hep-th/yynnmmm

BILAYERS IN FOUR DIMENSIONS AND SUPERSYMMETRY

Romain ATTAL¹

Laboratoire de Physique Théorique et Hautes Energies, ² *Universités Pierre et Marie Curie (Paris 6) et Denis Diderot (Paris 7); Unité de recherche associée au CNRS (D0 280).*

Abstract: I build $N = 1$ superstrings in $\mathbb{R}^{\not\geq}$ out of purely geometric bosonic data. The world-sheet is a bilayer of uniform thickness and the 2 D supercharge vanishes in a natural way.

¹E-mail: attal@lpthe.jussieu.fr.
²LPTHE tour 16 / 1^{er} étage, Université P. et M. Curie, BP 126, 4 place Jussieu, F 75252 PARIS CEDEX 05 (France).

1 Introduction

The usual approach to superstrings[[1](#page-3-0)] uses anticommuting variables which are not very intuitive objects. In order to understand them better, I have sought for a more pictorial description. The basic idea is to use standard bosonization techniques [\[2\]](#page-3-0) and to interpret geometrically the compactified bosonic field as kinks in the normal bundle. This is only possible when the space-time is a four-manifold. The resulting model is the following: I consider a bilayer with a uniform thickness living in a four dimensional, flat Euclidean space and choose an action proportional to the total area A of this bilayer. I show that this is a σ -model, taking values in the projectified normal bundle, which can be fermionized into a worldsheet Dirac fermion coupled to the normal connection[[3](#page-3-0)]. For a particular value of the thickness, related to the string tension, this model is equivalent to a free four-vector Majorana fermion with the orthogonality constraint of a spinning string (the massless Dirac-Ramond equation)[[4](#page-3-0)].

2 Action

Our bilayers are described by:

- \star a smooth closed orientable 2D surface Σ , with p marked points $S_1 \cdots S_p$;
- \star an immersion $X : \Sigma \to \mathbb{R}^4$;
- \star a smooth section of the projectified normal bundle induced by X on Σ
- $(Y \in \Gamma(P N_X \Sigma)$ can be singular at the punctures $S_1 \cdots S_p$);
- \star a thickness $2\delta > 0$.

The S_i 's are the limits of infinitesimal circles mapped to twisted strings. If $y(P)$ is a unit vector in the line $Y(P)$ ($\forall P \in \Sigma$), the area of the bilayer $(X \pm \delta y)(\Sigma)$ is:

$$
A = \int_{\Sigma} d\xi^{1} \wedge d\xi^{2} \left\{ \left(\det[\partial_{a}(X + \delta y) \cdot \partial_{b}(X + \delta y)] \right)^{1/2} + \left(\det[\partial_{a}(X - \delta y) \cdot \partial_{b}(X - \delta y)] \right)^{1/2} \right\}
$$
\n(1)

which I expand in powers of δ :

$$
A = 2 \int_{\Sigma} d\xi^1 \wedge d\xi^2 g^{1/2} \left(1 + \frac{\delta^2}{2} g^{ab} \partial_a y^{\perp} \partial_b y^{\perp} + \delta^2 \mathcal{R} + \mathcal{O}(\delta^4) \right). \tag{2}
$$

Here, $\xi = (\xi^1, \xi^2)$ is a local coordinate system on Σ , the dot denotes the standard inner product in \mathbb{R}^4 , $\partial_a y^\perp$ is the normal part of $\partial_a y$, $g_{ab} = \partial_a X \cdot \partial_b X$, $g = \det[g_{ab}]$, and R is Ricci's scalar curvature. The $\mathcal{O}(\delta^4)$ terms, containing more derivatives, are irrelevant, and I drop the topological term $\int_{\Sigma} d\xi^1 \wedge d\xi^2 g^{1/2} \mathcal{R} = 8\pi (1-\text{genus}(\Sigma))$. The second term in (2) can be rewritten as follows. Pick a generic $N \in \Gamma(N_X \Sigma)$ with isolated zeros $Z_1 \cdots Z_q$ of indices $\iota_1 \cdots \iota_q$. The normal $n = N/||N||$ and binormal b define a right handed orthonormal frame in $N_X \Sigma$ over $\Sigma_Z = \Sigma \setminus \{Z_1 \cdots Z_q\}$, where the normal connection ∇^{\perp} is represented by the matrix $\begin{pmatrix} d & -T \\ T & d \end{pmatrix}$ with $d = d\xi^1 \partial_1 + d\xi^2 \partial_2$ and $T = b.dn$. If $\theta : \Sigma_Z \to \mathbb{R}/\pi\mathbb{Z}$ is the angle from $\pm n$ to Y, we have:

$$
\pm y = \cos \theta \ n + \sin \theta \ b \ ,
$$

$$
dy^{\perp} = \pm (d\theta + T) (\cos \theta \ b - \sin \theta \ n) ,
$$

\n
$$
A = 2 \int_{\Sigma} d\xi^{1} \wedge d\xi^{2} g^{1/2} + \delta^{2} \int_{\Sigma} \omega \wedge \ast \omega ,
$$
\n(3)

where $\omega = *(d\theta + T)$ $(=(\partial_1 \theta + T_1)d\xi^2 - (\partial_2 \theta + T_2)d\xi^1$ if $g_{ab} = e^{\phi} \delta_{ab})$. I take the action to be $S = \mu A$, μ being the string tension of one layer. In the partition function $\mathcal{Z}(\mathcal{X}) = \int \mathcal{D}\theta \, \bigg]^{-\mu\delta^{\epsilon}} \int_{\pm} \omega \wedge^* \omega$, we sum over the θ 's which satisfy $\oint_{Z_j} \omega = 0$, since Y is regular at these points, and $\oint_{S_i} \omega = n_i \pi$ ($n_i \in \mathbb{Z}$) (the boundary strings can be twisted). Among these functions, the classical configurations are the solutions of the equation of motion $d\omega = 0$ and are parametrized by $H_1(\Sigma; \mathbb{Z})$.

3 Fermions

Since $PN_X\Sigma$ is a circle bundle, this system admits kinks and a fermionic representation by holonomies [\[5](#page-3-0)]. If $\gamma : [0; 1] \to \Sigma$ is a path joining P_0 to P, we define:

$$
b = exp (k \int_{\gamma} id\theta - \omega) \qquad c = exp (-k \int_{\gamma} id\theta - \omega)
$$
\n
$$
\bar{b} = exp (k \int_{\gamma} id\theta + \omega) \qquad \bar{c} = exp (-k \int_{\gamma} id\theta + \omega) .
$$
\n(4)

Due to the equation of motion ($d\omega = 0$), their correlators only depend on $[\gamma] \in H_1(\Sigma, P P_0; \mathbb{Z}$. In order to recover

$$
\frac{1}{\mathcal{Z}(\mathcal{X})} \int D\theta \ e^{-\mu \delta^2 \int_{\Sigma} \omega \wedge \ast \omega} \ b(z)c(0) = \langle b(z)c(0) \rangle \sim z^{-1} \ , \tag{5}
$$

on C and without the gauge field T, we must fix $k = (2\pi\mu\delta^2)^{1/2}$, as can be seen after a Gaussian integration. Moreover, for the special value $k = 1$, i.e. $\delta = (2\pi\mu)^{-1/2} = \delta_0$, thereis no quartic term in the fermionic action [[6](#page-3-0)] and $\psi = \begin{pmatrix} c & c \\ \overline{c} & \overline{c} \end{pmatrix}$ \bar{b} satisfies the following equation of motion:

$$
\begin{pmatrix}\n0 & 2\partial + i(T_1 + iT_2) \\
2\bar{\partial} + i(T_1 - iT_2) & 0\n\end{pmatrix}\n\begin{pmatrix}\nc \\
\bar{b}\n\end{pmatrix} = (\partial + i\mathcal{I})\psi = 0 .
$$
\n(6)

This shows that ψ is a 2D Dirac spinor and a vector in $N_X\Sigma$:

$$
\psi \in \Gamma(K^{1/2} \otimes_{\mathbb{C}} N_X \Sigma) \oplus \Gamma(K^{-1/2} \otimes_{\mathbb{C}} N_X \Sigma) . \tag{7}
$$

Here, $N_X \Sigma$ is viewed as a complex line bundle on Σ , K denotes the canonical line bundle of holomorphic (1,0)-forms on Σ , $K^{1/2}$ is one of the $2^{2genus(\Sigma)+p}$ spin structures on Σ [\[2](#page-3-0)] , K^* is the dual bundle of K and $K^{-1/2} = K^{1/2} \otimes_{\mathbb{C}} K^*$. Since the normal connection ∇^{\perp} is the projection on $N_X\Sigma$ of the trivial connection ∇ acting on sections of the total bundle $X^*(T\mathbb{R}^4) = T\Sigma \oplus_{\mathbb{R}}^{\mathbb{L}} N_X \Sigma$, we can replace ψ by a free four-vector Majorana fermion

$$
\Psi \in \Gamma(K^{1/2} \otimes_{\mathbb{R}} X^*(T\mathbb{R}^4)) \oplus \Gamma(K^{-1/2} \otimes_{\mathbb{R}} X^*(T\mathbb{R}^4)) \text{ and } \partial \Psi = 0 , \qquad (8)
$$

with the orthogonality constraint $\Psi dX = 0$ to be applied on the Hilbert space in order to recover the same number of degrees of freedom in (7) and (8). We thus obtain three equivalent descriptions of a fermionic string satisfying the (massless) Dirac-Ramond equation:

- \star a σ -model in $PN_X\Sigma$;
- $\star \psi \in \Gamma(K^{1/2} \otimes_{\mathbb{C}} N_X \Sigma) \oplus \Gamma(K^{1/2} \otimes_{\mathbb{C}} N_X \Sigma)$ and $(\partial \!\!\! /+i\!\!\! T)\psi = 0$;
- $\star \ \Psi \in \Gamma(K^{1/2} \otimes_{\mathbb{R}} X^*(T\mathbb{R}^4)) \oplus \Gamma(K^{-1/2} \otimes_{\mathbb{R}} X^*(T\mathbb{R}^4)), \ \Psi \text{ is real }, \ \partial \Psi = 0 \text{ and } \Psi.dX = 0$

4 Conclusion

.

The previous computations suggest a simple picture for superstrings in four dimensions: they are double covers of bosonic strings and the two nearby world-sheets must be separated by $2\delta_0$ in order to have free fields. This suggests that one interpret the tachyonic instability of bosonic strings as a phase transition to a fermionic vacuum.

Acknowledgements: I thank Jean-Benoît Bost and Krzysztof Gawedzki for helpful discus*sions.*

References

- [1] M.B. Green, J.H. Schwarz and E. Witten: "Superstring Theory". (Cambridge University Press, 1987).
- [2] L. Alvarez-Gaumé, J.-B. Bost, G. Moore, P. Nelson and C. Vafa: "Bosonization on higher genus Riemann surfaces". Commun. Math. Phys. 112, 503-552 (1987).
- [3] M.D. Spivak: "A comprehensive introduction to differential geometry". (Publish or Perish, 1979).
- [4] P. Ramond: "Dual theory for free fermions". Phys. Rev. D3, 2415-2418 (1971).
- [5] T.H.R. Skyrme: "Kinks and the Dirac equation". J. Math. Phys. 12 (8), 1735-1743 (1971).
- [6] E.Charpentier and K.Gawedzki: "Bosonization in background of metric and gauge". J. Math. Phys. 34 (2), 381-436 (1993).