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1 Introduction

The usual approach to superstrings [[[] uses anticommuting variables which are not very
intuitive objects. In order to understand them better, I have sought for a more pictorial
description. The basic idea is to use standard bosonization techniques [J] and to interpret
geometrically the compactified bosonic field as kinks in the normal bundle. This is only
possible when the space-time is a four-manifold. The resulting model is the following:
I consider a bilayer with a uniform thickness living in a four dimensional, flat Euclidean
space and choose an action proportional to the total area A of this bilayer. I show that this
is a o-model, taking values in the projectified normal bundle, which can be fermionized
into a worldsheet Dirac fermion coupled to the normal connection [fJ]. For a particular
value of the thickness, related to the string tension, this model is equivalent to a free
four-vector Majorana fermion with the orthogonality constraint of a spinning string (the

massless Dirac-Ramond equation) [f].

2 Action

Our bilayers are described by:
% a smooth closed orientable 2D surface X, with p marked points Sy --- .S, ;
% an immersion X : ¥ — R? ;

* a smooth section of the projectified normal bundle induced by X on X
(Y e I'(PNxX) can be singular at the punctures Sy ---Sp) ;

* a thickness 26 > 0 .

The S;’s are the limits of infinitesimal circles mapped to twisted strings. If y(P) is a unit
vector in the line Y (P) (VP € X), the area of the bilayer (X + dy)(X) is:

A= / de' A de? {(det[@a(X +6y).00 (X + 6y)]) M2 + (det[0, (X — dy).8h (X — 5y)])1/2}
>
(1)

which I expand in powers of §:
2
A= 2/ det A de? gt/? (1 + % g™ Byt .0yt + 0% R+ (9(54)> . (2)
b

Here, & = (£%;€2) is a local coordinate system on ¥, the dot denotes the standard inner
product in R*, 9,y* is the normal part of 0.y, gap = 0. X.0X, g = det[gap], and R is
Ricci’s scalar curvature. The O(6%) terms, containing more derivatives, are irrelevant, and
I drop the topological term [y, dé* Ad€? g*/2 R = 8m(1—genus(X)). The second term in (f)
can be rewritten as follows. Pick a generic N € I'(NxX) with isolated zeros Z; --- Z; of
indices ¢1 - - - tg. The normal n = N/||N|| and binormal b define a right handed orthonormal
frame in Nx¥ over Xz = X\ {Z; - -+ Z,}, where the normal connection V- is represented
T _dT with d = d¢'oy +de%0y and T =bdn . If0:%; — R/7Z is
the angle from +n to Y, we have:

by the matrix < d

+y = cosfn+sindb,



dyt = £(d0+T) (cosf b—sinb n),
A = 2/d£1/\d§291/2+52/w/\*w, (3)
) )

where w = *(df + T) (= (10 + T1)dE% — (020 + To)dEL if  gay = €P6ap) -
I take the action to be S éuA 1 being the string tension of one layer. In the partition
function Z(X) = [ D6 1~ i“m*w we sum over the 0’s which satisfy fZ w =0, since Y

is regular at these points, and 5651- w = n;7 (n; € Z) (the boundary strings can be twisted).
Among these functions, the classical configurations are the solutions of the equation of
motion dw = 0 and are parametrized by Hy(X;Z).

3 Fermions

Since PNxX is a circle bundle, this system admits kinks and a fermionic representation
by holonomies [f]. If v : [0;1] — X is a path joining Py to P, we define:

b = exp (k:/z'd@ —w) c=exp (—k‘/id@ —w) (4)
g g

b = exp (k/id9+w) ¢ =exp (—k/id9+w).
gl gl

Due to the equation of motion (dw = 0) , their correlators only depend on [y] € Hy(X, P —
Py;Z). In order to recover

1 —us? . WA*W . B
%/ DB ¢ M p(2)e(0) = (b(2)e(0) ~ 2 | (5)

on C and without the gauge field T, we must fix k = (27T,u52)1/2, as can be seen after a
Gaussian integration. Moreover, for the special value k =1 , i.e. § = (27T,u)_1/ 2 =0,

there is no quartic term in the fermionic action [f] and = satisfies the following

c
b
equation of motion:

(28 + z‘(ﬁl —iTy) o M& i ZTQ)) < ) @+iDy =0. (6)

This shows that v is a 2D Dirac spinor and a vector in NxX :
Y e N(K'Y? @c NxX) @ (K~ Y2 9¢ NxX) . (7)

Here, NxX is viewed as a complex line bundle on ¥ , K denotes the canonical line bundle
of holomorphic (1,0)-forms on ¥, K''/2 is one of the 228"(X)+P spin structures on ¥ [g]
, K* is the dual bundle of K and K~/2 = K'/2 ®@c K* . Since the normal connection V-
is the projection on Nx 3 of the trivial connection V acting on sections of the total bundle
X*(TR*) =T% @f@ Nx3, we can replace ¥ by a free four-vector Majorana fermion

U e T(K'? @p X*(TRY) @ T(K /2 @g X*(TR")) and §¥ =0, (8)

with the orthogonality constraint ¥.dX = 0 to be applied on the Hilbert space in or-
der to recover the same number of degrees of freedom in ([]) and (§). We thus obtain



three equivalent descriptions of a fermionic string satisfying the (massless) Dirac-Ramond
equation:

* a o-model in PNxX ;
*x Y €T(K'? @c Nx¥) @ T(KY2 ®c NxX) and (§+ i) =0 ;
* U eD(KY?2@p X*(TRY)) ®T(K /2@ X*(TRY)), Visreal , ¥ =0 and ¥.dX =0

4 Conclusion

The previous computations suggest a simple picture for superstrings in four dimensions:
they are double covers of bosonic strings and the two nearby world-sheets must be sepa-
rated by 20 in order to have free fields. This suggests that one interpret the tachyonic
instability of bosonic strings as a phase transition to a fermionic vacuum.
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