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Unité de recherche associée au CNRS (D0 280).
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1 Introduction

The usual approach to superstrings [1] uses anticommuting variables which are not very
intuitive objects. In order to understand them better, I have sought for a more pictorial
description. The basic idea is to use standard bosonization techniques [2] and to interpret
geometrically the compactified bosonic field as kinks in the normal bundle. This is only
possible when the space-time is a four-manifold. The resulting model is the following:
I consider a bilayer with a uniform thickness living in a four dimensional, flat Euclidean
space and choose an action proportional to the total area A of this bilayer. I show that this
is a σ-model, taking values in the projectified normal bundle, which can be fermionized
into a worldsheet Dirac fermion coupled to the normal connection [3]. For a particular
value of the thickness, related to the string tension, this model is equivalent to a free
four-vector Majorana fermion with the orthogonality constraint of a spinning string (the
massless Dirac-Ramond equation) [4].

2 Action

Our bilayers are described by:

⋆ a smooth closed orientable 2D surface Σ, with p marked points S1 · · ·Sp ;

⋆ an immersion X : Σ → R
4 ;

⋆ a smooth section of the projectified normal bundle induced by X on Σ
(Y ∈ Γ(PNXΣ) can be singular at the punctures S1 · · ·Sp) ;

⋆ a thickness 2δ > 0 .

The Si’s are the limits of infinitesimal circles mapped to twisted strings. If y(P ) is a unit
vector in the line Y (P ) (∀P ∈ Σ), the area of the bilayer (X ± δy)(Σ) is:

A =

∫

Σ
dξ1 ∧ dξ2

{

(det[∂a(X + δy).∂b(X + δy)])1/2 + (det[∂a(X− δy).∂b(X− δy)])1/2
}

(1)
which I expand in powers of δ:

A = 2

∫

Σ
dξ1 ∧ dξ2 g1/2

(

1 +
δ2

2
gab ∂ay

⊥.∂by
⊥ + δ2 R+O(δ4)

)

. (2)

Here, ξ = (ξ1; ξ2) is a local coordinate system on Σ, the dot denotes the standard inner
product in R

4, ∂ay
⊥ is the normal part of ∂ay, gab = ∂aX.∂bX, g = det[gab], and R is

Ricci’s scalar curvature. The O(δ4) terms, containing more derivatives, are irrelevant, and
I drop the topological term

∫

Σ dξ
1∧dξ2 g1/2 R = 8π(1−genus(Σ)). The second term in (2)

can be rewritten as follows. Pick a generic N ∈ Γ(NXΣ) with isolated zeros Z1 · · ·Zq of
indices ι1 · · · ιq. The normal n = N/‖N‖ and binormal b define a right handed orthonormal
frame in NXΣ over ΣZ = Σ \ {Z1 · · ·Zq}, where the normal connection ∇⊥ is represented

by the matrix

(

d −T
T d

)

with d = dξ1∂1 + dξ2∂2 and T = b.dn . If θ : ΣZ → R/πZ is

the angle from ±n to Y , we have:

± y = cos θ n+ sin θ b ,
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dy⊥ = ±(dθ + T ) (cos θ b− sin θ n) ,

A = 2

∫

Σ
dξ1 ∧ dξ2 g1/2 + δ2

∫

Σ
ω ∧ ∗ω , (3)

where ω = ∗(dθ + T ) (= (∂1θ + T1)dξ
2 − (∂2θ + T2)dξ

1 if gab = eφδab) .
I take the action to be S = µA , µ being the string tension of one layer. In the partition
function Z(X ) =

∫

Dθ ⌉−µδ∈
∫

±
ω∧∗ω, we sum over the θ’s which satisfy

∮

Zj
ω = 0, since Y

is regular at these points, and
∮

Si
ω = niπ (ni ∈ Z) (the boundary strings can be twisted).

Among these functions, the classical configurations are the solutions of the equation of
motion dω = 0 and are parametrized by H1(Σ;Z).

3 Fermions

Since PNXΣ is a circle bundle, this system admits kinks and a fermionic representation
by holonomies [5]. If γ : [0; 1] → Σ is a path joining P0 to P , we define:

b = exp (k

∫

γ
idθ − ω) c = exp (−k

∫

γ
idθ − ω) (4)

b̄ = exp (k

∫

γ
idθ + ω) c̄ = exp (−k

∫

γ
idθ + ω) .

Due to the equation of motion (dω = 0) , their correlators only depend on [γ] ∈ H1(Σ, P −
P0;Z). In order to recover

1

Z(X )

∫

Dθ e−µδ2
∫

Σ
ω∧∗ω b(z)c(0) = 〈b(z)c(0)〉 ∼ z−1 , (5)

on C and without the gauge field T , we must fix k = (2πµδ2)1/2, as can be seen after a
Gaussian integration. Moreover, for the special value k = 1 , i.e. δ = (2πµ)−1/2 = δ0 ,

there is no quartic term in the fermionic action [6] and ψ =

(

c
b̄

)

satisfies the following

equation of motion:
(

0 2∂ + i(T1 + iT2)
2∂̄ + i(T1 − iT2) 0

)(

c
b̄

)

= (∂/+ iT/)ψ = 0 . (6)

This shows that ψ is a 2D Dirac spinor and a vector in NXΣ :

ψ ∈ Γ(K1/2 ⊗C NXΣ)⊕ Γ(K−1/2 ⊗C NXΣ) . (7)

Here, NXΣ is viewed as a complex line bundle on Σ , K denotes the canonical line bundle
of holomorphic (1, 0)-forms on Σ , K1/2 is one of the 22genus(Σ)+p spin structures on Σ [2]
, K∗ is the dual bundle of K and K−1/2 = K1/2 ⊗CK

∗ . Since the normal connection ∇⊥

is the projection on NXΣ of the trivial connection ∇ acting on sections of the total bundle
X∗(TR4) = TΣ⊕⊥

R NXΣ, we can replace ψ by a free four-vector Majorana fermion

Ψ ∈ Γ(K1/2 ⊗R X
∗(TR4))⊕ Γ(K−1/2 ⊗R X

∗(TR4)) and ∂/Ψ = 0 , (8)

with the orthogonality constraint Ψ.dX = 0 to be applied on the Hilbert space in or-
der to recover the same number of degrees of freedom in (7) and (8). We thus obtain
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three equivalent descriptions of a fermionic string satisfying the (massless) Dirac-Ramond
equation:

⋆ a σ-model in PNXΣ ;

⋆ ψ ∈ Γ(K1/2 ⊗C NXΣ)⊕ Γ(K1/2 ⊗C NXΣ) and (∂/+ iT/)ψ = 0 ;

⋆ Ψ ∈ Γ(K1/2⊗RX
∗(TR4))⊕Γ(K−1/2⊗RX

∗(TR4)), Ψ is real , ∂/Ψ = 0 and Ψ.dX = 0
.

4 Conclusion

The previous computations suggest a simple picture for superstrings in four dimensions:
they are double covers of bosonic strings and the two nearby world-sheets must be sepa-
rated by 2δ0 in order to have free fields. This suggests that one interpret the tachyonic
instability of bosonic strings as a phase transition to a fermionic vacuum.

Acknowledgements: I thank Jean-Benôıt Bost and Krzysztof Gawedzki for helpful discus-
sions.
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