, corresponding to hadronic

amplitudes for QCD. We will often use the language of QCD. As examples

of unphysical Green’s functions, we consider the structure functions of the

gluon and quark propagators. In all covariant, linear gauges, we show that

these generally cannot be entire functions, but must have singularities which

can be related to unphysical states. A preliminary account of some of our

results may be found in [10].

In the framework of hadronic field theory with positive definite metric,

the derivation of analytic properties, and of corresponding dispersion rela-

tions, is on a quite rigorous basis, and uses only very general aspects of

the theory. For gauge theories with confinement however, the derivation of

dispersion relations requires several assumptions, which may not have been

proven rigorously in the non-perturbative framework required in the pres-

ence of confinement. We will discuss these assumptions in the following sec-

tions. They mainly concern the definition of confinement on the basis of the

BRST-algebra, and the construction of composite hadron fields as products

of unphysical Heisenberg fields.

In order to provide for the input for proofs of dispersion relations and

other analyticity properties of physical amplitudes, we discuss in the following

paragraphs certain results for non-perturbative gauge theories. For some of

these results, we can refer to the literature for detailed proofs, but we have
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to explore their relevance for the derivation of analytic properties and for the

identification of singularities. It is not our aim, to provide reviews of several

aspects of non-perturbative gauge theories. What we need is to show that

there is a mathematically well defined formulation of confinement, which we

use in order to derive the spectral conditions, and a construction of local,

composite fields for hadrons, from which we obtain the initial domain of

holomorphy. We also have to exhibit the assumptions made within this

framework.

For the purpose of writing Fourier representations for hadronic ampli-

tudes, we must consider the construction of local, BRST-invariant, com-

posite Heisenberg fields corresponding to hadrons. This problem requires a

discussion of operator products [11, 12] of elementary, confined fields in a

non-perturbative framework.

Since we need a manifestly covariant formulation of the theory, we con-

sider linear, covariant gauges within the framework of the BRST-algebra

[13]. Assuming the existence and the completeness [14] of a nilpotent BRST-

operator Q in the state space V of indefinite metric, we define an invariant

physical state space H as a cohomology of Q. As a consequence of complete-

ness, which implies that all neutral (zero norm) states satisfying QΨ = 0

are of the form Ψ = QΦ,Φ ∈ V, the space H has (positive) definite metric

[15, 16].

We assume that there are hadronic states in the theory, and take con-

finement to mean that, in a collision of hadrons, only hadrons are produced.

Within the BRST-formalism, this implies that only hadron states appear as

physical states in H. At least at zero temperature, transverse gluons and

quarks are confined for dynamical reasons, forming non-singlet representa-

tions of the BRST-algebra in combination with other unphysical fields. In

3



the decomposition of an inner product of physical states, there appear then

only hadron states. The same is true for the decomposition of physical matrix

elements of products of BRST-invariant operator fields, because these oper-

ators map physical states into other physical states. In this way we find that

the fundamental spectral conditions for hadronic amplitudes are the same as

in the effective hadronic field theory. The absorptive thresholds are due only

to hadronic states.

There is, however, another category of singularities, which is related to

the structure of particles as a composite system of other particles. These

are the so-called anomalous thresholds or structure singularities. They were

encountered in the process of constructing examples for the limitations of

proofs for dispersion representations [18, 19]. These limitations are related

to anomalous thresholds corresponding to the structure of a given hadron

as a composite system of non-existing particles, which are not excluded by

simple spectral conditions. But physical anomalous thresholds [20, 19, 21]

are very common in hadronic amplitudes: the deuteron as a np-system, Λ

and Σ hyperons as KN systems, etc. In theories like QCD, the important

question is, whether there are structure singularities of hadronic amplitudes

which are related to the quark-gluon structure of hadrons. We show that

this is not the case. Independent of perturbation theory, we describe how

anomalous thresholds are due to poles or absorptive thresholds in crossed

channels of other hadronic amplitudes, which are related to the one under

consideration by analytic continuation into an appropriate lower Riemann

sheet [21]. Since, as explained above, we have no absorptive singularities in

hadronic amplitudes which are associated with quarks and gluons, we also

have no corresponding anomalous thresholds.

For form factors of hadrons, which may be considered as loosely bound
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systems of of heavy quarks, there are interesting consequences stemming

from the absence of anomalous thresholds associated with the quark-gluon

structure. In a constituent picture, these hadrons can be described by a

Schrödinger wave function with a long range due to the small binding energy.

But in QCD, in contrast to the situation for the deuteron, for example, there

are no anomalous thresholds associated with the spread-out quark structure.

However, there is no problem in obtaining a large mean square radius with

an appropriate form of the discontinuities associated with hadronic branch

lines. In addition, there may be hadronic anomalous thresholds which are

relevant.

Finally, we consider the analytic properties and the singularity structure

of unphysical (colored) amplitudes. It is sufficient to discuss two-point func-

tions as examples. The structure functions of quark and transverse gluon

propagators are analytic in the k2-plane, with cuts along the positive real

axis. This is a direct consequence of Lorentz covariance and spectral condi-

tions. In previous papers [22], we have derived the asymptotic behavior of

these functions for k2 → ∞ in all directions of the complex k2-plane, and

for general, linear, covariant gauges [23]. With asymptotic freedom, they

vanish in these limits. Hence the structure functions cannot be non-trivial,

entire functions. They must have singularities on the positive, real k2-axis,

which should be associated with appropriate unphysical (colored) states in

the general state space V with indefinite metric. These states are not ele-

ments of the physical state space, but form non-singlet representations of the

BRST-algebra.
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II. CONFINEMENT

In this section, we briefly define the general framework for the later dis-

cussion of amplitudes and their analytic structure.

We consider quantum chromodynamics and similar theories. Since it is

essential to have a manifestly Lorentz-covariant formulation, we use covariant

gauges as defined by a gauge fixing term

LGF = B · (∂µAµ) +
α

2
B · B , (1)

where B is the Nakanishi-Lautrup auxiliary field, and α is a real parameter.

The theory is defined in a vector space V with indefinite metric. We as-

sume that the constrained system is quantized in accordance with the BRST-

algebra [13] :

Q2 = 0, i[Qc, Q] = Q , (2)

where Q is the BRST-operator, and Qc the ghost-number operator. On the

basis of this algebra, we define the subspaces

kerQ = {Ψ : QΨ = 0, Ψ ∈ V} , (3)

imQ = {Ψ : Ψ = QΦ, Φ ∈ V} , (4)

where imQ ⊥ kerQ, with respect to the indefinite inner product (Ψ,Φ). We

can write

kerQ = Vp ⊕ imQ , (5)

and define the BRST-cohomology

H =
kerQ

imQ
(6)
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as a covariant space of equivalence classes, which is isomorphic to Vp [15].

We are interested in zero ghost number, and hence ignore the grading due

to the ghost number operator Qc. In order to use H as a physical state

space, it must have definite metric, which we can choose to be positive. This

is not assured, a priori, but requires the assumption of “completeness” of

the BRST-operator Q, which implies that all neutral (zero norm) states in

kerQ are contained in imQ [14, 15]. Then Vp and hence H must be definite,

because every space with indefinite metric contains neutral states. With

completeness, we have imQ = (kerQ)⊥ , and hence imQ is the isotropic part

of kerQ. It is not enough for the definiteness ofH to have ghost number zero,

since ‘singlet pair’ representations, containing equivalent numbers of ghosts

and anti-ghosts, must also be eliminated. In view of the inner product for

eigenstates of iQc :

(ΨNc
,ΨN ′

c

) = δ−Nc,N ′

c

, (7)

they would give rise to an indefinite metric in Vp, and hence to neutral states.

There are arguments for the absence of singlet pairs in the dense subspace

generated by the field operators. But we are dealing with a space of indefinite

metric, so that the extension to the full space V is delicate [25, 24, 26].

Completeness can be proven explicitly in certain string theories, however

these are more simple structures than four-dimensional gauge theories. In

any case, without completeness, we cannot get a physical subspace with

definite norm, and a consistent formulation of the theory would seem to be

impossible.

Given completeness, physical states Ψp are BRST-singlets with QΨp =

0, positive norm and ghost number zero. Unphysical states form quartet
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representations of the BRST-algebra [15]:

ΨNc
with QΨNc

6= 0 , (8)

ΞNc+1 = QΨNc
, (9)

Ψ−Nc−1 with QΨ−Nc−1 6= 0 and (ΞNc+1,Ψ−Nc−1) 6= 0 , (10)

Ξ−Nc
= QΨ−Nc−1 and (Ξ−Nc

,ΨNc
) 6= 0 . (11)

The states Ψ−Nc−1 and Ξ−Nc
are implied by the non-degeneracy of V, and

the inner product in Eq.(7).

In weak coupling perturbative theory, the state spaceH consists of quarks

and transverse gluons. Ghosts, longitudinal- and timelike gluons form quar-

tet representations, and are unphysical. They are confined in a kinematical

fashion.

In a general non-Abelian gauge theory like QCD, we can have asymptotic

freedom, and we expect that all colored states are confined, provided the

number of matter fields is limited. In the language of QCD, this implies

that quarks and transvers gluons, at zero temperature, are not elements of

the physical state space H, which then contains only hadrons as colorless,

composite systems [25, 17, 16]. Under these circumstances, only hadrons can

be produced in a collision of hadrons. This algebraic notion of confinement

should be compatible with more intuitive pictures of quark confinement, and

with two-dimensional models. However, for gluons, two-dimensional models

are useless, because there are no transvers gluons in two dimensions. If the

number of flavors in QCD is limited, we can give arguments that gluons
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are not elements of the physical subspace [16, 17]. These arguments are

based upon superconvergence relations satisfied by the structure function of

the gluon propagator, which provide a connection between short- and long

distance properties of the theory [22, 23, 27].

In our discussion of analytic properties of hadronic amplitudes, we take

it for granted that confinement is realized in the sense that the physical

state space H contains only hadronic states. Quarks and gluons are not

BRST-singlets. Together with other unphysical states, they form quartet

representations of the BRST-algebra and remain unobservable.

III. LOCAL HADRONIC FIELDS

Having defined the general state space of the gauge theory with confine-

ment, we now turn to the problem of constructing local Heisenberg operators,

which can be used as interpolating fields in amplitudes describing reactions

between physical particles (hadrons), and in form factors of hadrons. The

construction of composite operators, and of operator product expansions, has

been discussed extensively in the literature [11, 12]. The relatively new as-

pects in our case are the state space of indefinite metric, and the fact that the

constituents are unobservable. In addition, in view of confinement, we can-

not use perturbation theory methods, and consequently some assumptions

are needed for the non-perturbative construction of composite fields.

In the following, we discuss the problem with the help of a generic exam-

ple. We consider the construction of a meson field B(x) in terms of funda-

mental fields ψ(x) and ψ(x), ignoring all inessential aspects like indices etc..

Hence, our formulae in the following are rather symbolic. The field B(x)
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must be local and BRST-invariant, so that B(x)Ψ is a representative of a

physical physical state, provided Ψ is one.

Let us first consider the product

B(x, ξ) = ψ(x+ ξ)ψ(x− ξ) . (12)

With |k,M〉 being a one particle hadron state with k2 = M2, we assume

that this state exists as a composite system, so that we have a non-vanishing

matrix element

〈0|B(x, ξ)|k,M〉 6= 0 , (13)

where |0〉 denotes the vacuum state, and where the inner product involved

in Eq.(13) is the indefinite product defined in the general state space V. We

now define a Poincaré covariant, local operator by the weak limit

BF (x) = lim
ξ→0

ψ(x+ ξ)ψ(x− ξ)

F (ξ)
. (14)

We may consider a space-like approach with ξ2 < 0 , but this is not essential.

The invariant function F (ξ) is only of relevance as far as its singularity for

ξ → 0 is concerned. It is the purpose of F (ξ) to compensate the singularity

of the operator product. Writing

F (ξ) = (Ψ, B(0, ξ)Φ) , Ψ,Φ ∈ V , (15)

we want to choose these states so that they belong to a class Kmax , for which

the matrix element (15) is most singular, assuming that such most singular

matrix elements exist [28]. Possible oscillations in the limit (14) may require

the choice of an appropriate sequence {ξn} in the approach to ξ = 0. By

construction, the operator BF (x) is local with respect to the constituent

fields ψ(x) and ψ(x), and with respect to itself.
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In view of the requirement (13), we have

〈0|B(x, ξ)|k,M〉 = e−ik·x〈0|B(0, ξ)|k,M〉 = e−ik·xFk(ξ) , (16)

with Fk(ξ) 6= 0. Then the operator field

B(x) = lim
ξ→0

B(x, ξ)

Fk(ξ)
(17)

has a finite matrix element. We may assume that Fk(ξ) ∈ Kmax, so that

B(x) appears as the leading term in the general operator product expansion

of B(x, ξ). However, by construction, the field BF (x) should be a BRST-

invariant operator. Since we are dealing only with matrix elements of BF (x)

with respect to states in the physical state space H, it is sufficient to assume

that Fk(ξ) ∈ K′
max, where K′

max refers only to states in H. We then use the

field B(x) in Eq.(17) as the Heisenberg field interpolating between the corre-

sponding asymptotic states. We introduce asymptotic fields Bin(x) using the

free retarded function ∆R(x − x′,M) in the Yang-Feldman representation,

and apply the conventional LSZ-reduction formalism [29] in order to obtain

representations of physical amplitudes in terms of products of B(x) fields.

An example would be the S-matrix element

〈k′,M ; p′,M |S|k,M ; p,M〉 =
1

(2π)3

∫ ∫

d4x′d4x exp[ik′x′ − ikx]

× Kx′Kx〈p′,M |TB(x′)B(x)|p,M〉 , (18)

or corresponding expressions in terms of retarded or advanced products. We

can also make further reductions as required for the proofs of dispersion

representations. The reduction method is used here only within the space H
with definite metric and in a framework without infrared problems.

In four dimensions, the existence of operator expansions, and of composite

operators like B(x), can be proven within the framework of renormalized
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perturbation theory [28], but not yet in the general theory, as required for

our purpose. Hence we have to make the technical assumptions described

above. In many lower dimensional theories, operator product expansions are

known to exist independent of perturbation theory. They are expected to be

a general property of local field theories.

The construction of interpolating, hadronic Heisenberg operators, like

B(x) in our example, is of course not unique. But the different possibilities

belong to the same Borchers class [30]. Different fields in a given class, which

have the same asymptotic fields, define the same S-matrix. It can be shown

that locality is a transitive property: two fields, which commute with a given

local field, are local themselves and with respect to each other. We have

equivalence classes of local fields. Whatever the construction of a composite

operator like B(x), the resulting fields all are local with respect to the fun-

damental fields, and hence belong to the same Borchers class. Although we

use Borchers theorem here essentially only in the physical subspace, it can

be generalized to spaces with indefinite metric. The proof involves the equiv-

alence of weak local commutativity and CPT-invariance, as well as the Edge

of the Wedge Theorem. Introducing appropriate rules for the transformation

of ghost field under CPT, we can define an anti-unitary CPT-operator in the

state space V. Together with the postulates of indefinite metric field theory,

we then get equivalence classes of local Heisenberg fields in gauge theories

like QCD.

The construction of composite hadron fields, as described above, can be

generalized to other products of fundamental fields which form color singlets.
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IV. SPECTRAL CONDITIONS

In the previous section, we have described how we can obtain represen-

tations of hadronic amplitudes in QCD in terms of local Heisenberg fields,

which are BRST-invariant and interpolate between asymptotic states of non-

interaction hadrons. While the local commutativity of the hadron fields im-

plies support properties of Fourier representations which give rise to tubes

(wedges) as regions of holomorphy, the spectral conditions define the real

domain where retarded and advanced amplitudes coincide, generally in the

sense of distributions. Given completeness of the BRST-operator Q, it is

convenient for our further discussion to introduce a self-adjoint involution

C in V, which converts the indefinite inner product into a definite product

denoted by

(Ψ,Φ)C = (Ψ, CΦ) , (19)

where C† = C and C2 = 1 [15, 14, 16]. With respect to the definite product,

we obtain a decomposition of V in the form

V = Vp ⊕ imQ⊕ imQ∗ , (20)

where Q∗ = CQC and Q∗2 = 0. With completeness of Q, the subspace Vp has

(positive) definite metric, while imQ and imQ∗ contain conjugate pairs of

neutral (zero norm) states, so that for every Ψ ∈ imQ, there is a Ψ′ ∈ imQ∗

with (Ψ,Ψ′) 6= 0, while both states are orthogonal to Vp. Here and in the

following we ignore the grading due to the ghost number operator, since we

are mainly interested in Nc = 0. It is convenient to introduce a matrix
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notation, writing a vector Ψ ∈ V in the form

Ψ =







ψ1

ψ2

ψ3





 , (21)

with components referring to the subspaces Vp, imQ and imQ∗ of the de-

composition (20). Then

C =







1 0 0
0 0 1
0 1 0





 , (22)

and the inner product is given by

(Ψ,Φ) = (Ψ, CΦ)C = ψ∗
1φ1 + ψ∗

2φ3 + ψ∗
3φ2 . (23)

The BRST-operator can be written as

Q =







0 0 0
0 0 q
0 0 0





 , (24)

with q being an invertible suboperator [16]. Ψ ∈ kerQ is characterized by

ψ3 = 0, and a representative of a physical state Ψ ∈ H by ψ3 = 0, ψ1 6= 0.

Hence, for Ψ,Φ ∈ H, we have (Ψ,Φ) = ψ∗
1φ1 in Eq.(23). Since Vp is a

non-degenerate subspace, we can introduce a projection operator P (Vp) with

P 2 = P † = P .

For the purpose of spectral condition, we are interested in the decompo-

sition of an inner product with respect to a complete set {Ψn} of states in V,
in particular eigenstates of the energy momentum operator. For Ψ,Φ ∈ V,
we have then

(Ψ,Φ) =
∑

n

(Ψ,Ψn)(Ψn,Φ) . (25)
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But if we consider only states Ψ,Φ ∈ kerQ , we obtain (Ψ,Φ) = ψ∗
1φ1 =

(Ψ, P (Vp)Φ), so that we can write

(Ψ,Φ) =
∑

n

(Ψ, P (Vp)Ψn)(P (Vp)Ψn,Φ)

=
∑

n

(Ψ,Ψpn)(Ψpn,Φ) , (26)

with a complete set of states {Ψpn} in the Hilbert space Vp. Writing sym-

bolically ΨHn = Ψpn + imQ, we have (Ψ,ΨHn) = (Ψ,Ψpn) for Ψ ∈ H, and

hence obtain the decomposition

(Ψ,Φ) =
∑

n

(Ψ,ΨHn)(ΨHn,Φ) , (27)

with Ψ,Φ ∈ H. The expression (27) is manifestly Lorentz invariant, even

though the projection P (Vp) by itself is not invariant. In the full state space

V of indefinite metric, Lorentz transformations are realized by unitary map-

pings U with U † = CU∗C. They are BRST-invariant, and consequently of

the form (28) in our matrix representation. It is then easy to see that only

U11 appears in the transformation of physical quantities. Transformations U

with U11 = 1 are equivalence transformations which do not change physical

matrix elements. Unphysical states, written as vectors like in Eq.(21 ), may

well have a component in Vp, but we can always find an equivalence trans-

formation which removes this component, because ψ3 6= 0 for these states.

As we have seen in the previous section, we can obtain hadronic am-

plitudes as Fourier Transforms of matrix elements involving only BRST-

invariant, local hadronic fields and hadron states. All spectral conditions

result from decompositions of these products with respect to intermediate

states, which are eigenstates of the energy momentum operator. A BRST-

invariant operator O commutes with Q, and leaves the subspace kerQ in-
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variant. In our matrix notation, it is of the form

O =







O11 0 O13

O21 O22 O23

0 0 O33





 , (28)

with O22q = qO33, where q is defined in Eq.(24). Since Oψ ∈ H if Ψ ∈ H,

we can use Eq.(27) to write decompositions of the form

(Ψ, XY Φ) =
∑

n

(Ψ, XΨHn)(ΨHn, Y Φ) , (29)

where Ψ,Φ ∈ H and X, Y are BRST-invariant operators (fields). We see

again, that only physical states appear in the decomposition.

Eq.(29) is generic for all spectral decompositions used in the derivation

of analytic properties of physical amplitudes. It shows that these spectral

conditions involve only hadrons, and it guarantees the unitarity of the S-

matrix [15] in the physical (hadronic) state space H. The described features

of hadronic amplitudes are, of course, a direct consequence of our assumption

of confinement for transvers gluons and quarks.

With the local hadronic operator and hadronic spectral conditions, we

have reached the conclusion, that the derivation of analytic properties, and of

dispersion representations for gauge theories with confinement, can proceed

along the same lines as in the old hadron field theory. The starting point are

Fourier transforms of matrix elements of retarded and advanced products of

the BRST-invariant, composite, local hadron fields.

However, one important aspect remains to be discussed: the question of

anomalous thresholds or structure singularities, which will be considered in

the following section.
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V. ANOMALOUS THRESHOLDS

In the literature, anomalous thresholds are often considered in connec-

tion with appropriate Feynman graphs [20, 19, 21]. However, they can be

understood, completely independent of perturbation methods, on the ba-

sis of analyticity and unitarity [21]. Within the framework of theories with

confinement, it is essential to have a nonperturbative approach.

Anomalous thresholds are branch points which appear in a given channel

of an amplitude. They are not directly related to the possible intermediate

states in this channel, which introduce only “absorptive” singularities. They

are rather “structure singularities”, which describe effects due to the possi-

bility that a given particle can be considered as a composite system of other

particles. They appear in the physical sheet of the amplitude, in the channel

considered, only if a loosely bound composite system is involved. Otherwise,

they remain in a secondary Riemann sheet.

In the following we briefly show that anomalous thresholds, in a given

channel of an amplitude, are due to ordinary (absorptive) thresholds in

crossed channels of other amplitudes, which are related to the one under

consideration via unitarity. Since we have seen before that hadronic am-

plitudes have only absorption thresholds related to hadron states, it follows

that the only anomalous thresholds which appear are due to the structure of

hadrons as composite systems of hadronic constituents. There are no such

thresholds associated with the quark-gluon structure of hadrons, even for

loosely bound composite systems with quarks as constituents.

In order to study the emergence of anomalous thresholds on the physical

sheet of an hadronic amplitude, we consider a form factor as an example. We

ignore all inessential complications and use the structure function W (s), s =
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k2 of a deuteron-like particle with variable mass, as indicated in Fig.1. For

x < 2m2
N , where x = (mass)2 ≤ m2

D , the function W (s) has branch points

on the right hand, real k2-axis, starting with those due to pion intermediate

states at sπ. However, we concentrate on the NN̄ -threshold at s = 4m2
N .

The discontinuity due to this threshold alone is

ImWNN̄ (s+ i0) = ρ(s+ i0)G(s+ i0)V II(s+ i0) , (30)

ρ(s) = [(s− 4m2

N)s
−1]1/2 . (31)

Here G(s) is the appropriate partial wave projective of the amplitude G(s, t)

pictured in Fig.2a. We consider S-wave projections for simplicity. Further-

more V II(s + i0) = V ∗(s + i0), where V (s) is the nucleon form factor, with

branch points analogous to those of W (s). The continuation of V (s) into

sheet II of the NN̄ -threshold is given by [21]

V II(s) =
V (s)

1 + 2iρ(s)F (s)
, (32)

where F (s) is the partial wave projection of the scattering amplitude NN̄ →
NN̄ in the s-channel. With Eqs. (30) and (32), we get for the continuation

of W (s) through the NN̄ cut:

W II(s) = W (s)− 2iρ(s)
G(s)V (s)

1 + 2iρ(s)F (s)
. (33)

WhileW (s) has no left-hand branch lines, W II(s) does, due to left-hand cuts

of G(s) and F (s). For our purpose, the important left-hand cut is the one of

G(s), which is caused by the pole term at t = m2
N , as illustrated in Fig.2b :

G(s, t) =
Γ2(x)

m2
N − t

+ · · · . (34)

18



The branch point is due to the end point at cosθ = −1 in the partial-wave

projection, with t = t(s, cosθ). It is located at s = g(x), where

g(x) = 4x

(

1− x

4m2
N

)

. (35)

For 0 < x < 4m2
N , we have g(x) < 4m2

N , with the maximum at g(2m2
N) =

4m2
N . The branch point in sheet II at s = g(x) is pictured in Fig.3 for

x < 2m2
N .

Let us now increase x to x = 2m2
N and above. The position g(x) of the

branch point moves to 4m2
N at x = 2m2

N , and then decreases again. Giving

x an imaginary part, we get

g(x+ iy) =

(

g(x) +
y2

m2
N

)

− 2i
y

m2
N

(x− 2m2

N ) , (36)

and we see that g(x + iy) encircles the branch point s = 4m2
N of W (s),

moving thereby into the first and “physical” sheet of the Riemann surface

of this function. There it becomes an anomalous threshold. The situation is

illustrated in Fig.4, where the meson cuts have been omitted. For sufficiently

large values of x, this branch point can move well below the lowest absorption

threshold sπ. Writing mD = 2mN −B, we get, for small values of the binding

energy B,

g(m2

D) = 4m2

D

(

1− m2
D

4m2
N

)

≈ 16mNB , (37)

which can give a very long maximal range of the distribution in configuration

space, just as expected from the Schrödinger wave function.

There are other anomalous thresholds associated with the NN̄ branch

point of W (s). For instance, there are those due to the probability distribu-

tion of the proton in a deuteron, considered as a composite system of two
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nucleons and a limited number of pions. Their position can easily be calcu-

lated exactly. For small values of B, we get g1(m
2
D) ≈ 16mN(B+mπ), if one

pion is added. Anomalous thresholds can also come out of higher absorptive

branch points in the s-channel of the form factor W .

Finally, we remark that the above considerations can be generalized to

other amplitudes. Essentially only kinematics, crossing, and some analytic

properties are needed. In all cases the anomalous thresholds are related

to ordinary, absorptive thresholds in other amplitudes, which appear in the

continuation into secondary Riemann sheets [21].

As we have pointed out before, due to the fact that anomalous thresholds

are indirectly related to absorptive thresholds, there are no such singularities

which are associated with the quark-gluon structure of hadrons, since there

are no absorptive thresholds related to this structure. However, for hadrons

which may be considered as loosely bound systems of heavy quarks, we can

get a large mean square radius on the basis of appropriate weight functions

along hadronic cuts [10, 31], even though they may be much higher in mass,

and also as a consequence of possible hadronic anomalous thresholds.

VI. COLORED APMLITUDES

Having discussed only hadronic amplitudes describing observable conse-

quences of the theory, we would like to add here some remarks about the

analytic structure and the singularities of general Green’s functions with col-

ored channels. In particular, we will show that these colored amplitudes

must have singularities at finite points, which can be associated with con-

fined states in V like quarks and gluons [22, 23]. Even though quarks and
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transverse gluons are confined, we can have asymptotic states associated with

these excitations, as well as corresponding poles in colored Green’s functions.

In our formulation of confinement, all colored states form quartet represen-

tations of BRST-algebra, and hence are not elements of physical space H,

which contains only singlets.

As an example for colored amplitudes, we consider the gluon propagator,

which has been studied extensively. The structure function is defined as a

Fourier Transform by

∫

dxeikx〈0|TAµν
a (x)A̺σ

b (0)|0〉 = − iδabD(k2 + i0)

× (kµk̺gνσ − kµkσgν̺ + kνkσgµ̺ − kνk̺gµσ) (38)

with Aµν ≡ ∂µAν−∂νAµ. As before, we consider the linear, covariant gauges

defined in Eq.(1). In the state space V with indefinite metric, we write the

spectral condition in the form [32]

∫

d4ae−ip·a(Ψ, U(a)Φ) = 0 , (39)

for values of p outside of W+ = {p : p0 ≥ 0, p2 ≥ 0; p ∈ R4} , and for all

Ψ,Φ ∈ V.
Lorentz covariance and spectral condition are sufficient to show that

D(k2 + i0) is the boundary value of an analytic function D(k2), which is

regular in the cut k2-plane, with a cuts along the positive real axis only. It is

then an essential question to obtain the asymptotic behavior for k2 → ∞ in

all directions of the complex k2-plane. In view of the asymptotic freedom of

the theory, the asymptotic terms can be obtained with the help of renormal-

ization group methods. In using the renormalization group, an assumption is

made, which we have not used so far. We require that the general amplitude

connects with the perturbative expression for g2 → +0, where g is the gauge
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coupling parameter. The connection is needed only for the leading term.

With this assumption, we find for k2 → ∞ in all directions [23]:

− k2D(k2, κ2, g, α) ≃ α

α0

+ CR(g
2, α)

(

−β0 ln
k2

κ2

)−γ00/β0

+ · · · . (40)

The corresponding asymptotic terms for the discontinuity along the positive,

real k2–axis are then given by

− k2ρ(k2, κ2, g, α) ≃ γ00
β0
CR(g

2, α)

(

−β0 ln
k2

|κ2|

)−γ00/β0−1

+ · · · . (41)

In these relations, we have used the following definitions: The anomalous

dimension of the gauge field is given by

γ(g2, α) = (γ00 + αγ01)g
2 + · · · (42)

for g2 → +0, and for the renormalization group function we write, in the

same limit,

β(g2) = β0g
4 + β1g

6 + · · · . (43)

Furthermore, we use the notation

α0 = −γ00/γ01 . (44)

For QCD, we have

γ00
β0

=
13

2
− 2

3
NF

11− 2

3
NF

, γ01 = (16π2)−1
3

4
, (45)

where NF is the number of quark flavours. We assume β0 < 0 corresponding

to asymptotic freedom. Consequently, the exponent γ00/β0 in Eqs.(40) and

(41) varies from 13/22 for NF = 0 to 1/10 for NF = 9, and from −1/16 for
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NF = 10 to −15/2 for NF = 16. We have 0 < γ00/β0 < 1 for NF ≤ 9 and

γ00/β0 < 0 for 10 ≤ NF ≤ 16; for γ00/β0 = 1, our relations (40) and (41)

would require modifications.

The parameter κ2 < 0 is a normalization point. We generally chose to

normalize D so that

− k2D(k2, κ2, g, α) = 1 for k2 = κ2 . (46)

With this normalization, the coefficient CR(g
2, α) for α = 0 is given by

[22, 23]

CR(g
2, 0) = (g2)−γ00/β0exp

∫

0

g2
dxτ0(x),

τ0(x) ≡ γ(x, 0)

β(x)
− γ00
β0x

, (47)

and hence CR(g
2, 0) > 0. Certainly CR(g

2, α) is not identically zero. If

there should be zero surfaces, a term proportional to (−β0 ln k2

κ2 )
−1 becomes

relevant in Eq.(41).

The remarkable property of the asymptotic terms in Eqs. (40) and (41)

is their gauge independence except for the coefficients. Furthermore, their

functional form is determined by one loop expressions.

From the asymptotic limit (40), we see that D(k2) vanishes for k2 → ∞ in

all directions of the complex k2-plane. Hence it cannot be a nontrivial entire

function, at least for 0 < g < g∞, where g∞ is a possible first non-integrable

singularity of β−1(g2). There must be singularities on the positive real k2-

axis , and it is natural that these are associated with confirmed, unphysical

states. Similar arguments can be given for the structure functions of the

quark propagator.
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We can write an unsubtracted dispersion representation for D(k2) :

D(k2, κ2, g, α) =
∫ ∞

−0

dk′2
ρ(k′2, κ2, g, α)

k′2 − k2
, (48)

and even a dipole representation exists

D(k2, κ2, g, α) =
∫ ∞

−0

dk′2
σ(k′2, κ2, g, α)

(k′2 − k2)2
,

σ(k2, κ2, g, α) =
∫ k2

−0

dk′2ρ(k′2, κ2, g, α). (49)

For α = 0, the dipole representation has been used in order to give arguments

for an approximately linear quark-antiquark potential under the condition

γ00/β0 > 0, where σ(∞) = 0, and σ(k2) > 0 , σ′(k2) = ρ(k2) < 0 for

sufficiently large values of k2 [33, 34].

Under the restriction γ00/β0 > 0 (NF ≤ 9 for QCD), we find that D(k2)−
α
α0

vanishes faster than k−2 at infinity, so that we have the important sum

rule [23] :

∫ ∞

−0

dk2ρ(k2, κ2, g, α) =
α

α0

. (50)

For α = 0, γ00/β0 > 0, we have a superconvergence relation [22]. It gives a

rather direct connection between short and long distance properties of the

theory, and has been used in order to give arguments for gluon confinement

[16, 17].

APPENDIX: REMARKS ABOUT PROOFS

We have seen that we can construct local hadronic fields as BRST-

invariant operators in V, and write Fourier representation of hadronic am-
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plituds in terms of matrix elements of products of these fields. With BRST-

methods, we define an invariant physical state space H which, as a conse-

quence of confinement, contains only hadrons. With the spectral conditions

also referring to hadrons only, we have the imput required in order to use the

old methods for the derivation of dispersion representations as formulated in

hadronic field theory. For completeness, we give in this appendix a very brief

sketch of the essential ideas of these proofs, which are often hidden behind

technical details.

The Gap Method [6] is applicable in cases where there is no unphysical

region. Examples are ππ-, πN - forward and near-forward scattering, some

form factors like ππγ, πNN in the N -channel, etc. [35, 36, 1]. As an example,

let us consider π0π0- forward scattering. We can write the amplitude as

F (ω) =
∫ ∞

0

drF (ω, r) , (51)

with

F (ω, r) = 4π
r sin(

√
ω2 − µ2)√

ω2 − µ2

×
∫ ∞

0

dx0eiωx
0〈p|[j(x

2
), j(−x

2
)]|p〉 , (52)

and j = (✷+µ2)φ. For fixed r, F (ω, r) is analytic in the upper half ω-plane,

and ImF (ω + i0, r) = 0 for |ω| < µ due to the spectral conditions. Ignoring

subtraction, we can write a Hilbert representation

F (ω, r) =
2ω

π

∫ ∞

µ
dω′ ImF (ω

′ + i0, r)

ω′2 − ω2
. (53)

For real |ω| > µ, we can perform the r-integration (51) on both sides, and get

the corresponding dispersion relation for F (ω). Although some refinements

are required, the method shows in a very simple way how local commutativity
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and spectral conditions lead to a dispersion representation. Pole terms, like

in πN - scattering, can also be handled by this method [5, 7, 1].

The General Method is required in the presence of unphysical regions, like

NN -scattering [37] (even for t=0), NNγ-form factors in the NN -channel,

for fixed t amplitudes [38], to obtain t-analyticity (Lehmann ellipses) [8],

and for st-analyticity [39]. There are many technical details involved in the

derivation of dispersion representations, like continuations in mass variables,

for example, but the main problem is to construct the largest region of holo-

morphy obtainable on the basis of retarded and advanced functions like

F±(K) = ± i

(2π)3

∫

d4x e−iK·xθ(±x0) 〈p′|
[

j†(
x

2
), j(−x

2

]

|p〉 , (54)

with K = 1

2
(k + k′), k + p = k′ + p′ .

Due to local commutativity, the functions F±(K) are analytic in the

wedges

W± = {K : ImK0 > 0 or < 0, (ImK)2 > 0; ReK ∈ R4} . (55)

From the spectral conditions, we find that F+(K) = F−(K) for D ∈ R4,

where D is a real domain, and where this equality may be in the sense of

distributions. As a special case of the Edge of the Wedge Theorem [1], we

can then show that there exists an analytic function F (K), which coincides

with F±(K) in the wedges W± respectively, and which is holomorphic in the

domain W ∪ N(D), with W = W+ ∪W−. Here N(D) is a finite, complex

neighborhood of D. If we then construct the Envelope of Holomorphy E(W ∪
N(D)), we get the largest possible region of analyticity given the assumptions

made. In the original paper [1], a generalized semitube has been used, for

which the envelope was known., This method gives boudary points of the
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envelope in important cases. A complete construction of the envelope, using

the continuitys theorem, was given in [2].

Independently, in [5], elaborate distribution and analytic methods were

used in order to get a subdomain of E, directly on the basis of W± and D.

For the special problem with one four-vector considered here, one can use

methods from the theory of distributions and differential equations in order

to give a representation of functions which are holomorphic in E [4].

The limitations of the proofs for dispersion representation are due to

the lack of input from unitarity, and often can be related to conditions for

the absence of unphysical anomalous thresholds. Some improvements are

possible using aspects of two-particle unitarity, but in general multiparticle

unitarity and analytic properties of multiparticle amplitudes are required for

further enlargements of the domain of holomorphy.

For any fixed t < 0, and for arbitrary binary reactions, it can be shown

that the amplitude is holomorphic outside of a large circle in the cut s-plane,

so that one can always prove crossing relations [40].

As is evident from the preceding discussion, the interesting proposal of

double dispersion relations [41] has not been proven. They are compatible

with hadronic perturbation theory in lower orders. Although it may not be

a valid approach in QCD, hadronic perturbation theory is a useful tool for

locating certain singularities of physical amplitudes.
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Figure Captions

Fig. 1. Vertex Function W (s).

Fig. 2. Inelastic amplitude G(s, t) (a) and relevant pole term (b)

in the t-channel.

Fig. 3. Branch points of W (s) and W II(s). The continuation is

with respect to the NN -threshold at s = 4m2
N .

Fig. 4. Anomalous threshold of W (s) at s = g(x) for x > 2m2
N .

The branch line runs from g(x) to 4m2
N in sheet I (physi-

cal sheet), and then from 4m2
N to −∞ in sheet II (dotted

line). The meson branch lines starting at sπ < 4m2
N have

not been drawn.
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