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Abstract

The ∆-operator of the Batalin-Vilkovisky formalism is the Hamiltonian BRST charge of Abelian
shift transformations in the ghost momentum representation. We generalize this ∆-operator, and its
associated hierarchy of antibrackets, to that of an arbitrary non-Abelian and possibly open algebra
of any rank. We comment on the possible application of this formalism to closed string field theory.
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In order to see how the conventional antibracket formalism of Batalin and Vilkovisky [1] can be gener-
alized, it is important to have a fundamental principle from which this formalism can be derived. As
has been discussed in a series of papers [2, 3]1, this principle is that Schwinger-Dyson BRST symmetry
[5] must be imposed on the full path integral.

Schwinger-Dyson BRST symmetry can be derived from the local symmetries of the given path integral
measure. When the measure is flat, the relevant symmetry is that of local shifts, and the resulting
Schwinger-Dyson BRST symmetry leads directly to a quantumMaster Equation on the action S which is
exponentiated inside the path integral. This action depends on two new sets of ghosts and antighosts, cA

and φ∗A [2]. The conventional Batalin-Vilkovisky formalism for an action SBV follows if one substitutes
S[φ, φ∗, c] = SBV [φ, φ∗] − φ∗Ac

A and integrates out the ghosts cA. The so-called “antifields” of the
Batalin-Vilkovisky formalism are simply the Schwinger-Dyson BRST antighosts φ∗A [2].

It is of interest to see what happens if one abandons2 the assumption of flat measures for the fields φA,
and if one does not restrict oneself to local transformations that leave the functional measure invariant.
Some steps in this direction were recently taken in ref. [3]. One here exploits the reparametrization
invariance encoded in the path integral by performing field transformations φA = gA(φ′, a) depending
on new fields ai. It is natural to assume that these transformations form a group, or more precisely, a
quasigroup [7]. The objects

uAi ≡
δrgA

δai

∣

∣

∣

∣

∣

a=0

(1)

are gauge generators of this group. They satisfy

δruAi
δφB

uBj − (−1)ǫiǫj
δruAj
δφB

uBi = −uAk U
k
ij , (2)

where the Uk
ij are structure “coefficients” of the group. They are supernumbers with the property

Uk
ij = −(−1)ǫiǫjUk

ji . (3)

In ref. [3], specializing to compact supergroups for which (−1)ǫiU i
ij = 0, the following ∆-operator was

derived:

∆G ≡ (−1)ǫi

[

δr

δφA

δr

δφ∗i
G

]

uAi +
1

2
(−1)ǫi+1

[

δr

δφ∗j

δr

δφ∗i
G

]

φ∗kU
k
ji . (4)

When the coefficients Uk
ij are constant, this ∆-operator is nilpotent: ∆2 = 0. As noted by Koszul [8],

and rediscovered by Witten [9], one can define an antibracket (F,G) by the rule

∆(FG) = F (∆G) + (−1)ǫG(∆F )G+ (−1)ǫG(F,G) . (5)

Explicitly, for the case above, this leads to the following new antibracket [3]:

(F,G) ≡ (−1)ǫi(ǫA+1) δ
rF

δφ∗i
uAi

δlG

δφA
−

δrF

δφA
uAi

δlG

δφ∗i
+

δrF

δφ∗i
φ∗kU

k
ij

δlG

δφ∗j
(6)

This antibracket is statistics-changing, ǫ((F,G)) = ǫ(F ) + ǫ(G) + 1, and has the following properties:

(F,G) = (−1)ǫF ǫG+ǫF+ǫG(G,F ) (7)

(F,GH) = (F,G)H + (−1)ǫG(ǫF+1)G(F,H)
1The case of extended BRST symmetry is derived in ref. [4].
2See the 2nd reference in [2]. This is related to the covariant formulations of the antibracket formalism [6].
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(FG,H) = F (G,H) + (−1)ǫG(ǫH+1)(F,H)G (8)

0 = (−1)(ǫF+1)(ǫH+1)(F, (G,H)) + cyclic perm. . (9)

Furthermore,
∆(F,G) = (F,∆G)− (−1)ǫG(∆F,G) . (10)

The ∆ given in eq. (4) is clearly a non-Abelian generalization of the conventional ∆-operator of the
Batalin-Vilkovisky formalism.

We shall now show how to extend this construction to the general case of non-linear and open algebras.
Recently, interest in more complicated algebras such as strongly homotopy Lie algebras [10] has arisen
in the context of string field theory [11].

Consider the quantized Hamiltonian BRST operator Ω for first-class constraints with an arbitrary,
possibly open, gauge algebra [12].3 Apart from a set of phase space operators Qi and Pi, introduce a
ghost pair ηi,Pi. They have Grassmann parities ǫ(ηi) = ǫ(Pi) = ǫ(Qi)+ 1 ≡ ǫi+1, and are canonically
conjugate with respect to the usual graded commutator:

[ηi,Pj ] = ηiPj − (−1)(ǫi+1)(ǫj+1)
Pjη

i = iδij . (11)

In addition [ηi, ηj ] = [Pi,Pj ] = 0. The quantum mechanical BRST operator can then be written in the
form of a Pη normal-ordered expansion in powers of the P’s [12]:

Ω = Giη
i +

∞
∑

n=1

Pin · · · Pi1U
i1···in . (12)

Here

U i1···in =
(−1)

ǫ
i1···in−1

j1···jn

(n + 1)!
U i1···in
j1···jn+1

ηjn+1 · · · ηj1 , (13)

and the sign factor is defined by:

ǫ
i1···in−1

j1···jn
=

n−1
∑

k=1

k
∑

l=1

ǫil +
n
∑

k=1

k
∑

l=1

ǫjl . (14)

The U i1···i1
jn···jn+1

’s are generalized structure coefficients. For rank-1 theories the expansion ends with the

2nd term, involving the usual Lie algebra structure coefficients Uk
ij . The number of terms that must be

included in the expansion of eq. (12) increases with the rank. By construction Ω2 = 0.

The functions Gi appearing in eq. (12) are the constraints. In the quantum case they satisfy the
constraint algebra

[Gi, Gj ] = iGkU
k
ij . (15)

We choose these to be the ones associated with motion on the supergroup manifold defined by the
transformation φA = gA(φ′, a).

When considering representations of the (super) Heisenberg algebra (11), one normally chooses the
operators to act to the right. Thus, in the ghost coordinate representation we could take

Pj = i(−1)ǫj
δl

δηj
, (16)

3For a comprehensive review of the classical Hamiltonian BRST formalism, see, e.g., ref. [13].
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and similarly in the ghost momentum representation we could take

ηj = i
δl

δPj
. (17)

On the other hand, the most convenient representation of the constraint Gj is [7]

←

Gj = −i

←

δr

δφA
uAj , (18)

which involves a right-derivative acting to the left. Using eq. (2),
←

Gj is seen to satisfy

[
←

Gi,
←

Gj] = i
←

GkU
k
ij . (19)

Since we wish Ω of eq. (12) to act in a definite way, we choose representations of the (super) Heisenberg
algebra (11) that involve operators acting to the left as well. These are

←

Pj = i

←

δr

δηj
(20)

in the ghost coordinate representation, and

←

η
j = i(−1)ǫj

←

δr

δPj
(21)

in the ghost momentum representation. Inserting these operators into eq. (12) will give the correspond-

ing BRST operator
←

Ω acting to the left. We now identify the ghost momentum Pj with the Lagrangian
antighost (“antifield”) φ∗j .

As a special case, consider the operator
←

Ω in the case of an ordinary rank-1 super Lie algebra for which

(−1)ǫiU i
ij = 0. In the ghost momentum representation

←

Ω takes the form

←

Ω = (−1)ǫi

←

δr

δφA
uAi

←

δr

δφ∗i
−

1

2
(−1)ǫjφ∗kU

k
ij

←

δr

δφ∗j

←

δr

δφ∗i
. (22)

One notices that the
←

Ω of the above equation coincides with our non-Abelian ∆-operator of eq. ( 4).
In detail:

∆F ≡ F
←

Ω . (23)

For a rank-0 algebra – the Abelian case – we get, with the same identification,

←

Ω = (−1)ǫA

←

δr

δφA

←

δr

δφ∗A
. (24)

The associated ∆-operator, defined through eq. (23) is seen to agree with the ∆ of the conventional
Batalin-Vilkovisky formalism [1].
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We define the general ∆-operator through the identification (23) and the complete expansion

←

Ω = (−1)i

←

δr

δφA
uAi

←

δr

δφ∗i
+
∞
∑

n=1

φ∗in · · · φ
∗

i1

←

U
i1···in

. (25)

Here

←

U
i1···in

=
(−1)

ǫ
i1···in−1

j1···jn

(n+ 1)!
(i)n+1(−1)ǫj1+···+ǫjn+1U i1···in

j1···jn+1

←

δr

δφ∗jn+1

· · ·

←

δr

δφ∗j1
. (26)

By construction we then have ∆2 = 0.

It is quite remarkable that the above derivation, based on Hamiltonian BRST theory in the operator
language, has a direct counterpart in the Lagrangian path integral. The two simplest cases, that of
rank-0 and rank-1 algebras have been derived in detail in the Lagrangian formalism in refs. [2, 3]. It
is intriguing that completely different manipulations (integrating out the corresponding ghosts ci, and
partial integrations inside the functional integral) in the Lagrangian framework leads to these quantized
Hamiltonian BRST operators. The rank-0 case, that of the conventional Batalin-Vilkovisky formalism,
corresponds to the gauge generators

←

GA = −i

←

δr

δφA
. (27)

These are generators of translations: when the functional measure is flat, the Schwinger-Dyson BRST
symmetry is generated by local translations. The non-Abelian generalizations correspond to imposing
different symmetries as BRST symmetries in the path integral [3].

These non-Abelian BRST operators
←

Ω can be Abelianized by canonical transformations involving the
ghosts [14], but the significance of this in the present context is not clear. Since in general the number
of “antifields” φ∗i will differ from that of the fields φA, it is obvious that uAi in general will be non-
invertible. Even when the number of antifields matches that of fields, the associated matrix uAB may be
non-invertible (“degenerate”).4

Having the general ∆-operator available, the next step consists in extracting the associated antibracket.
By the definition (5), this antibracket measures the failure of ∆ to be a derivation. When ∆ is a
second-order operator, the antibracket so defined will itself obey the derivation rule (8). For higher-
order ∆-operators this is no longer the case. The antibracket will then in all generality only obey the
much weaker relation

(F,GH) = (F,G)H − (−1)ǫGF (G,H) + (−1)ǫG(FG,H) . (28)

The relation (10) also holds in all generality. When the ∆-operator is of order three or higher, the
antibracket defined by (5) will not only fail to be a derivation, but will also violate the Jacobi identity
(9).

For higher-order ∆-operators one can, as explained by Koszul [8], use the failure of the antibracket to
be a derivation to define higher antibrackets. These are Grassmann-odd analogues of Nambu brackets
[17, 18]. The construction is most conveniently done in an iterative procedure, starting with the ∆-
operator itself [8, 19]. To this end, introduce objects Φn

∆ which are defined as follows:5

Φ1
∆(A) = (−1)ǫA∆A

4 In the special case where uA
B is invertible, the transformation φ∗

A → φ∗

B(u
−1)BA makes the corresponding ∆-operator

Abelian [3], but we are not interested in that case here. See also refs. [15, 16].
5Note that our definitions differ slightly from ref. [8, 19] due to our ∆-operators being based on right-derivatives, while

those of ref. [8, 19] are based on left-derivatives.
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Φ2
∆(A,B) = Φ1

∆(AB)− Φ1
∆(A)B − (−1)ǫAAΦ1

∆(B)
Φ3
∆(A,B,C) = Φ2

∆(A,BC)− Φ2
∆(A,B)C − (−1)ǫB(ǫA+1)BΦ2

∆(A,C)
· ·

· ·

· ·

Φn+1
∆ (A1, . . . , An+1) = Φn

∆(A1, . . . , AnAn+1)− Φn
∆(A1, . . . , An)An+1

−(−1)ǫAn (ǫA1
+···+ǫAn−1

+1)AnΦ
n
∆(A1, . . . , An−1, An+1) . (29)

The Φn
∆’s define the higher antibrackets. For example, the usual antibracket is given by

(A,B) ≡ (−1)ǫAΦ2
∆(A,B) . (30)

The iterative procedure clearly stops at the first bracket that acts like a derivation. For example, the
“three-antibracket” defined by Φ3

∆(A,B,C) directly measures the failure of Φ2
∆ to act like a derivation.

But more importantly, it also measures the failure of the usual antibracket to satisfy the graded Jacobi
identity:6

∑

cycl.

(−1)(ǫA+1)(ǫC+1)(A, (B,C)) = (−1)ǫA(ǫC+1)+ǫB+ǫCΦ1
∆(Φ

3
∆(A,B,C))

+
∑

cycl.

(−1)ǫA(ǫC+1)+ǫB+ǫCΦ3
∆(Φ

1
∆(A), B,C) , (31)

and so on for the higher brackets.

When there is an infinite number of higher antibrackets, the associated algebraic structure is analogous
to a strongly homotopy Lie algebra L∞. The L1 algebra is then given by the nilpotent ∆-operator, the
L2 algebra is given by ∆ and the usual antibracket, the L3 algebra by these two and the additional
“three-antibracket”, etc. The set of higher antibrackets defined above seems natural in closed string
field theory [11], the corresponding ∆-operator being given by the string field BRST operator Q.

Having constructed the ∆-operator (and its associated hierarchy of antibrackets), it is natural to con-
sider a quantum Master Equation of the form

∆exp

[

i

h̄
S(φ, φ∗)

]

= 0 . (32)

Using the properties of the Φn’s defined above, we can write this Master Equation as a series in the
higher antibrackets,

∞
∑

k=1

(

i

h̄

)k Φk(S, S, . . . , S)

k!
= 0 , (33)

where each of the higher antibrackets Φk(S, S, . . . , S) has k entries. The series terminates at a finite
order if the associated BRST operator terminates at a finite order. For example, in the Abelian case of
shift symmetry the general equation (33) reduces to ih̄∆S −

1
2(S, S) = 0, the Master Equation of the

conventional Batalin-Vilkovisky formalism.

A solution S to the general Master Equation (33) is invariant under deformations

δS =
∞
∑

k=1

(

i

h̄

)k−1 Φk(ǫ, S, S, . . . , S)

(k − 1)!
, (34)

6We thank K. Bering for pointing out an error in the original version of this manuscript.
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where again each Φk has k entries, and ǫ is Grassmann-odd. One can view this as the possibility of
adding a BRST variation

σǫ =
∞
∑

k=1

(

i

h̄

)k−1 Φk(ǫ, S, S, . . . , S)

(k − 1)!
(35)

to the action. Here σ is the appropriately generalized “quantum BRST operator”.7 In the case of the
Abelian shift symmetry, the above σ-operator becomes σǫ = ∆ǫ + (i/h̄)(ǫ, S), which precisely equals
((ih̄)−1 times) the quantum BRST operator of the conventional Batalin-Vilkovisky formalism.

We note that the general Master Equation (33) and the BRST symmetry (34) has the same relation to
closed string field theory [11, 21] that the conventional Batalin-Vilkovisky Master Equation and BRST
symmetry has to open string field theory [9]. The rôle of the action S is then played by the string field
Ψ, and the Master Equation (33) is the analogue of the closed string field equations. The symmetry
(34) is then the analogue of the closed string field theory gauge transformations.

The present definition of higher antibrackets suggests the existence of an analogous hierarchy of
Grassmann-even brackets based on a supermanifold and a non-Abelian open algebra – a natural gen-
eralization of Possion-Lie brackets. It should also be interesting to investigate the Poisson brackets
and Nambu brackets generated by the generalized antibrackets and suitable vector fields V anticom-
muting with the generalized ∆-operator (and in particular certain Hamiltonian vector fields within the
antibrackets), as described in the case of the usual antibracket in ref. [20].

So far our construction has been carried out in the ghost momentum representation of the super
Heisenberg algebra. But the definition of an antibracket from the quantized Hamiltonian BRST operator
can of course be given in different representations on the extended phase space spanned by Qi, Pj and
ηi,Pj . For example, in the ghost coordinate representation, the BRST operator is a first-order operator
for Abelian and true Lie algebras (with just the trivial “one-bracket” defined by it), but it becomes a
higher order operator suitable for defining higher antibrackets for general open algebras. It is certainly
a challenge to find the rôle played by the associated antibracket structure – in particular in the ghost
momentum representation – in the Hamiltonian language.

We have restricted ourselves to field transformations φA = gA(φ′, a) that do not involve the ghosts ci or
antighosts φ∗i . Enlarging the transformations in this way should lead to a fully covariant formulation
of these non-Abelian antibrackets and ∆-operators. It is interesting to speculate, conversely, on the
meaning of the corresponding “covariant” Hamiltonian BRST operators. In fact, the analyses of ref.
[6] point, together with the present observations, towards some surprising analogies in the Hamiltonian
and Lagrangian formulations. We hope some of these aspects can become clarified in the future.

Acknowledgement: P.H.D. would like to thank A. Nersessian for discussions, and S.L. Lyakhovich
for pointing out ref. [15]. The work of J.A. is partially supported by Fondecyt 1950809 and a collabo-
ration CNRS-CONICYT.

7For finite order, a rearrangement in terms of increasing rather than decreasing orders of h̄ may be more convenient.
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