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Abstract

The holomorphic prepotential of ultraviolet finite N=2 supersym-
metric gauge theories is obtained by a partial twisting of N=1 gauge
theory in six dimensions, compactified on IR4 × T

2. We show that
Ward identities for the conserved chiral R-symmetry in these theories
generate a set of constraints on the correlation functions of chiral ring
operators. These correlators depend only on the coordinates of the
T

2, and the constraints are analogs of the Knihnik-Zamolodchikov-
Bernard equations at the critical level.

1 Introduction

There is by now a great deal of evidence [1, 2, 3, 4, 5, 6] that integrability
underlies the structure [7] of N=2 supersymmetric gauge theory. In a recent
article [5], the first author made a number of remarks and conjectures about
the nature of this integrability. Among these were the following:1

1A discussion of some of these matters from a rather different perspective may be found
in [6].
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1.) An integrable system related to the finite N=2 model with an adjoint
hypermultiplet (softly broken N=4 gauge theory) was found by Donagi and
Witten (explicitly for SU(N)), in the context of Hitchin’s integrable system
[8]. A more explicit but equivalent description of the integrable model orga-
nizing the effective theory is the elliptic Calogero-Moser model [9]

H2 =
1
2
p2 + 1

2
µ2

∑

α

℘(α · q|τ) , (1)

where µ is the adjoint hypermultiplet mass, α are the roots of the Lie algebra
g of the gauge group G, and ℘ is the Weierstrass function. The microscopic
coupling constant of the gauge theory appears in the modulus of the torus
τ = θ

2π
+ 4πi

e2
. In the limit τ → i∞, µ → ∞, together with a shift of ~q, this

integrable system degenerates to the affine Toda lattice, which was found in
[1, 2, 3] to govern the pure N=2 gauge theory that arises in the infrared limit.

2.) Donagi and Witten [4] pointed out that the microscopic gauge coupling
τ should be part of the data that specifies the integrable system, namely
the modulus of the torus on which the spectral parameter lives. In ultravio-
let finite N=2 theories, the non-renormalization of the action allows precise
enough control over the theory that a proof of integrability should be pos-
sible. A number of ideas about how this might transpire were presented in
[5]. In particular, it was proposed that the requirement of finiteness should
arise via anomaly cancellation for the effective theory on the spectral pa-
rameter torus, and that the periodicity of the potential (1) could arise from
considerations of a higher-dimensional theory.

3.) The partition function of finite N=2 gauge theories should satisfy the
Knihnik-Zamolodchikov-Bernard equation on the spectral parameter torus
of the integrable system, at the critical level k = −h∨g . The evidence for this
is somewhat indirect. The Toda system that arises in the infrared limit of
the softly broken N=4 model is the twisted affine Toda lattice; its dynamics
comes from geodesic motion on the loop group (LG)∨, projected down to
a homogenous space by gauging away a certain subgroup [9, 10, 11]. The
appearance of the dual group in the infrared limit of the finite theory ac-
cords with the idea [12] that the effective theory should be a gauge theory
of monopoles with gauge group G∨. In [1, 2, 3], the partition function of
the N=2 theory was related to the WKB or Whitham-averaged Toda lat-
tice, which must come from the semiclassical k → ∞ limit of the loop group
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dynamics upstairs. The appearance of the dual group in the infrared is for-
tuitous, but in the ultraviolet one should see the microscopic gauge theory
with gauge group G; hence the Calogero-Moser model (1) should involve this
group. Remarkably, this interconversion of UV group G and IR group G∨

appears in work on the quantization of the Hitchin integrable system [13, 14]
(which, in turn, is intimately connected to the model (1) [15, 16]). Namely,
the semiclassical limit k∨ → ∞ of the W-algebra Wk∨(g

∨) is the Gelfand-
Dikii algebra GD(g∨); this is nothing other than the algebra of densities for
the conserved integrals of motion of the IR integrable system. This alge-
bra is dual (in a well-defined sense) to the critical level limit k → −h∨g of
the W-algebra Wk(g), which is the algebra of commuting Hamiltonians of
the quantized Hitchin system – whose quadratic Hamiltonian on the torus is
the quantized version of (1). Thus, Montonen-Olive duality would have its
proper role in supersymmetric gauge theory if the ultraviolet theory were re-
lated to the quantized Calogero-Moser system (or equivalently the quantized
Hitchin system). Interestingly, it would then also be intimately connected to
Langlands duality [13], which is the context in which the foregoing duality
of W-algebras first arose.

Our purpose here is to provide a proof of integrability in finite N=2 gauge
theories. In the process, we will establish much of the structure put forward
in [5]. We will also give considerable substance to the tantalizing parallels,
described briefly in [2], between the chiral ring of N=2 supersymmetric mod-
els in two dimensions and the structure of the correlators of chiral fields in
N=2 supersymmetric QCD in four dimensions.

The basic idea is remarkably simple. Starting from N=1 gauge theory in
six dimensions, we reduce to four dimensions on a two-torus T2 of modulus τ
whose volume is sent to zero. Then, following [17], we topologically twist the
dynamics on the T2 to yield an effective dynamics in four-dimensional space-
time. The four-dimensional theory has N=2 supersymmetry. The BRST
operators of the topological dynamics on T2 are the analytic half of the N=2
supercharges in four dimensions (the currents corresponding to the conju-
gate supercharges become the BRST partner of the stress tensor on the T2,
rendering the dynamics there trivial). Thus the twisted theory computes the
holomorphic prepotential of the gauge theory – any dependence on antiholo-
morphic fields is BRST-trivial (up to possible holomorphic anomalies [18]).
A holomorphic dependence on the coordinate z of the T2 remains.
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A crucial feature of this construction is the fact that the four-dimensional
R-symmetry comes from the local Lorentz symmetry on the torus T2. The
anomaly of the R-symmetry may thus be thought of as descending from the
mixed Lorentz and gauge anomaly in 6 dimensions. Since the twisted theory
is holomorphic on the torus, the chiral Ward identity of the R-symmetry
is, from the six-dimensional point of view, generated by the action of the
holomorphic energy-momentum tensor of the (conformal) field theory on the
torus T2. For suitable operators inserted on the T2, this action is in turn
captured by the Knizhnik-Zamolodchikov-Bernard (KZB) equations on the
torus. Thus, by using the chiral Ward identity of the four-dimensional the-
ory – lifted to the six-dimensional setting – we discover the spectral curve,
and link the chiral correlators of the four-dimensional theory to solutions
of the (integrable) KZB equations. While we have not fully evaluated the
fermion correlation functions which appear in these equations, we feel that
the method deserves a separate brief outline. We will complete the determi-
nation of these correlators, and apply the resulting identities to various N=2
theories, in a future work [19].

2 Reduction from six dimensions

The field content of N=1 gauge theory in six dimensions [20, 21]2 consists
of the vector multiplet (AM , λA) of gauge fields and gauginos; together with
a collection of matter hypermultiplets (φi, ψi

Ā
) and their conjugate fields,

transforming in some representations Ri of the gauge groupG. We denote six-
dimensional vector and spinor indices byM , A. Under reduction on IR4×T2,
we denote the corresponding quantities µ, α, α̇ for IR4; and m, a = ± for T2.
Irreducible spinors in six dimensions are Weyl spinors; compatibility with a
chiral supersymmetry requires that λA be chiral, while ψĀ is antichiral. We
take the metric on the T2 to be

ds2 =
L2

τ2
|dz|2 , (2)

where dz = dx4 + τdx5. In string theory τ = τ1 + iτ2 is the expectation
value of a gravitational vector multiplet U . In addition we will introduce a

2We adopt the gamma matrix conventions of Brink et.al. [20].
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background antisymmetric tensor field BMN with 〈B〉 = θ
2π
ǫ56, which may

be considered as the real part of the vev of another string-motivated vector
multiplet T . Then a B∧F ∧F term in the action will induce the usual theta
term upon reduction to four dimensions. For convenience we will take T =
U = τ although this is probably not essential. One may then rather cavalierly
disregard, say, the dependence upon the theta angle during the course of a
derivation, knowing that it will in the end be restored by holomorphicity.

The reduction on IR4 ×T2 splits the vector multiplet according to

(AM , λA) → (Aµ, A++, A−−;λα+, λα̇−) . (3)

Similarly, the hypermultiplet splits as

(φ, ψĀ) → (φ;ψα̇+, ψα−) . (4)

The four-dimensional theory has anR-charge which is nothing but the Lorentz
spin onT2 (later we will consider the two-dimensional gauge fields Am to have
coordinate indices which do not transform under R, and hence are unaffected
by topological twisting).

We now write the bosonic part of the field theory action:

S =
4π

e2

∫

d4x d2z

[

L2

τ2
(FµνF

µν) +
τ2
L2

(FmnF
mn) + (DmAµ −DµAm)

2

]

+

iθ

2π

∫

d4x d2z ǫµνρσFµνFρσ +

4π

e2

∫

d4x d2z

[

L2

τ2
(Dµφ̃

iDµφi) +
τ2
L2

(Dmφ̃
iDmφi) +

L2

τ2
M j

iφ̃
iφj

]

. (5)

Now let us take the limit L→ 0, e→ 0, e/L fixed. We implicitly rescale Am

by a factor of L to keep it in the effective theory. This limit forces fields to be
essentially flat as far as their dependence on the coordinates z, z̄ of the T2.
The complex coupling constant of the effective theory is τ . We may consider
expanding around a configuration with a Wilson line expectation value

〈A−−〉 = v · h , 〈A++〉 = v̄ · h . (6)

In four-dimensional language, we have a non-zero Higgs vev; on the T2, we
have a non-trivial flat gauge bundle. For instance, holomorphic objects will
satisfy

O(z +m+ nτ) = e−2πi(m+nτ)v·hO(z)e2πi(m+nτ)v·h . (7)
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As explained for instance in [22], all quantities involving theWilson line/Higgs
vev v are invariant under the elliptic affine Weyl transformations δv ∈ Λ∨ +
τΛ∨, where Λ∨ is the coroot lattice.

Now consider twisting the theory. Our discussion will remain temporarily
at the level of the classical action; consideration of the effects of quantum
fluctuations are briefly deferred. A twist by the Lorentz spin along the T2

has the effect

λα+ → λα , λα̇− → λα̇−−

ψα− → ψα−− , ψα̇+ → ψα̇ ; (8)

similarly, the supersymmetry charges are shifted as

Qα+ → Qα , Qα̇− → Qα̇−−

Q̄α+ → Q̄α++ , Q̄α̇− → Q̄α̇ . (9)

As is by now standard, we wish to reinterpret the two-dimensional scalar
charge Qα as a BRST operator3; the current associated to the conjugate
charge Q̄α++ will be the BRST partner of the two-dimensional stress ten-
sor. Something remarkable has happened, though; the Weyl condition in six
dimensions, together with the topological twist using the two-dimensional
spin, results in a set of BRST charges which are analytic in four dimen-
sions. Having chosen the BRST operator to be Qα, the effective action of
the twisted theory has as BRST invariant content only the holomorphic part
of the prepotential! For instance, the supersymmetry transformation laws

δA++ = ζ̄α++λα + λ̄α++ζα

δA−− = ζ̄α̇λ
α̇
−−

+ λ̄α̇ζ
α̇
−−

(10)

show that A++ is BRST trivial, and so the effective action of the twisted
theory only depends upon the holomorphic part v of the Higgs vev, and not
on v̄.

Apropos a proposal of [5], it is amusing to see that one can find a graded
algebra of charges in the twisted theory. Namely, the contour integrals

∮

A−−,
∮

ψi
α−−

are BRST invariant. We do not at present understand their utility.

3Alternatively, one could choose Q̄α̇ as the BRST operator; however, one cannot use
both due to {Q̄α̇, Qα} = 2Pα̇α.

6



However the even charges are associated to the vector multiplets and the odd
ones to the hypermultiplets.

At this point we should discuss the effect of quantum fluctuations on our
theory. We do not imagine starting from the untwisted theory in six dimen-
sions, quantizing it, then twisting. This would not make any sense, as the
original six-dimensional theory is sick in the ultraviolet. Rather, we wish to
start with the twisted theory on IR4 ×T2, and ask if it defines a reasonable
theory of four-dimensional fields, carrying an additional holomorphic depen-
dence on a parameter z which we may call the spectral parameter. Fixing
the gauge bundle over the T2, the only relevant field fluctuations are in IR4.
However, to derive the low-energy theory we made a naive scaling analysis of
the classical action. This procedure is patently wrong in the quantum theory,
unless the gauge coupling e2 does not undergo anomalous scaling – that is,
we are dealing with an ultraviolet finite N=2 model.

A separate argument leads to the same conclusion. Consistently decou-
pling the non-holomorphic dependence on the T2 requires that the BRST
charge square to zero. This implies a condition on the product of two super-
symmetry currents in the full six-dimensional theory. The conservation of
supercurrents is related by supersymmetry to the conservation of the stress
tensor on the T2. Both will be spoiled by a mixed anomaly4 of the form
tr{R2}tr{F 2} in the six-dimensional theory, where the tr{R2} comes from
the T2 and the tr{F 2} from the IR4. However tr{F 2} will vanish in a theory
whose matter content corresponds to a finite N=2 theory in four dimensions.

3 Ward identities

In supersymmetric QCD in four dimensions, the correlators of the lowest com-
ponents of chiral superfields satisfy supersymmetric Ward identities which
imply that these correlators are constant (i.e. independent of the location of
the operators). This also remains true when instanton corrections are taken
into account (see, for example [23]). These operators and their correlators
may thus be thought of as defining the chiral ring of the theory. In terms
of the six-dimensional theory, such topological correlators will produce holo-
morphic conformal blocks in the two-dimensional field theory on the torus.

4We thank J. Harvey for a discussion on these matters.
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As was pointed out above, these will satisfy the KZB equation on the once-
punctured torus (c.f. [24])

4πi(k + h∨g)
∂

∂τ
ω̃(z, τ, ~v) =

[

∂2

∂~v 2
−

∑

α

℘(α · v)eαe−α − C2(V )η1(τ)
]

ω̃ . (11)

In particular, as was conjectured in [5], the partition function of the softly
broken N=4 theory should satisfy this equation in the critical level limit
k → −h∨g . In this section we will start with the standard form of the chiral
symmetry Ward identity, and show how it can be lifted into six dimensions
as the KZB equation. Consider the axial rotation δψ(y) = −iδǫ(y)γ5ψ(y)
of a single Dirac fermion ψ of mass M in representation R of a background
gauge field Aµ (c.f. [25]):

0 = ∂µ〈j
µ5(y)O1(x1) . . .On(xn)〉+

2M〈ψ̄γ5ψ(y)O1(x1) . . .On(xn)〉+
∑

i

〈O1(x1) . . .
∂Oi

∂ǫ
. . .On(xn)〉δ(y − xi) +

iT2(R)

8π2
〈FF̃ (y)O1(x1) . . .On(xn)〉 . (12)

Integrating over y, and replacing the insertion of the instanton number term
by the corresponding derivative with respect to the theta parameter, we find

0 = 2M〈
∫

d4yψ̄γ5ψ(y)O1(x1) . . .On(xn)〉+

∂

∂ǫ
〈O1(x1) . . .On(xn)〉+

4T2(R)
∂

∂θ
〈O1(x1) . . .On(xn)〉 . (13)

To apply this result to the twisted six-dimensional model above, consider the
relevant set of fermions (3),(4), making opposite chiral rotations for vector
and hypermultiplet fields due to their opposite R-charge. Replace γ5 in
the first term by σ3Γ7. The analog of the mass term M comes from two
sources: The Higgs vev v for all the fields, and the flavor mass M i

j for the
hypermultiplets (which, if one wants, may be thought of as the vev of a
non-dynamical background flavor gauge field). Then (13) becomes

4π[2C2(G)−
∑

i

T2(Ri)]
∂

∂τ
〈O1(x1) . . .On(xn)〉 =
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〈
∫

d4y
(

λ̄α++A−−λα + ψ̄i
α̇++A−−ψ

α̇
i

)

O1(x1) . . .On(xn)〉+

〈
∫

d4y(M−−)
j
iψ̄

i
α̇++ψ

α̇
j O1(x1) . . .On(xn)〉+

∑

i

〈O1(x1) . . .
∂Oi

∂ǫ
. . .On(xn)〉 . (14)

We have anticipated that the result must be BRST invariant by keeping only
the holomorphic contributions on T2.

Now let us interpret the various terms in (14), and compare with equa-
tion (11). On the LHS we have the derivative with respect to the modulus
of the torus; encouragingly, its coefficient in (14) vanishes for a finite theory
– the corresponding KZB-like equation is at the ‘critical level’. Of course,
physically this just means that the R-symmetry is not violated by instan-
tons, and remains unbroken in the full quantum theory. Now specialize the
operators Oi to the chiral ring of the four-dimensional N=2 theory. These are
fields whose correlators have no x-dependence; however in general they will
have holomorphic z-dependence. The last term in (14) then measures the
two-dimensional Lorentz spins of all the fields (recall that the R-symmetry
transformation is just the Lorentz rotation on the T2), which for chiral ring
operators is the same as the holomorphic conformal dimension. Thus two
respective terms in (11) and (14) match, since C2(V ) in (11) is just the
holomorphic conformal dimension of the operator at the puncture.

What about the other two terms? After specializing to the chiral ring
correlators, all the terms in (14) are independent of IR4, so we may interpret
them as equations on the two-dimensional spectral torus. The first term on
the RHS may, using the equation of motion, be replaced by A−−∂

2
++A−−

(always up to BRST artifacts); contour integrating over the location z of
this operator on the T2 gives

∮

(∂++A−−)
2, which is an insertion of the two-

dimensional conjugate momentum to A−− squared. A piece of this is ∂2/∂v2.
Hence to identify the KZB equation, we have only to compute the result of
the flavor mass insertion – the second term on the RHS of (14). We confine
ourselves here to a few general comments. The correlation function

〈
∮

dz
∫

d4y(M−−)
j
iψ̄

i
α̇++ψ

α̇
j (y, z) O1(z1) . . .On(zn)〉 (15)

must be covariant under the shifts z → z +m+ nτ and ~v → ~v+ ~r1 + τ~r2 for
~r1, ~r2 ∈ Λ∨. It must have singularities when the zi collide. These properties
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are shared by the KZB equation (11) and its multipuncture counterparts. We
expect them to arise from a careful evaluation of the fermion propagator on
the torus in the presence of a background gauge field. Of course, on general
grounds, the Ward identity (14) must be the Virasoro Ward identity on T2,
since this is the effect of global chiral rotations on IR4 which are local Lorentz
rotations on T2.

Thus we have found a partially topologically twisted N=1 gauge theory in
six dimensions which computes the holomorphic prepotential of N=2 gauge
theory in four dimensions. The dependence on the extra T2 of the reduc-
tion is holomorphic, the extra variable becoming a spectral parameter. We
also found a set of Ward identities satisfied by the correlation functions of
chiral ring operators in the theory which bear a remarkable similarity to the
Knizhnik-Zamolodchikov-Bernard equations on T2. If these are not the KZB
equations, they are what replace them in the context of N=2 gauge theory.
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