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ABSTRACT

Recent work initiated by Strominger has lead to a consistent physical interpretation of certain

types of transitions between different string vacua. These transitions, discovered several years
ago, involve singular conifold configurations which connect distinct Calabi-Yau manifolds. In

this paper we discuss a number of aspects of conifold transitions pertinent to both worldsheet
and spacetime mirror symmetry. It is shown that the mirror transform based on fractional

transformations allows an extension of the mirror map to conifold boundary points of the moduli
space of weighted Calabi-Yau manifolds. The conifold points encountered in the mirror context

are not amenable to an analysis via the original splitting constructions. We describe the first
examples of such nonsplitting conifold transitions, which turn out to connect the known web of

Calabi-Yau spaces to new regions of the collective moduli space. We then generalize the splitting

conifold transition to weighted manifolds and describe a class of connections between the webs of
ordinary and weighted projective Calabi-Yau spaces. Combining these two constructions we find

evidence for a dual analog of conifold transitions in heterotic N=2 compactifications on K3×T2

and in particular describe the first conifold transition of a Calabi-Yau manifold whose heterotic

dual has been identified by Kachru and Vafa. We furthermore present a special type of conifold
transition which, when applied to certain classes of Calabi-Yau K3 fibrations, preserves the fiber

structure.
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1. Introduction

The fact that singular varieties of conifold type describe transition points between Calabi-Yau

manifolds with different Hodge numbers has been realized several years ago in the framework

of complete intersection Calabi-Yau manifolds embedded in products of projective spaces [1].

Only recently however has a physical interpretation of such transitions been found through work

initiated by Strominger [2]. The picture which emerges is that the singular configurations of

[1] correspond, in the low–energy effective action, to divergences that arise from integrating out

massive modes which become massless at the singularity. The question whether the string can

propagate consistently on conifold configurations is important not only because of the possibility

of phase transitions between Calabi-Yau manifolds in the early universe, but also because it

is of relevance for problems in mirror symmetry [3], and heterotic K3×T2-type II Calabi-Yau

duality [4, 5], so–called worldsheet and spacetime mirror symmetry, or first and second quantized

mirror symmetry [5]. Indeed, it was remarked in [6] that the link provided by the splitting

process between the individual moduli spaces of many Calabi-Yau manifolds should make it

possible to extend mirror symmetry to the global moduli space of all Calabi-Yau spaces. It was

furthermore emphasized in [4, 5] that the conjectured heterotic-type II duality inevitably leads

to the problem of singular configurations because the moduli space of K3×T2 contains points of

enhanced symmetries where the massless spectrum changes.

Conifold transitions between Calabi-Yau spaces were introduced in [1] in the context of com-

plete intersection manifolds embedded in products of ordinary projective space, and subsequent

discussions [7, 8] have focused exclusively on such manifolds. In the intervening years however

this class has been found to be wanting. Both, worldsheet and spacetime mirror symmetry, neces-

sitate a more general framework which, in first approximation, is provided by weighted projective

varieties1. One of the virtues of the class of weighted complete intersection Calabi-Yau manifolds

lies in the fact that for a large subclass of these spaces we have at our disposal a physical con-

struction of mirror pairs[9], based on fractional transformations. After reviewing and extending

the discussion of the mirror transform of [9] in Section 2 we show in Section 3 that via this

construction it is possible to explicitly mirror map appropriate submanifolds of the moduli space

of Calabi-Yau spaces. These submanifolds of moduli space generically contain conifold points

and therefore the fractional mirror transform allows us to trace Calabi-Yau configurations to the

boundary of moduli space, thereby providing a concrete realization of the scenario envisioned

in [6]. The singular varieties encountered in these regions of moduli space are, however, not of

the type originally discussed in [1], and therefore might be expected to have novel features. In

1We will not discuss manifolds embedded in toric varieties.
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Section 4 we describe the first examples of such conifold transitions relevant for mirror symmetry

and find that indeed the resolved manifolds open paths into new regions of the collective moduli

space of all Calabi-Yau manifolds.

Section 5 leads us from world sheet mirror symmetry to heterotic-type II duality. We describe

a construction, based again on fractional transformations, which provides connections between

various subwebs of Calabi-Yau moduli spaces. The classes of manifolds involved turn out to

consist of spaces which are all K3 fibrations, and therefore are of relevance for a second unification

problem - spacetime mirror symmetry. Part of our later discussion will therefore focus on these

classes of spaces. Even though the particular types of conifold transitions described in [1], so–

called splitting and contraction, are not the most general kind of transition involving nodes, as we

emphasize in Section 4, they do have an important advantage. Whereas in general it can be quite

difficult to decide whether the resolved manifold does in fact define a Calabi-Yau manifold, rather

than some more general space, the splitting construction not only automatically guarantees that

the resolved manifold is of Calabi-Yau type, it also provides an explicit algebraic representation

of the two Calabi-Yau manifolds connected through some common conifold configuration. This

simplifies the analysis of the whole process considerably. Because, as just mentioned, both types

of mirror symmetry demand the class of weighted manifolds as a sort of ‘minimal’ framework, it

is clearly of importance to generalize the discussion of [1] to this more general context. Perhaps

the most intriguing problem is the possibility of finding a heterotic analog of the Calabi-Yau

conifold transition.

In the remaining part of the paper we initiate the analysis of conifold transitions of splitting

type in the context of weighted complete intersection Calabi-Yau manifolds. The generalization

of the constructions of [1] to the weighted framework introduces some new twists which we discuss

in the two final Sections. The first problem which has to be circumvented concerns the question

of transversality of the split configuration. As in the case of weighted hypersurfaces it is not

always possible to find a quasismooth manifold for a given combination of weights. We deal with

this question in Section 6 and describe a class of weighted splits which do connect quasismooth

varieties. In our discussion of such weighted conifold transitions we will find support for the

speculation in [4] that a heterotic analog of conifold transitions indeed exists. In particular

we describe the first conifold transition of a manifold whose heterotic dual has previously been

suggested by Kachru and Vafa [4]2. The generalization of the splitting construction of [1] to the

weighted framework also provides support for the notion of a universal moduli space of Calabi-

Yau manifolds, generalizing to the weighted category observations made in [1, 7] in the context

2A different type of transition has been discussed in [10].
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of ordinary complete intersection Calabi-Yau spaces.

Finally, we describe the behavior of the K3 fibration of Calabi-Yau manifolds, introduced in

Section 5, under conifold transitions. The fact that K3 fibrations are central to the problem of

heterotic-type II duality has been recognized in [11] and further discussed in [12]. We introduce

a particular type of splitting type conifold transition which preserves the K3 fibration structure,

thereby showing that the property of K3 fibrations for Calabi-Yau threefolds extends to the

class of general complete intersection manifolds of arbitrary codimension, and therefore is much

more general than hitherto expected. We end by describing in Section 7 the new phenomenon

of ‘colliding singularities’ which occurs in conifold transitions between weighted manifolds.

2. The Fractional Transformation Mirror Transform

Our main tool in tracing the mirror map along certain directions to the boundary of moduli space

is the mirror transform based on fractional transformations. This construction was introduced

in [9] in order to establish explicitly the existence of mirror symmetry discovered in the first

reference of [3] in the framework of weighted Calabi-Yau manifolds. In the following we briefly

review the discussion of [9] and make it more precise3.

The essential ingredient of the fractional transformation mirror construction is the basic

isomorphism4

C(
b

gab
, a
gab

)

[

ab

gab

]

∋
{

za1 + zb2 = 0
} /

ZZb : [ (b− 1) 1 ]

∼ C(
b2

hab
,
a(b−1)−b

hab

)

[

ab(b − 1)

hab

]

∋
{

y
a(b−1)/b
1 + y1y

b
2 = 0

} /

ZZb−1 : [ 1 (b− 2) ] (1)

induced by the fractional transformations

z1 = y
1− 1

b

1 , y1 = z
b

b−1

1

z2 = y
1
b

1 y2, y2 =
z2

z
1

b−1

1

(2)

in the path integral of the theory. Here gab is the greatest common divisor of a and b and hab is

the greatest common divisor of b2 and (ab − a − b). The action of a cyclic group ZZb of order b
3Due to some mishap this article has appeared twice. The paper published in Phys.Lett. B268(1991)47 is an

identical copy of [9].
4In [9] the modding on the rhs of this relation was ignored because in all the applications discussed in that

paper this additional orbifolding in the image theory turned out to be trivial simply because the action became
part of the projective equivalence. In general, however, the action on the rhs can not be neglected.
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denoted by [m n] indicates that the symmetry acts like (z1, z2) 7→ (αmz1, α
nz2) where α is the

bth root of unity.

The ideal of the first cover theory

Jz = [∂1p, ∂2p] =
[

za−1
1 , zb−1

2

]

. (3)

generates the µ = (a− 1)(b− 1)–dimensional ring

Rz = {z
p
1z

q
2 | 0 ≤ p ≤ a− 2, 0 ≤ q ≤ b− 2} (4)

whereas the ideal of the second cover theory

Iy = [∂1p, ∂2p] =

[

a(b− 1)

b
y

a(b−1)
b

−1
1 + yb2, y1y

b−1
2

]

(5)

generates the a
b
(b− 1)2 + 1–dimensional polynomial ring

Ry = {y
b−1
2 } ∪ {y

p
1y

q
2 | 0 ≤ p ≤

a

b
(b− 1)− 1, 0 ≤ q ≤ (b− 2)} (6)

We are interested in the states of the orbifold theories. First consider the invariant sectors:

Rinv
z = {zp1z

q
2 | 0 ≤ p ≤ a− 2, 0 ≤ q ≤ b− 2, p(b− 1) + q = 0 mod b} (7)

i.e. p−q = 0 mod b and therefore p = q+nb for some integer n ∈ IN. Thus dim Rinv
z = a(b−1)/b.

Similarly

Rinv
y = {yb−1

2 }∪{y
p
1y

q
2 | 0 ≤ p ≤

a

b
(b−1)−1, 0 ≤ q ≤ (b−2), p+ q(b−2) = 0 mod (b−1)} (8)

and hence p = q + n(b − 1) and the dimension is dim Rinv
y = a(b − 1)/b + 1. Hence there is

only one twisted state in the z–orbifold which is mapped by fractional transformations into a

monomial of the y–theory.

It follows from the analysis in [9] that twisted states are of the form (zp2/z
q
1) with p, q ∈ ZZ.

The first constraint comes from invariance under the ZZb action, which leads to the relation

p = nb+q(b−1) for some integer n ∈ ZZ. Thus these rational forms take the form z
nb+q(b−1)
2 /zq1 ↔

yn1 y
nb+q(b−1)
2 , for n, q ∈ ZZ with the unitarity constraint q (1− 1/a− 1/b) + n ≥ 0. For n ≥ 1,

q ≥ 0 clearly all image states are in the ideal of the y–theory. Hence the states above with

q > 0, any n, and q < 0, nb < −q(b − 1) are possible twisted states, which, for n = 0, q > 0

lead to monomials: z
q(b−1)
2 /zq1 ←→ y

q(b−1)
2 . For q > 2 the y–monomials belong to the ideal as

well, leaving us with two twisted states zb−1
2 /z1 ↔ yb−1

2 and z
2(b−1)
2 /z21 ↔ y

2(b−1)
2 . Both of these

4



states are in the invariant sector of the image theory and thus survive the ZZb−1–modding. The

final reduction comes from realizing that the state z
2(b−1)
2 /z21 ↔ y

2(b−1)
2 is in fact equivalent to an

invariant state: via the y–ideal the above state can be written as yb2y
b−2
2 = y

a
b
(b−1)−1

1 yb−2
2 which

the fractional transformation map into za−2
1 zb−2

2 which is the top state in the Rz ring invariant

with respect to the ZZb–action. Thus the invariant sector of the y–orbifold theory is mapped into

the invariant ring of the z–theory plus one twisted state. A simple application of this discussion

to the isomorphism IP(1,7,2,2,2)[14] ∼ IP(1,3,1,1,1)[7] [9] allows an explicit relation between the purely

polynomial chiral ring on the rhs and the chiral ring on the lhs which is supplemented by blow–up

modes originating from the singular set described by a genus 15 curve. The blow–up modes thus

acquire a representation as rational expressions in the coordinates.

The basic isomorphism itself provides the mirror of weighted spaces only in very few cases,

such as IP(3,8,33,66,88,132)[264]
(57,81)/ZZ2 ∼ IP(3,8,66,88,99)[264]

(81,57). Much more powerful, however, is

a simple iteration of the basic isomorphism as described in [9].

It is important to realize that even though the basic isomorphism maps a Fermat type orbifold

into a tadpole orbifold the fractional transformation mirror transform is not restricted to Fermat

type polynomials. Consider e.g. the manifold embedded in

IP(3,6,6,4,5)[24]
(10,34)
−48 ∋ {p = z81 + z42 + z43 + z64 + z4z

4
5 = 0}. (9)

Orbifolding this space with respect to a ZZ4 symmetry with the action ZZ4 : [ 0 0 1 0 3 ] and

using the appropriate fractional transformations as discussed above leads to the mirror manifold

IP(9,18,12,13,20)[72]
(34,10)
48 ∋ {p = z81 + z42 + z63 + z3z

3
5 + z5z

4
4 = 0}. (10)

3. Mirror Mapping Moduli Spaces

We can now apply fractional transformations to map moduli spaces. A simple example which

illustrates this phenomenon is furnished by the quintic which, at the exactly solvable point, takes

the form

(35)A5
4
∼ C∗

(1,1,1,1,1)[5] ∼ IP4[5] ∋

{

5
∑

i=1

z5i = 0

}

. (11)

Using the iteration of the basic isomorphism as described in Section 2 one finds that orbifolding

the Landau–Ginzburg theory with respect to the cyclic group

ZZ
3
5 :







4 1 0 0 0
0 4 1 0 0
0 0 4 1 0





 (12)
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leads to the mirror spectrum. Using the fractional transformations

z1 = y
4/5
1 , z2 = y

1/5
1 y

4/5
2 , z3 = y

1/5
2 y

4/5
3 , z4 = y

1/5
3 y4, z5 = y5 (13)

that follow from the iteration of the basic isomorphism shows that this orbifold is isomorphic to

the complete intersection

IP(80,60,65,51,64)[320]
101
200 ∋ {z

4
1 + z1z

4
2 + z2z

4
3 + z3z

5
4 + z55 = 0}, (14)

where again no orbifolding is necessary on the mirror side of the isomorphism. The manifold

(14) is indeed one of two spaces in the list of weighted hypersurfaces which has the appropriate

mirror spectrum of the quintic (see the first ref. of [3] and [13]).

It is important to emphasize that the fractional mirror transform can be applied to the

whole relevant part of the moduli space: since the complex sector of the mirror of the quintic

is 1–dimensional, we need to establish a map that relates a 1–dimensional subspace of the 101–

dimensional space of complex deformations to the 1–dimensional subspace of the mirror. This is

achieved by considering

IP4[5] ∋

{

5
∑

i=1

z5i − 5ψ
5
∏

i=1

zi = 0

}

. (15)

The crucial point here is that for each value of ψ the configuration features the mirror discrete

group (12) as a symmetry group and we can mod out this action. Furthermore for each value of

ψ we can apply our fractional transformation and map this configuration into

IP(80,60,65,51,64)[320]
101
200 ∋ {z

4
1 + z1z

4
2 + z2z

4
3 + z3z

5
4 + z55 − 5ψ

5
∏

i=1

zi = 0}. (16)

The same holds for the second representation of the mirror which appears in the lists of [13] 5.

The above example of a map between moduli spaces is the simplest example of a vast class

of manifolds, the moduli spaces of which feature the very same structure as the quintic in a one–

dimensional subspace. In the class of weighted Calabi-Yau hypersurfaces of degree d in weighted

projective space IP(k1,k2,k3,k4,k5)[d] with d =
∑5

i=1 ki there always exists a 1–dimensional family of

manifolds

IP(k1,k2,k3,k4,k5)[d] ∋

{

p0(zi)− dψ
∏

i

zi = 0

}

. (17)

5 The second configuration with the mirror spectrum of the quintic, IP(64,48,52,51,41)[256]
101
200 is isomorphic to

the one just discussed because the additional ZZ5 modding via which it is obtained from the quintic is part of the
projective equivalence.
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Since any action preserving the holomorphic threeform also leaves invariant this canonical defor-

mation and furthermore fractional transformations leave invariant this monomial it follows with-

out any further check that the fractional mirror transform always applies to this 1–dimensional

subspace. The important aspect of this class is that by moving along this canonical direction

in moduli space one eventually runs into singularities, which generically are conifolds. Thus our

mirror construction inevitably leads us to consider conifold configurations.

For most weighted hypersurfaces the 1–dimensional family just described is only part of a

higher–dimensional moduli space. The fractional transformation mirror transform, of course,

applies to mirror pairs involving larger moduli spaces as well. An example that has received

attention recently is given by the family

IP(1,1,2,2,2)[8] ∋ {p = z81 + z82 + z43 + z44 + z45 − 8ψ
5
∏

i=1

zi − 2λz41z
4
2 = 0}. (18)

This theory has the spectrum (h(1,1), h(2,1)) = (2, 86) and the mirror can be obtained by applying

the fractional transformations

z1 = y
7/8
1 , z2 = y

1/8
1 y

3/4
2 , z3 = y

1/4
2 y

3/4
3 , z4 = y

1/4
4 y5, z5 = y5 (19)

to the orbifold IP(1,1,2,2,2)[8]/ZZ8 × ZZ
2
3 with respect to the action

ZZ8 × ZZ
2
3 :







7 1 0 0 0
0 3 1 0 0
0 0 3 1 0





 . (20)

This leads to the polynomial

p = y71 + y1y
6
2 + y2y

3
3 + y3y

4
4 + y45 − 8ψ

5
∏

i=1

yi − 2λy41y
3
2 (21)

which lives in the configuration IP(4,4,8,5,7)[28] for which one finds the mirror spectrum (h(1,1), h(2,1)) =

(86, 2), as expected.

Other examples which have been the focus of recent investigations of the conjectured heterotic-

type II duality [4, 11, 14, 15, 16, 17, 18, 19] can be analyzed in the same manner. The simpler

of the two most prominent members is the two–parameter family

IP(1,1,2,2,6)[12]
(2,128) ∋ {p = z121 + z122 + z63 + z64 + z25 − 12ψ

5
∏

i=1

zi − 2λz61z
6
2 = 0} (22)

7



which is mapped via the ZZ
2
6 × ZZ2 fractional transformations z1 = y1,z2 = y

5/6
2 ,z3 = y

1/6
2 y

5/6
3 ,

z4 = y
1/6
4 y

1/2
5 into the mirror family

IP(25,30,54,82,109)[300] ∋ {p = y121 + y102 + y2y
6
3 + y3y

3
4 + y4y

2
5 − 12ψ

5
∏

i=1

yi − 2λy61y
5
2 = 0}, (23)

which describes the type IIB dual of a heterotic string vacuum with 129 hypermultiplets and 3

vector multiplets. Finally, the three–parameter family

IP(1,1,2,8,12)[24] ∋ {p = z241 + z242 + z123 + z34 + z25 − 12ψ
5
∏

i=1

zi − 2λz61z
6
2z

6
3 − σz

12
1 z

12
2 = 0} (24)

and its mirror, obtained via the ZZ24 × ZZ3 × ZZ2 fractional transformations z1 = y
23/24
1 , z2 =

y
1/24
1 y

1/2
2 , z3 = y

2/3
3 , z4 = y

1/3
3 y4 , z5 = y

1/2
2 y5 into the mirror family

IP(24,44,69,161,254)[552] ∋ {p = y231 +y1y
12
2 +y2y

2
5+y

8
3+y3y

3
4−12ψ

5
∏

i=1

yi−2λy
6
1y

3
2y

4
3−σy

12
1 y

6
2 = 0} (25)

describe the type IIA and IIB duals respectively of a heterotic vacuum with 244 hypermultiplets

and 4 vector multiplets. Our construction clearly generalizes to ever more general moduli spaces.

4. New Directions in the Global Calabi-Yau Moduli Space via General Conifold

Transitions

The splitting construction in either the ordinary projective class of Calabi-Yau manifolds [1], or

in the weighted category, which we will discuss below, is particularly simple because it provides

simple representations of the different smooth phases that are connected via a singular variety.

In general such a simple description of the manifold ‘on the other side’ is not to be expected,

even if one starts out with a complete intersection. A class of manifolds which illustrates the

necessity of considering more general conifold transitions is provided by the 1–parameter families

of (17). A particularly simple subclass is obtained by considering spaces of Brieskorn–Pham type

IP(k1,...,k5)[d] ∋

{

5
∑

i=1

kiz
d/ki
i − dψ

5
∏

i=1

zi = 0

}

. (26)

These varieties acquire singularities at ψd = 1, the singular points are nodes, and there are

d3/
∏

i ki of them.

The natural question arises what the manifolds are that are found after traversal of the

conifold. In the present case the splitting construction does not provide insight and one has to

8



take recourse to more general considerations concerning the resolution of singularities in Calabi-

Yau manifolds. The general theory is rather more involved because it is not automatically

guaranteed that the resolved variety is projective [20], in contrast to the splitting construction.

Once this question has been answered, however, it is not difficult to compute the Hodge numbers.

The nodes at the conifold point are resolved by introducing a sphere IP1 ∼ S2, in contrast to

blowing up. Thus the surgery involves replacing a three-sphere S3 by a projective curve, thereby

changing the Euler number by +2. Hence the Euler number of the resolved manifold becomes6

χ(M̃) = χ(M) + 2N (27)

if N is the number of nodes. In a Calabi-Yau manifold this can only be achieved by increasing

h(1,1) by unity or decreasing h(2,1) by unity. Thus

h(1,1)(M̃) = h(1,1)(M) + δ, h(2,1)(M̃) = h(2,1)(M)− (N − δ) (28)

where δ is the number of linearly dependent vanishing cycles.

Consider e.g. the simplest space of Brieskorn–Pham type, the family of quintics (15) at

ψ5 = 1. The starting point here is a family of smooth manifolds with (h(1,1), h(2,1)) = (1, 101)

which acquires d3/
∏

ki = 125 nodes at the conifold. Thus the Euler number of the resolved

manifold is χ(M̃) = −200 + 2 · 125 = 50 and the Hodge numbers are (h(1,1)(M̃), h(2,1)(M̃)) =

(1+δ, 101−(125−δ)). If we wish to fix the configuration of the nodes then we expect the resolved

manifold to have fewer complex deformations since the resolution only introduces IP1s and we

lose the complex deformations which would kill the nodes. The quintic is rather special since the

number of nodes it acquires at the conifold is larger than the number of complex deformations

one starts out with. Therefore it leads to a resolved space which is rigid. Because there are

24 more nodes than there are complex deformations one finds δ = 24 and the resolved space in

fact has the Hodge numbers (h(1,1)(M̃), h(2,1)(M̃)) = (25, 0). It has been checked in [21] that the

manifold is indeed Calabi-Yau.

A further example of a Brieskorn–Pham type variety whose conifold transition leads to a

rigid manifold as well is the one–parameter family of hypersurfaces

IP(1,1,1,1,2)[6] ∋

{

4
∑

i=1

z6i + 2z35 − 6ψ
5
∏

i=1

zi = 0

}

, (29)

which acquires a conifold configuration at ψ = 1 with 108 nodes. The resolution of these nodes

leads to a smooth rigid manifold with χ = 12.

6For general weighted Calabi-Yau manifold this result is not correct as we will discuss in the last Section.

9



The fact that the cohomology of this example is produced neither by the class of all complete

intersection Calabi-Yau manifolds [1] nor by the class of all weighted hypersurfaces or, more

generally, the complete class of Landau–Ginzburg theories, shows that general resolutions allow

us to explore new, yet uncharted, territory of the global moduli space of all Calabi-Yau manifolds.

5. Calabi-Yau Isomorphisms: Connecting Collective Webs and new K3 fibrations.

In this Section we discuss two further applications of fractional transformations which will turn

out to be useful in the following parts of the paper. The first is that they lead to a particularly

simple class of intersection points between the moduli spaces of different types of Calabi-Yau

spaces, whereas the second shows how insight into the fiber structure of certain Calabi-Yau

manifolds can be gained from fractional transformations.

It was shown in [22] that the moduli space of Calabi-Yau manifolds embedded in weighted

projective spaces is connected to the moduli space of manifolds embedded in products of ordi-

nary projective space. This arose simply because there exist isomorphisms between weighted

hypersurfaces and ordinary complete intersections of higher codimension, the simplest example

being the relation

IP(1,1,2,2,2)[8]
(2,86) ∼

IP1

IP4

[

2 0
1 4

]

. (30)

Fractional transformations in fact lead to an explanation simpler and more general than the

analysis of [22], providing a great many of such identifications. Consider the following class of

manifolds of Brieskorn–Pham type

IP(2k1−1,2k1−1,2k2,2k3,2k4)[2k] (31)

with k = (2k1 + k2 + k3 + k4 − 1) and 2k/(2k1 − 1) ∈ 2IN. Viewing these string vacua as a

Landau–Ginzburg theory we can add trivial factors y2i without changing the model. Adding two

such factors and applying the basic isomorphism (1) to the two parts (x
2k/(2ki−1)
i + y2i ) in the

resulting representation of the theory changes the configuration to

C(2(2k1−1),2(2k1−1),2k2,2k3,2k4,(k2+k3+k4),(k2+k3+k4)[2k]. (32)

If the ZZ2’s happen to act trivially we can use the construction of [23] to derive the corresponding

manifold of codimension 2, arriving at the relations

IP(2k1−1,2k1−1,2k2,2k3,2k4)[2k] ∼
IP(1,1)

IP((2k1−1),(2k1−1),k2,k3,k4)

[

2 0
(2k1 − 1) k

]

. (33)
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For k1 = k2 = k3 = k4 = 1 we recover the example above, discussed in detail in [22]. This class

of spaces thus provides a great many of identifications between hypersurfaces and Calabi-Yau

manifolds of higher codimension.

A second reason why this class of manifolds is of interest comes from the fact that the relations

(33) are also useful for explorations of spacetime mirror symmetry. It has been recognized early

on [11] that important for the heterotic-type II duality [4, 5] is the fact that the Calabi-Yau

manifolds involved are K3–fibrations. It is therefore of some importance to gain insight into

the nature of such manifolds in order to obtain further examples of dual pairs beyond the few

which have been the focus of most of the discussions so far. Following the analysis of [24] it can

readily be seen that all manifolds of the type (31) are in fact K3 fibrations. Defining a divisor

Dλ ∈ IP(2k1−1,2k1−1,2k2,2k3,2k4)[(2k1 − 1) 2k] via (z1 − λz2) = 0, and applying the (1–1) coordinate

transformation y1 = z21 , shows that the fibers are described by the K3 configurations

IP(2k1−1,k2,k3,k4)[k]. (34)

This class thus provides a pool of K3 fibrations which considerably extends the list of examples

of K3 fibrations enumerated in [11]. For convenience we provide the complete set of models in

the Appendix.

An important aspect of the class of fibrations (31) is that the equivalences (33) trivially

allow the identification of the (possible) type II image of the heterotic dilaton. This is because

for N=2 heterotic vacua the dilaton couples to the rest of the moduli in such a way [25]7 that

the intersection numbers of the corresponding modes on the type II Calabi-Yau dual, denoted

by s and mi, i = 1, ..., n, take the form

κsss = 0 = κssi, κsij = diag(1, n). (35)

This condition merely indicates that the corresponding Calabi-Yau dual is a fibered manifold

and leaves open a number of different ways to fiber the manifold [27]. The condition derived

from the heterotic theory which identifies the fibers as K3 varieties is the fact that the dual

Calabi-Yau manifolds also have to satisfy
∫

c2(M)hs = 24, where hs is the element in H2(M)

describing the dual image of the dilaton8. For manifolds with large Picard number b2 it is quite

involved to compute these couplings and identify the appropriate hs. For our class of fibrations

(31) however the equivalent representation as a codimension–two space allows for an immediate

7See [14, 26] for recent reviews of this subject as well as a more complete list of the original references.
8We are grateful to B.Hunt for correspondence on this point. A more detailed recent discussion of these facts

can be found in [12].
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identification – the image of the dilaton must be the Kähler form which descends down to the

Calabi-Yau space from the ambient projective curve.

It should be noted that we have assumed the condition (2k/(2k1− 1)) ∈ 2IN for convenience

of presentation only. It is not necessary either for relations of the type we have discussed or for

the manifold to be a K3 fibration. An example which illustrates this point is provided by the

manifold

IP(3,3,4,4,14)[28] ∼
IP(1,1)

IP(3,3,2,2,7)

[

2 0
3 14

]

(36)

with K3 fiber IP(3,2,2,7)[14]. In this more general class some of the new heterotic spectra found

in [29] can be found and therefore it provides the ‘missing’ Calabi-Yau dual candidates of some

known heterotic N=2 vacua.

A similar discussion applies to relations of the type

IP(2k1−1,2k1−1,2k2,2k3,2k4,2k5)[2a 2b] ∼
IP(1,1)

IP((2k1−1),(2k1−1),k2,k3,k4,k5)

[

2 0 0
(2k1 − 1) a b

]

(37)

where (a+ b) = 2k1 − 1 +
∑5

i=2 ki. This class describes K3 fibrations as well and generalizes the

second type of Calabi-Yau spaces considered in [11].

6. Splitting and Contraction for Weighted CICYs and Spacetime Mirror Symmetry

Singularities are ubiquitous in the moduli space of Calabi-Yau spaces: no matter from which

smooth point one starts, moving along a generic complex deformation will eventually lead to a

singular configuration. What is not ubiquitous is knowledge about what happens ‘on the other

side’ of the singularity, or whether it exists at all. The existence problem is far from obvious

since the projectivity of the small resolution of singularities, obtained by deforming a family of

smooth varieties Vt into a singular configuration V0, is not easy to check in general.

In ref. [1] a certain type of conifold transition between Calabi-Yau spaces has been introduced

which avoids this difficulty. The constructions of [1], called splitting and contraction, have

the virtue that they describe conifold transitions of the family Vt of (quasi–)smooth varieties

depending on some complex variable t

Vt −→ V0 −→ Ṽ (38)

which automatically provide relations between smooth Calabi-Yau manifolds (here Ṽ denotes a

small resolution Calabi-Yau manifold). We will show in this Section that the construction of [1]

generalize to the weighted framework even though the story acquires some new twists.
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There first new constraint that is specific to the class of weighted manifolds and has no coun-

terpart in the ordinary projective class originates from the fact that for a given choice of weights

there may not exist a quasismooth set of polynomials 9. The problem is even more pronounced in

the case of complete intersections with higher codimension than it is for hypersurfaces in weighted

projective four–space, as discussed in the first reference of [3], and has in fact been one of the

major stumbling blocks for the construction of the class of all Calabi-Yau manifolds embedded

in products of weighted projective spaces. To illustrate the problem consider the following split

IP(k1,k1,k2,k3,k4)[d] −→
IP(1,1)

IP(k1,k1,k2,k3,k4)

[

1 1
ak1 (d− ak1)

]

∋











p1 = x1Q(yi) + x2R(yi)

p2 = x1S(yi) + x2T (yi)











, (39)

where d = 2k1 + k2 + k3 + k4 and a is some postive integer. For k1 = k2 = k3 = k4 = 1 this

reduces to the simplest type of split considered in [1], the rhs describing a IP1–split Ṽ of the

determinantal variety

IP(k1,k1,k2,k3,k4)[d] ∋ V0 = {p = QT −RS = 0}, (40)

which can be deformed into a smooth variety Vt (for favourable choices of weights).

Now if, for instance, the weights are such that the first polynomial involves only the first

two coordinates of the weighted 4–space, then it is never possible to find transverse choices of

polynomials. The equations that follow from the transversality condition, according to which

dp1 ∧ dp2 = 0 may not have any solution on the manifold, lead to two branches. It suffices

to discuss one of these. Assuming that indeed Q = Q(y1, y2) and R = R(y1, y2) leads to 0 ≡

Q
∣

∣

∣

(0,0,y3,y4,y5)
and 0 ≡ R

∣

∣

∣

(0,0,y3,y4,y5)
, and therefore the equations restricted to the subvariety

parametrized by (0, 0, y3, y4, y5) reduce to 0 = T and

(

S
∂R

∂yi

)

∣

∣

∣

(0,0,y3,y4,y5)
= 0 =

(

∂R

∂yi

∂T

∂yj
−
∂R

∂yj

∂T

∂yi

)

∣

∣

∣

(0,0,y3,y4,y5)
(41)

for all i and all i < j respectively. If a > 1 then ∂R/∂yi
∣

∣

∣

(0,0,y3,y4,y5)
≡ 0 and the configuration

is singular for all points on the curve IP(k2,k3,k4)[d − ak1]. A codimension two Calabi-Yau con-

figurations for which it is not possible to find quasismooth choice of polynomials is given by

(k1, k2, k3, k4) = (1, 3, 3, 3) with a = 2, for instance. Assuming, then, that a = 1 the analysis

of the transversality equations reveals that quasismoothness can be obtained by requiring that

both (∂S/∂y1) = 0 and (∂T/∂y2) = 0 and that both, S and T , depend on all but at most one

9We will not discuss possible generalizations, such as the one discussed in [28], in the present paper.
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variables, and that they are of standard type in these variables. Furthermore, if S is independent

of some variable then the polynomial T must be of Fermat type in this variable, and vice versa.

A simple example of a splittable configuration is provided by the quasismooth octic hyper-

surface

M = IP(1,1,2,2,2)[8]
(2,86) ∋







∑

i

z8i +
∑

j

z4j = 0







. (42)

This manifold can be split into the codimension-two variety

Msplit =
IP(1,1)

IP(2,2,1,1,2)

[

1 1
2 6

]

∈











p1 = x1y1 + x2y2

p2 = x1(y
3
2 + y64 − y

3
5) + x2(y

3
1 + y63 + y35)











, (43)

which can be checked to be transverse. The determinantal variety leads to the singular octic

ps = Q(yi)T (yi)− R(yi)S(yi) = y1(y
3
1 + y63 + y35)− y2(y

3
2 + y64 − y

3
5) (44)

fails to be transverse at IP(2,2,1,1,2)[2 2 6 6] = 18 nodes. Hence the Euler number of the codimension

two complete intersection is χ(Msplit) = χ(M) + 2 · 18 = −168 + 36 = −132. Since h(1,1) = 3,

because of the additional IP1, the complete massless spectrum that results is (h(1,1), h(2,1)) =

(3, 69).

The conifold transition

IP(1,1,2,2,2)[8]
(2,86) ←→

IP(1,1)

IP(2,2,1,1,2)

[

1 1
2 6

](3,69)

(45)

is of some interest because it provides a possible ingredient of a sequence of string spectra discov-

ered by Kachru and Vafa in their discussion of dual pairs of type II Calabi-Yau compactifications

and heterotic K3×T2 vacua. Starting with the E8×E8 heterotic string they considered a series

of embeddings of SU(N) factors into one of the E8s, thereby breaking this group down to E7 (for

N=2), E6 (N=3), SO(10) (for N=4), or SU(5) (for N=5), respectively. The spectra obtained in

this way are [4]

N = 2 : (65, 19), N = 3 : (84, 18), N = 4 : (101, 17), N = 5 : (116, 16). (46)

This sequence is intriguing: it has precisely the structure we expect from splitting transitions of

the type discussed above 10: because of the vanishing cycles the number of complex deformations

is reduced in the transition Vt −→ V0 and because of the properties of small resolutions new

Kähler deformations are introduced in the smoothing process V0 −→ Ṽ . However, because the

10Not of a general conifold transition however, as follows from our discussion in Section 4.
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purported Hodge numbers (h(1,1), h(2,1)) do not appear for any of the manifolds in the list of all

CICYs [1] nor for any of the models in the list of all Landau–Ginzburg theories [13], it seems

difficult at present to check for the possibility of a direct, simple analog of the splitting transition.

Kachru and Vafa, however, made the intriguing observation that the transition from N=5 to N=4

is reminiscent of the splitting process of [1] applied to the codimension two Calabi-Yau manifold

IP4[5]
(1,101) ←→

IP1

IP4

[

1 1
1 4

](2,86)

, (47)

provided an overall shift of 14 in the Hodge numbers is taken into account11. This shift of 14

results in the sequence of Euler numbers

N = 2 : − 92, N = 3 : − 132, N = 4 : − 168, N = 5 : − 200. (48)

The idea that there might indeed exist an analog of Calabi-Yau splitting in the context of N=2

heterotic string theory clearly would gain support if direct splits could be found for the remaining

two embeddings of SU(N). We see that a candidate for the second element in the chain (48) is

provided by the pair of spaces connected through the weighted split (45). To find the remaining

elements of the sequence (48), recall from Section 5 that the octic IP(1,1,2,2,2)[8] has another

representation as a codimension-two ordinary complete intersection Calabi-Yau manifold. Since

we have just found the split of the quasismooth octic to a (3,69) manifold we might expect that

an appropriate direct split of the second representation might exist as well. Indeed, using the

ordinary splitting of [1] we find the sequence of splits

IP1

IP4

[

2 0
1 4

]

−168

←→
IP1

IP1

IP4







0 1 1
2 0 0
1 1 3







−132

←→

IP1

IP1

IP2

IP4











1 1 0 0 0
0 0 2 0 0
1 0 0 1 1
0 1 1 1 2











−92

. (49)

Jumping ahead we emphasize that all manifolds of (49),(43) are K3 fibrations. Thus we have

established a direct split within the subclass of K3 fibered Calabi-Yau manifolds for each element

in the sequence of SU(N)–embeddings discussed by Kachru and Vafa. The ability to find direct

splits according to growing N may be interpreted as evidence that there might exist an alternative

construction of Calabi-Yau splitting in the context of N=2 theories.

At present no conifold transition between Calabi-Yau manifolds with heterotic duals is known.

As an initial step in this direction we present the first conifold transition of a Calabi-Yau manifold

the dual of which has been identified by Kachru and Vafa12. The heterotic vacuum in question

11The origin of this shift remains obscure at present.
12This problem is also under consideration in the work of [30]
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is constructed by starting with an eight–dimensional compactification with an enhanced gauge

group E8×E8×SU(3)×U(1)
2, obtained by going to a special point in the moduli space of the

torus T2. Choosing particular embeddings of the various relevant bundles into the gauge group

factors one ends up with a theory with 102 hypermultiplets and 6 vector multiplets. Since there

is only one space in the class (33) with the appropriate spectrum, given by IP(1,1,2,4,4)[12]
(5,101),

it is very likely that this indeed describes the dual of the heterotic dual just described. This

configuration can be split as follows

IP(1,1,2,4,4)[12] ←→
IP(1,1)

IP(4,4,1,1,2)

[

1 1
4 8

]

, (50)

involving a conifold configuration with 32 nodes. The resulting cohomology for the split manifold

is (h(1,1), h(2,1)) = (6, 70). We will show in the next Section that this conifold transition belongs

to a whole class of weighted splits which connect Calabi-Yau manifolds that are all K3 fibrations.

Thus our split (50) remains in the class of spaces relevant for heterotic-type II duality. Orbifolding

this manifold by ZZ6 × ZZ
2
3 and iterating the basic isomorphism we find the mirror configuration

to be IP(20,24,49,54,93)[240]
(101,5).

At this time only very few heterotic vacua along the lines of [4] have been constructed, with

results [29] that are not too different from the corresponding heterotic spectrum (nH , nV ) =

(71, 7). It should be expected that our splitting result will turn up as the number of heterotic

vacua grows.

7. Conifold Transitions between K3 fibered Calabi-Yau manifolds.

As a second application we show how weighted splitting indicates that the deeper understanding

recently obtained [11] of the appearance of the j–function in the context of spacetime mirror

symmetry [4, 5] is far more general than initially thought. In order to do so, we recall that the

underlying reason for the appearance of the j–function is to be found in the K3 fibration of the

Calabi-Yau threefold. Because the web of Calabi-Yau manifolds can be traversed via conifold

transitions, it is natural to ask what the behavior of K3 fibrations is under such transitions. Our

discussion in the following will focus on the splitting construction, and for simplicity we discuss

in detail one example, the quasismooth octic.

It is well–known that the octic (30) is a K3 fibration [24], i.e. the linear system L defined

by the linear sections defines a family of K3–surfaces in the representation IP3[4]. In more

detail consider the divisor defined by the linear relation z2 = θz1, which leads to the family of
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hypersurfaces

IP(1,2,2,2)[8] ∋ {p = (1 + θ8 − 2λθ4)z81 + z43 + z44 + z45 − 8ψθz21

5
∏

i=3

zi = 0}. (51)

With y1 = z21 and yi = zi+1, i = 2, 3, 4, one arrives at the family of quartic K3–hypersurfaces of

the form

IP3[4] ∋ {p = (1 + θ8 − 2λθ4)y41 + y42 + y43 + y44 − 8ψθ
4
∏

i=1

yi = 0}. (52)

It is this structure of the K3 fibration of the Calabi-Yau threefold which explains [11] the ap-

pearance of the j–function [4].

Now, starting from the codimension two split of the octic as defined in (45), contraction leads

to the determinantal variety

IP(1,1,2,2,2)[8] ∋ {p0 ≡ y1(y
3
1 + y63 − y

3
5)− y2(y

3
2 + y64 + y35) = 0} (53)

which, via y4 = θy3, and the definitions zi = yi, i = 1, 2, z3 = y23, z4 = y5, leads to the family of

singular K3 surfaces

IP3[4] ∋ {z
4
1 − z

4
2 + (z1 − θz2)z

3
3 + (z1 − z2)z

3
4 = 0}. (54)

Furthermore the codimension two variety describing the split contains the family of K3 surfaces

IP1

IP3

[

1 1
1 3

]

∋











p1 = x1y1 + x2y2

p2 = x1(y
3
2 + θy33 + y34) + x2(y

3
1 + y33 − y

3
4)











(55)

which can be seen to lead precisely to the determinantal K3 of (54). Thus we see that the

splitting and contraction process not only relates K3–fibration but essentially takes place in the

fiber, passing through singular K3 surfaces. The splitting conifold transitions therefore carry

over the K3 fiber structure of the hypersurfaces to more complicated Calabi-Yau manifolds of

higher codimension.

The above analysis clearly allows for generalizations. A simple class of splits is defined as

follows

IP(2k−1,2k−1,2l,2l,2m)[2(2k− 1+ 2l+m)] ←→
IP(1,1)

IP(2l,2l,2k−1,2k−1,2m)

[

1 1
2l 2(2k − 1 + l +m)

]

, (56)

where the codimension one hypersurfaces, containing the K3 surfaces IP(2k−1,l,l,m)[2k−1+2l+m],

split into codimension two manifolds containing codimension-two K3 manifolds

IP(2k−1,l,l,m)[2k − 1 + 2l +m] ←→
IP(1,1)

IP(l,l,m,2k−1)

[

1 1
l (l +m+ 2k − 1)

]

. (57)
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As in the example above the quasismooth K3 hypersurfaces on the lhs are deformations of the

determinantal K3s obtained by contracting the codimension-two K3 complete intersections of

the split manifold. This construction is not restricted to this simple manifolds but can also

be applied also to a variety of other classes, starting from more complicated spaces of higher

codimension such as

IP(2k−1,2k−1,2l,2l,2m,2n)[2a 2b] ←→
IP(1,1)

IP(2l,2l,2k−1,2k−1,2m,2n)

[

1 1 0
2l 2(a− l) 2b

]

, (58)

with (a+ b) = 2k − 1 + 2l +m+ n, or, more concretely,

IP(1,1)

IP(1,1,1,1,2,2)

[

1 1 0
2 2 4

]

←→
IP(1,1)

IP(1,1)

IP(1,1,1,1,2,2)







0 0 1 1
1 1 0 0
2 2 2 2





 , (59)

all of which are K3 fibrations.

The above splitting analysis provides strong evidence that the appearance of the j–function

in the analysis of the heterotic-type II duality is not restricted to the simple Calabi-Yau spaces

that have been considered in the literature but instead extends to the general class of weighted

complete intersection Calabi-Yau manifolds of arbitrary codimension.

8. Colliding Singularities

Finally, we wish to point out a novel phenomenon that arises in conifold transitions between

weighted Calabi-Yau manifolds. Namely, it can happen that a number Ni of the N hypersurface

singularities sit on top of ZZpi orbifold singularities of the weighted space. If such a situation

occurs the results obtained for conifold transitions between manifolds embedded in products of

ordinary projective spaces [1] are no longer correct.

Consider the manifold

M = IP(2,2,3,3,5)[15]
(7,43) ∋

{

z61z3 + z62z4 + z53 + z54 + z35 = 0
}

(60)

with the split configuration

Msplit =
IP(1,1)

IP(3,3,2,2,5)

[

1 1
3 12

]

, (61)

a quasismooth manifold of which is defined by the polynomials

0 = p1 = x1y1 + x2y2

0 = p2 = x1(y
4
2 + y64 + y4y

2
5) + x2(y

4
1 + y63 + y3y

2
5). (62)
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Because this configuration does not allow a Fermat type choice for the polynomials S and T

enumerating the singularities involves the detailed structure of the defining polynomials. The

number of nodes in this case is given by N = IP(2,2,3,3,5)[3 3 12 12] = 8, and therefore we might

have expected that the split manifold has Euler number −56. Computing the Euler number of

the split manifold with the standard methods however leads to χ(Msplit) = −48. The resolution

of this discrepancy is found by noting that one of the nodes sits on top of a ZZ5 orbifold singularity.

Hence the resolution

χ(Msplit) = χ(M) + 2N +
∑

i

(pi − 1)Ni (63)

leads to an additional contribution of +8 in the naive result, leading to agreement with the

standard computation.
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Appendix: The class of K3 fibrations of the type IP(2k1−1,2k1−1,2k2,2k3,2k4)[2k], with k = 2k1− 1+

k2 + k3 + k4 and 2k/(2k1 − 1) ∈ 2IN.

χ h(1,1) h(2,1) Weights

108 60 6 (14,16,20,25,25)
96 59 11 (10,12,33,33,44)
96 55 7 (10,12,16,19,19)
84 54 12 (8,10,27,27,36)
84 54 12 (6,10,19,19,22)
84 50 8 (8,12,14,17,17)
72 49 13 (6,10,11,11,28)
72 49 13 (6,8,17,17,20)
72 44 8 (9,9,14,16,24)
64 43 11 (7,7,8,12,22)
60 44 14 (5,5,12,16,22)
48 35 11 (6,7,7,10,12)
48 43 19 (4,10,21,21,28)
48 41 17 (4,9,9,10,22)
48 39 15 (5,5,8,14,18)
48 39 15 (4,12,14,15,15)
48 39 15 (4,10,12,13,13)
36 38 20 (6,8,21,21,28)
36 38 20 (4,6,13,13,16)
36 34 16 (4,8,10,11,11)
32 33 17 (5,5,6,8,16)
24 32 20 (4,5,5,12,14)
24 29 17 (8,10,12,15,15)
24 27 15 (5,5,6,6,8)
24 33 21 (4,6,7,7,18)
12 36 30 (2,12,15,15,16)
12 36 30 (2,10,13,13,14)
16 31 23 (4,5,5,8,18)
0 35 35 (2,12,21,21,28)
0 27 27 (4,6,15,15,20)
0 34 34 (3,3,8,14,20)
0 23 23 (4,6,8,9,9)
0 23 23 (4,4,6,7,7)
0 31 31 (2,7,7,10,16)
0 31 31 (2,8,11,11,12)

-12 38 44 (3,3,8,20,26)
-12 30 36 (2,8,15,15,20)
-12 30 36 (2,6,11,11,14)
-12 25 31 (3,3,4,10,10)
-24 20 32 (3,3,4,4,10)
-24 29 41 (2,6,7,7,20)
-24 27 39 (3,3,4,10,16)
-24 23 35 (2,5,5,6,12)
-36 20 38 (2,4,7,7,8)
-36 20 38 (2,6,9,9,10)
-48 31 55 (3,3,4,16,22)
-48 15 39 (2,4,4,5,5)
-48 21 45 (2,4,5,5,14)
-48 19 43 (2,3,3,8,8)
-48 19 43 (2,4,9,9,12)

χ h(1,1) h(2,1) Weights

-64 11 43 (6,7,7,8,28)
-72 21 57 (2,3,3,8,14)
-72 13 49 (5,5,8,12,30)
-72 10 46 (4,5,5,6,20)
-72 7 43 (4,5,5,6,10)
-84 12 54 (2,2,5,5,6)
-96 14 62 (3,3,8,10,24)
-96 11 59 (3,3,4,8,18)
-96 11 59 (2,2,3,3,8)
-96 7 55 (3,3,4,6,8)
-96 5 53 (2,3,3,4,6)

-108 6 60 (2,2,2,3,3)
-112 7 63 (2,5,5,8,20)
-120 25 85 (2,3,3,14,20)
-120 6 66 (2,3,3,4,12)
-132 7 73 (3,3,6,8,10)
-168 2 86 (1,1,2,2,2)
-192 11 107 (3,3,4,20,30)
-192 8 104 (1,1,4,4,6)
-192 5 101 (1,1,2,4,4)
-192 3 99 (1,1,2,2,4)
-204 14 116 (3,3,8,28,42)
-204 9 111 (1,1,4,6,6)
-232 9 125 (1,1,4,6,8)
-232 5 121 (1,1,2,4,6)
-240 11 131 (1,1,6,8,8)
-240 7 127 (2,3,3,16,24)
-252 2 128 (1,1,2,2,6)
-264 11 143 (1,1,6,8,10)
-272 7 143 (1,1,4,4,10)
-288 9 153 (1,1,4,8,10)
-288 4 148 (1,1,2,4,8)
-304 12 164 (1,1,8,10,12)
-312 11 167 (1,1,6,10,12)
-312 8 164 (1,1,4,6,12)
-312 5 161 (1,1,2,6,8)
-348 12 186 (1,1,8,12,14)
-368 10 194 (1,1,6,8,16)
-372 8 194 (1,1,4,8,14)
-372 4 190 (1,1,2,6,10)
-420 10 220 (1,1,6,10,18)
-432 13 229 (1,1,12,16,18)
-432 11 227 (1,1,8,10,20)
-480 11 251 (1,1,8,12,22)
-480 3 243 (1,1,2,8,12)
-528 7 271 (1,1,4,12,18)
-612 12 318 (1,1,12,16,30)
-624 9 321 (1,1,6,16,24)
-732 10 376 (1,1,8,20,30)
-960 11 491 (1,1,12,28,42)
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