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Abstract: The first and second homology groups, H; and Hs, are computed for con-
figuration spaces of framed three-dimensional point-particles with annihilation in-
cluded, when up to two particles and an antiparticle are present, the types of frames
considered being S% and SO(3). Whereas a recent calculation for two-dimensional
particles used the Mayer-Vietoris sequence, in the present work Morse Theory is
used. By constructing a potential-function none of whose critical indices is less than
four, we find that (for coefficients in an arbitrary field K') the homology groups H;
and Ho reduce to those of the frame-space, S* or SO(3) as the case may be. In the
case of SO(3)-frames this result implies that H; (with coefficients in Z,) is gener-
ated by the cycle corresponding to a 27-rotation of the frame. (This same cycle is
homologous to the exchange loop: the spin-statistics correlation.) It also implies
that Hs is trivial, which means that there does not exist a topologically nontrivial
Wess-Zumino term for SO(3)-frames (in contrast to the two-dimensional case, where
SO(2)-frames do possess such a term). In the case of S%frames (with coefficients
in R), we conclude Hy = IR, the generator being in effect the frame space itself.
This implies that for S?-frames there does exist a Wess-Zumino term, as indeed is
needed for the possibility of half-integer spin and the corresponding fermi statistics.
Taken together, these results for H; and Hs imply that our configuration space “ad-

mits spin-1/2" for either choice of frame, meaning that the spin-statistics theorem
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previously proved for this space is not vacuous.
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1 Introduction

Results concerning spin-statistics correlations for extended objects such as solitons,
monopoles and vortices have shown 'that the axioms of local relativistic quantum
field theory are by no means necessary to guarantee a spin-statistics theorem?. The
question of what general? assumptions are needed for a spin-statistics theorem has
led to the investigation®* of the general topological properties of systems of parti-
cles and extended objects, with the result that the physical consequences of these
topological properties are now better understood. The importance of pair-creation
and annihilation is clear.®®

The topology of configuration space plays a important role in quantum theory.
The quantum mechanical Hilbert space corresponding to a classical configuration
space (' is in general best viewed as being the space of sections of a vector bundle
over C'. For a variety of physically interesting configuration spaces C', these vector
bundles incorporate the spin-type and the statistics, as well as other topological
properties of the quantum theory in question. Furthermore many of the relevant
topological properties can be described by the homotopy and homology elements of
the classical configuration spaces which are associated with these vector bundles.

For example, the set of U(1) (and hence line) bundles over C' is classified by
H?*(C; Z) , which is isomorphic to Ho(C; Z)* @ TorH,(C; Z), where Ho(C; Z)* can
be thought of as the non-torsion part of Hy(C; Z) and Tor H,(C; Z) is the torsion
subgroup of H;(C; Z).% (The torsion subgroup of an abelian group is its maximal
finite subgroup.) Also, in the case of (locally) flat bundles, the spin-statistics correla-
tion follows from the statement that the exchange of two identical particles and a 27
rotation of one of the particles both correspond to the same nontrivial element of the
fundamental group m1(C). For more general bundles it rests (in three dimensions)
on a homotopy, not between loops but between a certain pair of mappings of IR P2
into C.7 Similarly, the condition for the existence of a nontrivial Wess-Zumino term
is that the second homology group Hs(C'; Z) contain a Z subgroup, or equivalently
that Hs(C;IR) be non-zero.
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A system that has been investigated®® using this type of approach is that of
identical particles and anti-particles on IR?, each carrying a ‘frame’ F, the frame
having been introduced in order to describe intrinsic spin.®? In this case, the classical
configuration space C'is (as a set) of the form C' = || Q,,,, where the @, ,, are spaces
containing m particles and n anti-particles, all with distinct locations (but see Ref.
10), and the disjoint union || runs over all possibilities for m and n. The topology of
each subspace Q) ,, (or just @, if the particle is its own antiparticle) is the topology
of an appropriate frame bundle modified by the fact that the particles are assumed
to be indistinguishable. The basic problem (solved in Ref. 9) is to construct a
(Hausdorff) topology for the full space C' such that pair creation and annihilation
can proceed continuously. The problems of finding the precise topological properties
that are introduced by the construction of C' and of analyzing these properties
remains.

In Ref. 11 we considered a limited version of this problem wherein the individual
units are point particles which move in two-dimensional Euclidean space IR? and
carry ‘frames’ which embody the notion of spin. By ‘carrying frames’ is meant that a
single particle (or anti-particle) is represented by a bundle over IR?. Three possible
fibers, namely SO(2), S?, and SO(3), were considered. The restriction to point
particles and to two dimensions was for simplicity and because of the present interest
in two-dimensional systems, particularly in the theory of “anyons”. In this paper
we expand the earlier study to include particles which move in three-dimensional
Euclidean space IR? and carry frames S? or SO(3).

The solution to the problem of finding an appropriate topology for the con-
figuration space is reviewed in Section 2. The essential idea is to introduce open
neighborhoods of the vacuum (and corresponding neighborhoods of the non-vacuum
configurations) that allow a particle and an antiparticle to annihilate provided their
positions and frames are suitably aligned. (For an isolated particle-antiparticle pair,
their frames must be “mirror images” of each other; if a further particle is nearby

in space, we require in addition that the two particles be on opposite sides of the
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antiparticle with both pairs of frames matched, a situation which we call ‘syzygy’
in analogy with planetary alignments). The complete topology is then obtained
from these neighborhoods. There remains the problem of determining in detail the
properties of the resulting topological space, including its homology and homotopy
groups, especially insofar as they help answer the question of how many inequivalent
vector bundles the space admits.

In the present work, we will again concentrate on the homology groups H; and
H,, these providing complete information if we restrict ourselves to line bundles.
In Ref. 11 we determined these groups for particles moving in IR? by using the
Mayer-Vietoris exact sequence. This process was carried out for the first and second
homology groups in the case of the subspaces X;; = @1,1 = Q11 UQpo and Xy =
@271 = (021 U Q1. In this paper we solve for the first and second homology groups
for particles moving in three-dimensional Euclidean space IR?, carrying frames S2
or SO(3). A result of particular importance we find is that for SO(3)-frames,
H,(X51; Z2) = Zs, the non-zero element being the exchange, or equivalently the 27-
rotation of a single frame. (That these two 1-cycles are homologous expresses the
spin-statistics correlation.) This implies that the particles will be spinorial fermions
for an appropriate choice of line bundle, and thereby demonstrates the nontriviality
of our framework (at least up to Xo1). Similarly we find that Ho(X51;IR) = IR for
S%-frames, showing non-triviality in this, somewhat more general case as well [see
Ref. 7]. In addition we find that Hs is trivial for SO(3)-frames.

The layout of the paper is as follows. In Sec. 2 we describe the topology of the
spaces to be considered. In Secs. 3 and 4, we discuss how Morse Theory can be used
to obtain information about homology groups. A Morse potential applicable to our
spaces is described in Secs. 5 and 6. In Sec. 7 its critical points are found, and in
Sec. 8 the critical indexes of these points are determined and the implications for H;
and Hy are drawn. Sec. 9 contains a discussion of the directions that generalizations

of the results of this paper may take.
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2 Topology of the Space of Framed Point-
Particles and Antiparticles

The topology of the space of framed point-particles and antiparticles is described
in detail in Ref. 9. For completeness, we give a brief description of this space,
including the ‘reflection’ and ‘syzygy’ conditions for annihilation. Let X = (z, F(®)),
[respectively X = (Z, F®)] denote the position and ‘frame-orientation’ of a particle
[resp. antiparticle]. By F'®) we mean a generic ‘frame’ (in S2, SO(3) or SO(2) as

the case may be) attached to the particle located at position z. Then
Quma = {X5, X% X™ X' X2 X"|2', 77 € R
AT A£G o AT} (1)
is the sector or “stratum” of our configuration space describing m particles and n
antiparticles. Here, the bracket notation indicates that the order of the X* is without

significance (and similarly for the X7). We also introduce the vacuum (“VAC”) by
setting

Qoo = {VAC} (2)

Next the concept “e-close” is defined as follows: (i) Particles X and Y are “e-

close” iff | —y| < € and d(F® FW) < ¢/L (where L is some fixed length), and

similarly for antiparticles X and Y; (ii) The particle X and antiparticle X are“e-

close” iff

lz—7] <e and d(F®,R(zx—2)F9) < |z —3|/L.

Here |z — | is the Euclidean distance between points z and g, d(F®, F®) is
the geodesic distance between F@) and F® in the space of frames, and R(z —
7)F® is the frame which results when the anti-frame £ is reflected in the plane
perpendicular to the vector z — y. This concept of “e-close” is used to define an
e-neighborhood in @, , of a point in @), , in the obvious way.

We further need to define when a point

Y:[Y17-.-’Ym+p;}71’...7Yn+p] EQm+p,n+p , pZO
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is in an e-neighborhood of a point
X = [le"'va’;X17'”Xn] € Qm,nv

that is when p particle-antiparticle pairs are ‘close to annihilation’. To this end we
define a viable labeling of Y with respect to X as one that satisfies the following: (i)
Y is e-close to X fori = 1,....,m ; (ii) Y is e-close to X' fori = 1,...,n ; (iii) Y™ is
e-close to Y+ for i = 1,..p. Also, we say that a triplet X,Y, Z is in syzygy if (and
only if)

Dol dr@, Bz — )79 (3)

A similar definition of syzygy applies to the triplet X,Y,Z. Here 2 — z indicates
the unit vector in the direction = — z. Finally we say that Y € N.[X], that is,Y is
an element of the e-neighborhood of X, if there exists a viable labeling of Y with
respect to X, and for all such viable labelings, all suitable triplets are in syzygy.
By suitable triplets we mean that at least one member of the triplet comes from
the set {Y™+1 ... ymtp,yntl ... Yn+Pl that is one ‘new’ particle or one ‘new’
antiparticle must be a member of the triplet.

In summary, the condition that a particle-antiparticle pair be “close to annihi-
lation” is first of all that they be spatially close to each other and that their frames
nearly satisfy the reflection condition. In addition, if another particle is nearby in
space, the three must be in syzygy. This means that the two particles are on oppo-
site sides of the antiparticle and both particles nearly satisfy the reflection condition

with the antiparticle.

3 Morse Theory

Morse Theory!? relates the homology groups of a manifold M to the so-called critical

indices of a suitable smooth function V' on M. Critical points of V' are points p at
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which the gradient of V' vanishes: dV'|, = 0. The number of negative eigensigns of
the Hessian d?V|, at such a p is referred to as the index of p (relative to V'), and V
is said to be nondegenerate if (nullity of p) := dim M — rank d*V,, = 0.

Let us assume that each of the sub-spaces M, = {s € M|V (s) < a} is compact.
If p is the only critical point of V' in the range V(p) — e < V(p) < V(p) + € and
p is nondegenerate of index A, Morse theory tells us that My )1 & My y—c U ey
where e, is a A - cell and ‘a~’ denotes homotopy equivalence. (Considering a Morse
function as a potential, it effectively induces a retraction of My ()1 to My )—Uex.)
Because attaching e, must create either a new cycle or a new boundary, this in turn

implies that either

1) dimH\(My@py+e; K) = dimH\(Myp-; K)+1 or
2) d’imH)\_l(Mv(p)+e; K) = dimH)\_l(Mv(p)_e; K) —1 (4)

Here K is an arbitrary field and dimH,(M; K) is the dimension of the A homology
group of M with coefficients in K (i.e. its dimension as a vector space over K). To
discover whether alternative 1 or 2 obtains requires a global analysis.

If one exhibits a smooth function V' on a closed manifold M for which all the
critical points in M\ M, are nondegenerate (hence finite in number), then M can
be constructed by the successive attachment of thickened A;-cells to My, where \; is
the index of the critical point p;. In particular, according to (4), dim H) can change
in going from My to M only if A = \; or A = \; — 1 for some i. From this it follows
that, if \; > 4 for all p;, then dimH;(M; K) = dimH,;(My; K), j = 1,2. It is this
result that we will use.

Actually we will need results which generalize the above. First, for ‘natural’
Morse functions defined on our configuration spaces the critical points p; will com-
prise critical submanifolds N; which reflect an overall rotation invariance, as well
as certain other symmetries. We can still apply Morse theory if the Hessian d?V,
is nondegenerate in the directions normal to /V;, and one still defines the indez of
N; as the number of negative eigensigns of that Hessian. Second, the spaces we

will consider are not globally manifolds nor are they compact. The generalizations
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needed will be described in the next section.

4 Sufficient Conditions for Applying
Morse Theory

We would like to have information about the homology groups of the space X5 :=
@271 = Q1,0 U @21, which is not a manifold at points of its lower-dimensional
“stratum” Q10. Nevertheless, we can still use Morse theory to get information
on dimH;(Xs1; K) — dimH;(Q1,0; K). We have shown elsewhere ™ that thickening
Q1 into ()2 to obtain the e-neighborhood @170 = N.[Q1p] does not alter the ho-
mology of )1 ; in fact @170 retracts onto ()1 and is therefore homotopy equivalent
to it. Outside of @1,0 we do have a manifold (a subset of the top-dimensional “stra-
tum” ()21), and can therefore hope to use Morse theory to reduce the study of Xy
to that of @170, and thereby to (1 itself.

To that end, let M = Q51\Q1,0 with boundary ¥ = dM = dQ; o; and let there
be given on M a Riemannian metric g,, and a smooth positive potential-function
V. As earlier, we write M, = V~1([0,a]). A sufficient set of conditions to apply

Morse theory to X5, in the indicated manner is the following.

1. @170 retracts onto ()1 (or onto any subset thereof onto which Q) itself re-

tracts);
2. ¥ = 0M is a piece-wise smooth submanifold of @3 1;

3. The gradient flow £ = —g®9,V is inward everywhere on ¥ (by inward we

mean into @170, which is outward from the point of view of M);

4. The critical submanifolds of V' are compact (and nondegenerate), and there

are a finite number of them in each M,;

5. The vector flow £* leads each x € M either to a point of ¥ or to a critical

submanifold of V;
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6. The potential V' increases without bound along any trajectory of the inverse

vector flow —&? (unless the trajectory hits a critical point).

The argument that the above conditions suffice follows the same steps as the
corresponding chain of reasoning from ordinary Morse theory, the main differences
being first, that M is non-compact, and second, that the starting surface ¥ from
which M gets built up is not a level surface of V. (With our Morse function, there
will be equipotential surfaces of large V intersecting X, essentially because of the
influence of the term V., which we will introduce in the next section for the sake of
satisfying conditions 5 and 6 above.)

To cope with the circumstance that V' is not constant on X, we introduced] a

slightly modified notation, letting

M, = LU VY0,4)

= {reMlzex Vv V(z) <t}

and

S =V () U{z € DV () >t}

Thus, M; comprises the V' < t subset of M together with that portion of ¥ through
which the V' < t subset does not yet “protrude”; and ¥; is what might be called
“the future boundary of M,” (see Figure 1). Note that since V' > 0 everywhere,
— % = OM (= dQ1p). (Notice also that M, is not strictly a manifold, but would
be if we thickened ¥ slightly “back into” @1,0.) We will denote the critical values of
V, taken in increasing order, by vy, vs, ..., each of which we assume to correspond
to a single connected critical submanifold N; of V.

As usual, we consider the sequence of subspaces M; with ¢ increasing from 0
to oo, and we argue first that nothing happens between critical values, and second
that in passing a critical value v; we merely in effect attach a cell of dimension

A\, to M, \; being the index of the i** critical point, as in the discussion of the

! Another approach here might be to use the flow associated with ¢ for a “Morse-Smale analysis”.

This could offer a different way around the difficulty that X is not a level surface of V.
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previous section. Actually, since we will be dealing with critical submanifolds this
last statement must be modified, but the only difference is that now, instead of
the homology of M being altered in dimension A or A — 1 according to equation
(4), it can be altered in higher dimensions as well. (A more precise statement is
that, in passing a critical submanifold N of index )\, it is as if by cells had been
added in dimension A+ k, kK =0,1,2..., where b is the k' betti number of N with
coefficients in a certain orientation-bundle over N (see ref. 12). For our purposes
this makes no difference, and in the following discussion, we will speak as if all the
critical manifolds were simply (non-degenerate) critical points.

To begin with, let us argue that M; ~ ¥, for all ¢ < v; (= denoting homotopy
equivalence). For t < 0, M, = ¥ = ¥, and our claim is trivially true. So consider
any t > 0 but still less than v;. In order to retract M; back to X, let us introduce

on M; the renormalized Morse flow,

f9(z) = —g”(@)0V(x)  V(b(x)) - V(a(x))
g°()0:V (x)04V (x) t ’

where, for each x € M, a(z) is the unique point of 3y to which = flows via the
gradient flow, and b(z) is the unique point of ¥, to which it flows via the reversed
gradient flow. (In other words, a and b are the intersections of ¥ and ¥; with the
gradient flow-line through z.) Since there are no critical points within M, €% is
nonzero and smooth, except possibly on ¥ N {V = t}, where it vanishes. Moreover,
€% has been normalized so that £%(z)8,V (z) = —(V (b(z))—V (a(z))) /¢, which means
that the parameter difference along é ® between ¥; and X = 3 has the constant value
t. Thus the flow induced by é“ effects a retraction of M; back onto ¥y, whence these
two spaces are homotopic as claimed. (By retraction, we always mean deformation
retract. )

To handle the similarly uneventful transition from ¢t = v; + € to t = v;11 — € we
can argue in the same manner that M’ := M,,,, _c\ ]\041,#6: My, —\V < v+ €}
retracts onto ¥’ := 3, ;. and therefore that M,,  _. retracts onto M, .. as desired.
This proceeds as before with M’ playing the role of M and ¥’ the role of X, it being

clear in particular that £ has no zeroes in M’ and that each x € M’ flows to some
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point of 3. Similarly, nothing of note occurs beyond the final critical value vy (if
there is one), since there, a homotopy based on the Morse flow itself, i.e. on the
vectorfield €@ = —g®0,V/g°9.V 93V, can be used to retract M back to M, ...
Finally, we must analyze what happens in passing a critical value, say v; with
associated critical point x;. The key observation is that, since everything really
happens in a neighborhood of x; (or more generally in a neighborhood of the compact
critical submanifold N;), the effect on M, is just as it is in the standard situation
discussed in the last section. More precisely, it follows from the analysis which
applies in that situation (see e.g. ref. 12) that there exist a standard neighborhood

U of x;, and decompositions
M+\M_ =Uuu (M:t = Mvi:lze)

and

Y =5u S/ (Ei = Evi:l:e)

such that

(i) the flow € retracts U’ onto S, just as above;

(ii) there exists the usual Morse-theoretic retraction of U onto S Ue, (i.e. a
space made by attaching a A-cell to S); and

(iii) the two retractions agree on U NU’.
Then the combined retractions in & and U’ homotope M +\]\2 ~ to X7 Ue,y, hence
they also retract M™ onto M~ Ue,, as required. (See figure 2.)

Applying this analysis to the case at hand, we conclude that when the conditions
enumerated above are fulfilled, Q2 is in effect built up from @ ¢ by adding cells of
dimensions not less than the smallest index \,,;, of any critical submanifold of V.

It follows that HZ'(XQJ; K) = Hi(Ql,O; K) for all 4 S >\m2n — 2.

5 A Morse Function for ()

Consider the following potential.
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BN

2 2\ (1 +a; +
V= <p1 + L) <p2 + xi) —+ SRR . (5)
104 10p2) \16 " (p;2+ ps?+2ps ps (1 - 1))

Here (with respect to an arbitrary labeling of the particles) p; = |z; — y| is the
distance between particle ¢ and the antiparticle, x; = 1 — cos(6;) with 6; the angular
separation d(F @) R(z; —3)F®), and = 1 — cos(f) with § the angle between —p}
and p3 so that p* = p? + p2 + 2p1p2(1 — ) is the distance squared between the two
particles; and we have taken L = 1.

The potential is the product of three factors. The first two factors drive the
two particles to satisfy the reflection requirement with the antiparticle and to move
toward annihilation with it, thus tending to produce a flow of Q)2 toward @, as
we desire. Nevertheless there is no obvious guarantee that points in ()21 are not in
some cases driven toward two types of “internal boundaries”: 1) where one or both
of the particles are near to the antiparticle but not close to annihilation or 2) where
the two particles are close to each other but not close to the antiparticle. Either
occurrence would violate condition 5 of the previous section. In fact, however, the
‘internal boundary’ of type 2 is not approached by the flow induced by V because
the 1/p%? in the second term of the third factor drives the particles apart unless
they are in syzygy. Despite this, V' can still become small if at at least one of the
first two factors becomes small, but in that case at least one particle would have to
draw near to the antiparticle, and we would be near a boundary of type 1 rather
than type two.

In order to insure that an internal boundary of type 1 is also not approached we
will add a ‘small’ term V, to the potential:

En

P1P2

VsV+V., V.= (6)

where n is some positive integer, say 6, and € is the € of N.. This term will drive
the particles away from the antiparticle when they get very close to it (the coupling

€" being very small), but on the other hand we will take n large enough to avoid
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any violation of condition 3 of the previous section. The addition of V, also ensures
that condition 6 is fulfilled in the neighborhood of the “internal boundary”.

The following analysis assumes that the trivial translational degree of freedom
has been removed by bringing the anti-particle to the origin via a preliminary re-
traction mapping. This will allow all the critical submanifolds to be compact.

We are now almost ready to apply Morse Theory, but first we must establish
that our potential and metric lead to a flow which is inward everywhere along the

boundary 3.

6 The Flow at the Boundary X

In order to verify condition 3, we need to characterize 3., the boundary of @170. In
fact we use a slightly modified definition of le/ 0, as given by the following conditions

(recall, we have set L = 1):
1. 1 < pP1 <€,
2. 9 < pa, T < po.

More precisely the condition is that there exist a labeling for which 1 and 2 hold; and
we will always use such a labeling. Moreover we will always choose it so that p; < po,
as is clearly possible since reversal of 1 and 2 will not invalidate the conditions when
p2 < p1. [In changing @170 in this way we have in effect introduced a modified
conception of neighborhood (modifying the condition for syzygy) which could be
used to define a modified topology for Xy; = @,;. The new definition would be
very similar to the old one for small angles but easier to handle algebraically. Unless
we actually alter the topology in this way, we do not guarantee that our new @T 0
will be a true neighborhood of ), but that doesn’t matter: all we really need is
that condition 1 of Sec. 4 still obtain for our new @1,0, and it does.] The boundary
3] is obtained by replacing any of the four inequalities comprising conditions 1 and

2 by an equality, for example z; = p;.
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There is considerable freedom in choosing the metric g,, which enters into the
Morse flow, and in particular influences the direction of the flow across the boundary.

We choose

ds? =

P% P% (p1p2)?
a(xy) a(xs) a(x)

where a(x) is chosen to vanish linearly at x = 0, 2, and to rise rapidly to a value

da? + dr3 + dz® + dp} + dp3, (7)

of, say, 20 away from x = 0, 2. More specifically, we assume that a(z) ~ = [resp.
2 —z] for  — 0 [resp. 2]. Now (7) is not actually a metric on ()31, but only on the
5-dimensional quotient space of the parameters 6 (or x) and p (call this space P).
Nonetheless, one can always choose a metric on (21 such that the flow computed on
P is compatible with that on ()2 ;. Since each point of P corresponds to a compact
submanifold of (2,1, this is all we will need. (The condition for compatibility is that
the inverse metric G4% on Qy; go over to the inverse of the metric (7) on P under
the natural projection of Qo ; onto P; in symbols g% (y) = GAB(x)dy® )0z Oy®/0x®,
where y € P and z € (J2;.) By having the denominators of the angle terms in (7)
vanish linearly at z; = 0, 2 we ensure that G4 is nonsingular at 6; = 0, 7.

We now compute AV - i where 7 is a conveniently chosen outwardly-oriented
(co-)vector normal to the boundary ¥ of ©1,0~ (In expressing vectors as n-tuples,

we take the coordinates in the order (xy, z9, x, p1, p2).)

1. For that part of the boundary defined by z; = p; < ¢, we have, with n =
(1, O, 0, —1, O) = 0:)31 - 8,01,

=l

ov-i  lla ( Y )
sz o
ptag 1007 \(pr? 4 pa? 4+ 291 pe (1-2)

PN

a 1 P11+ T+ T
s | ==+
Dp1" \16 (p,2+ ps2+2p; ps (1 — 1))
. (33/)1 (2p1 +2ps (1—2)) (ps +x—|—x2)>
7
40 (ps? + p22 +2p1 p2 (1 — )7

o

9 1
(P12 +p22+2p1p2 (1 —2))
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All terms are positive except the last. Consider the sum of the second (posi-

tive) term and the fourth (negative) term , that is

<a(p1) 9) 1 p1+ T+ z2
5 10 ) |76 T :
o1 1016 ()2 4 ps2 4+ 20, py (1— 1))

Since p; < €, this is clearly positive (assuming € < 1) because a ~ p; for small

oo

p1- Thus the flow is inward if we ignore the effect of V.. However, since V.
has no angle dependence 9V, - i > 0 is also positive, which only makes things

better.

2. For that part of the boundary defined by z3 = ps, with @ = (0,1,0,0,—1) =
Oxy — Jpy , we obtain the same expression as in the previous case with 1 and
2 interchanged. If py < €, we are thus reduced to case 1 just treated, so we
may as well assume that p; > e. Then for p, not near the value 2 (where
a = 0), it is easy to see that again the sum of the second and last terms of
equation 8 is positive, since its first factor, a(ps)/5p3 — 9/10, exceeds 1/10 if
a(pz) = 20. For xo = po very close to 2, this factor does become negative, but

in that regime the angle flow turns off and we are left with

~

= 1 24-x
ov-i  33(2+z) 7 (E*T%)
P T

(Recall here that z; < p; < € < 1, so that we may make the approximation
p1 = x1 = 0.) This is seen to be positive for all values of = from 0 to 2. Again

we see that the flow is inward, since as before oV, - it > 0.

3. For p; =€, with @ = (0,0,0,1,0) = Jp,

T = 7
(p2+102m) 4(ps? + p2® +2psp2 (1 —x))1

2
(1_ T 2) i—l— T+ 2+ 2 | ()
10p:2) N6 (p2 + po? + 2p1ps (1 — 7))

oV i =3 (2p1 +2p2 (1= 2)) (ps +385) (@ + 21 + 32)
_|_

alw
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The first term is negative and the second positive. Both attain their minimum

when z; takes its greatest allowed value of p;, and for this condition

Vi 33ps (20 +2p0 (- 7)) (ps o+ as)
x2 - 7
(p2+ 10;2) 40 (ps® + p22 +2p1 p2 (1 —2))*
3
10 16 (p12_|_p22_'_2p1p2 (1_37))4

36 66 6 (p2 P2 9
= |=—=+—=|—)[6—+1- >0)+ —
<40 10710 (,01) ( o ”T))( )+ 160
But ps is greater than or equal to p; with our labeling convention. Using this

and setting x = 2 we find GVﬁ/ (p2 + %) > +9/160. Thus the flow without

V. is inward for this part of the boundary. For this part of the boundary
oV, - i/ ( P2+ %) < 0 . However the most negative value it assumes on this

boundary is —€"~*, and n can be chosen large enough so that this negative

contribution is dominated by the positive % :

4. Finally for the portion of the boundary defined by x = py, with 7 = dx — dp»
= (0,0,1,0,—1), the following obtains.

ov-i a (p2+ 12
LiAL

3
P17+ 1o, p3 P71 (P35 +2p2p1 —2p3p1 + p1)*

3apypr (p2+ a0+ 1)
2(p3+2pap1 —2p3p1 +p7)

_l_

=1

CCZ
3 (p2 + p1 — pap1) (P2 + ﬁ) (p2 + 2 + 71)

z
4

2(p3 + 2p201 — 203 01 + p7)

x2>(1 P2+ To + 71 )
—1-=2 — + (10)
2 3
< 10p1) \16 (03 + 2p2p1 — 20301 + p3)7

The last term is negative. However it is easy to argue that away from x = py =

2 , where a = 0, the first term (positive) dominates the last term (negative).
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For x = p; = 2 we have

- 2
ov - it B 3(2—p1)(2+2—3)(2+x1+m2)
ZE2 -
F(p1 + 152

7
10p1) 2(4_4p1+p%)4

_(1_:c_§> i+ 2+$1+x23
07 \16 (a—dp +p3)7

To investigate the positivity of this expression we can let p; and 1 — 0, since

both are less then €, and obtain

o i 3(2+m) (2+%)

2 pu—
71

p1+10p1 2

(- x% <i+2+3x2>
40 16 23
This has it’s minimum value at x5 = 0 and it is positive. And once again

oV. . i >0.

NI~

We conclude that the flow is inward on all of ON.,.

7 Critical Points of V

We now determine the critical points of V' and their indexes. Consider the derivatives

of V' with respect to the three angles:

—cos 2 cos(02))?
v _ (pr+ =555 (o2 + U552 ) sin(0)
= 3
001 (p1?+ p2*+ 2 p1 p2 cos(f))*
1— 0 (1—cos(02))? (L 3—005(9)—cos(91)—cos(99)) in(
(1~ cos(f)) (p2 o ) i+ (p12+p22+2p1 p2 cos(0)) 1 sin(6:)
91
ov ov
CASNC AT

00, 06,
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ov (m +w> <p+w>

( sin(#) N 2p; po (3 —cos(0) — cos(f;) — cos(f2)) sin(é’))
(12 + ps? +2 i pz cos(6)) 3(ps2 + ps? +2p; pz cos(6))

From these expressions it is clear that critical points can occur only for all the 6’s
equal to 0 or w. To find the critical points of V' it thus suffices to find its critical
points with respect to p; and po, assuming fixed 6’s of 0 or 7. To that end we exhibit
contour plots for V' with © = (6, 6,,0) taking these values.

Figure 3 is a contour plot for V' in terms of p; and ps for © = (m, 7, 0). We see
that there are three critical points, one at Py 10 = (01,02,0, p1 p2) =~ (7,7,0,1.5,1.5)
and a symmetrical pair, one partner of which is at P9 = (01,602,0,p1 p2) =~
(m,7,0,0.7,8.0).

Figure 4 is a plot for V for © = (7, 7, 7). From this plot we see there is a critical
point at Py 11 ~ (w, 7, 16,0.6).

Similarly Figure 5 is a contour plot for V' with © = (0,7, 7). This plot exhibits
a critical point at Py ~ (0,7, 7, 12,0.6).

The plots for the other four possible values of © depict functions with no critical
points, and we do not give them here.

From these plots we see that, at these critical points, the eigensigns of the Hessian
restricted to the p;-po-tangent-subspace are positive except for the critical point
Py 1o =(01,02,0,p1 p2) = (m,m,0,1.5,1.5) of Figure 3, which is a saddle point with
one negative eigensign and one positive one.

From the plots, it seems clear that the addition of the ‘small’ term V. (which
has no angle dependence) will not introduce any new critical points and will affect
only slightly the position of the critical points without changing their indexes. It
is also clear from the above expressions for the 6-derivatives of V' that the 5 x 5
Hessian matrix of V' at a critical point has no off-diagonal terms involving 6’s. The

geometries of the three configurations are depicted in Figure 6.
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If one contemplates the types of configuration implied by the values of © at these
critical points , it becomes plausible that the signs of the diagonal #-entries should

behave as follows.

1. P10 should have two negative signs for 6; and 65, since the particle frames
are oppositely aligned to that of the antiparticle (an unstable situation), and
one positive sign for @, since a change of ¢ in this case would bring the two
particles out of syzygy (a stable situation). Thus the total critical index of
P~ (m,m0,1.5,1.5) should be 3 while that of P, ;o ~ (7, 7,0,.7,8) should
be 2.

2. Py, should have three negative signs since the frames are anti-aligned and

their locations are in “anti-syzygy”, and thus a critical index of 3

3. P11 should have two negative signs for 6, and 6, due to frame misalignment
and being out of syzygy, and one positive sign for 61, due to frame alignment,

leading to a critical index of 2

These conclusions are readily confirmed by computing the Hessian of V' in the

five dimensional space of 1,605, 6, p1, p2 at these critical points.

8 Critical Indexes of V

Before turning to the case of primary interest, let us consider what the Morse func-
tion V tells us when the particles and antiparticle are assumed to move in the Eu-
clidean plane IR?, and the frame-space is correspondingly SO(2). In this case each
of the critical points lies on a two-dimensional critical submanifold N; generated by
(a) overall rotation [SO(2)] of the points and frames together, and (b) “locked frame
rotation” [SO(2)] in which both of the frames rotate clockwise (say) while the anti-
frame rotates counterclockwise in order that 6; and 6, be preserved. The Hessian
to be considered is that of the normal subspace to N;. Thus the critical index for

(m,m,0,1.5,1.5) is 3, for (m,x,0,.7,8) 2, for (w,m, 7, 16,.6) 3 and for (0, m, 7, 12,.6)



8 CRITICAL INDEXES OF V 20

2. By equation (4) we can conclude that (for any choice of the coefficient field K),
dimH; cannot increase in going from (10 to Xo; = @ but might decrease by as
much as 2, while dimH, might change by any integer in the range [—2, +2].

Recall now that Q1 ~ F, where F is the frame-space of the antiparticle. Since
we now know that no new generator of H; can appear in going from (1 to Xa;1,
we can conclude that the exchange path in X5 is either homologous to the cycle in
Q1,0 corresponding to a 27 rotation, or homologous to zero. In Ref. 11 we in fact
concluded that the former obtains. (The above conclusion on how dimH, changes
is also consistent with the findings of that reference.)

Now let us turn to the case of primary interest, where the particles and an-
tiparticles are assumed to move in Euclidean 3-space IR®. We can anticipate that
the critical indexes are considerably enlarged, because both the dimension of the
physical Euclidean space and the dimension dg of the frame space have grown. At
each of the critical points, the unstable directions amount to rotating the frames out
of anti-alignment or the frame-locations out of anti-syzygy keeping the antiparticle
frame fixed. The critical submanifolds now are respectively 4 or 5 dimensional (3
dimensions for overall rotations, plus dr dimensions for “locked frame rotations”
minus 1 dimension over-counted), and the critical indexes refer — as always — to the
directions normal to the critical submanifolds.

Consider first the case of P;;¢: both particle frames anti-aligned but with
location-syzygy. There are 2dr unstable directions to rotate the frames of the
particles, giving for the critical indexes )‘5370 = 2dp + 1 for (m,7,0,1.5,1.5) and
)\f{,o = 2dp for (m,7,0,.7,8)

In the case of P ;, both particle frames are anti-aligned and there is location-
anti-syzygy. In addition to the 2dr unstable directions to rotate the frames of
the particles there are 2 unstable directions arising from perturbing the locations.
(These two directions correspond to the two independent ways that g can change
when the particles can move in three directions. This is in contrast to the two

dimensional case for which there is only one independent way.) Thus A; 11 = 2dp+2.
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Finally in the third case of P ;1 (particles in location-anti-syzygy with the closest
particle anti-aligned), there are dr unstable direction to rotate the misaligned frame
and, as in the P;;; case, there are 2 unstable directions in which to alter the
locations, giving Ao 11 = dp + 2.

Thus for S? frames {)‘5270»‘%,07>‘171,1’>‘071,1} = {5,4,6,4} whereas for SO(3)
frames {)\ﬁ,o,)\ﬂ,o,)\l,171,)\0,171} = {7,6,8,5}. We see that overall, the minimum
index is 4, which is too large to influence dimH;(...; K) or dimHs(...; K) in going

from (10 to Xs1; and we conclude that, for both types of frame,

It bears emphasis here, that this conclusion has turned out to be independent
of the details of the p;—ps plots given in figures 3-5. In fact the only type of critical
point which did not occur in these plots was one with two negative eigensigns,
but such a situation would only have increased the resulting critical indices found
above, and therfore would not have disturbed our main conclusion, equation (11).
In retrospect we can see that this conclusion follows directly from the observation
made earlier, that for our Morse potential, critical points can occur only for all the
0’s equal to 0 or 7. In particular any critical points in the above plots which might
have been overlooked (including ones conceivably introduced by our addition of the
Ve term), would have been harmless anyway.

Equation (11) is true for any coefficient-field K. We will need it for K = IR (or
equivalently Q) and K = Z,, the two-element field. Let us take the cases F' = SO(3)
and F' = S? in that order.

1) FF = S0O(3). We know that H{(SO(3);Zsy) = Zs, the generator being the 1-cycle

corresponding to 2m-rotation of the frame. Thus,

We can conclude that the rotation remains nontrivial in Xy ;, and that the exchange
one-cycle (which also generates a Zs if it is nontrivial) is either homologous to

a frame-rotation, or to zero. By the spin-statistics theorem of Ref. 9 we know
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that the former obtains. Most importantly we conclude that since neither of these
cycles is homologous to zero in Xj;, this configuration space does in fact “admit
spin 1/2”, as is needed to avoid our entire framework being essentially vacuous as

regards questions of spin and statistics. Further since Hy(SO(3);IR) = 0 and thus
0= dzmHg(SO(3)7 ]R) = d’émHg(XgJ; IR),

there exists no nontrivial Wess-Zumino term for Xs ;.

2) F' = 52 In this case, H;(S?% Z,) = 0, whence
0 = dimH, (5% Z,) = dimH,(Xa1; Zs).

We conclude that in X5 ; the exchange one cycle must also be homologous to zero,
i.e. that rotation and exchange are both trivial in H;. However for S*-frames, it is
not H, but H, which is responsible for the possibility of half-integer spin 7. In fact,
the U(1) bundles over S? are classified by their “winding number” in H,(S?;Z),
and the odd winding numbers belong to spinorial quantum theories. (Such bundles
possess a connection whose curvature is an odd multiple of the fundamental “Wess-
Zumino term” on S?). Now since copies of Z in Hsy(....; Z) show up as copies of IR
in Hs(....;R), equation (11) tells us in this case that the 2-cycle corresponding to

the “S? of frames” remains nontrivial in Xy 1;

It follows that the possibility of spinorial states remains as well (which, by the spin-
statistics theorem of Ref. 9, augmented in the manner of Ref. 4, is equivalent to the
possibility of fermionic statistics). Finally, since dim Hy(X21;IR) is only 1, we see
that there is no further topologically non-trivial Wess-Zumino term, beyond the one

required for nontrivial spin and statistics.

9 Outlook

We have shown that for particles moving in R? and carrying SO(3)-frames, the 1-

cycle of exchange (which is homologous to the 1-cycle of rotating a particle frame)
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is non-trivial in the space Xy ;. We have also obtained analogous results involving
H, for the case of S?-frames. It remains to extend these considerations to X3,
and eventually to all the X,,, = @m,n, and to their union. One might expect
that, in generalizing the Morse potential V' to X3 and beyond, the critical indices
would all enlarge considerably because of the greater dimensional configuration space
associated with the greater number of particles. Such an enlargement of the critical
indexes would imply inductively that dimH,(X,,,; K) and dimHy(X,, ,; K) always
remain the same as those of X5, and hence that the first and second homology
groups of X, ,, reduce effectively to those of 5% or SO(3), as the case may be.

To confirm these expectations via direct generalization of our potential V' to
arbitrary X,,, would seem difficult, because our analysis of the critical points in
Section 7 was graphical and not analytic. Instead of this, one could try to construct
the flow £ directly by extending to arbitrary configurations the more easily defined
flow a la Ref. 11 which retracts a neighborhood of X, ,41 back to X,,,. In
effect, this is what we have done above for (m,n) = (1,0), and a scheme for doing
something similar in general does not seem too difficult to devise.

An alternative approach would be to try to generalize the Mayer-Vietoris tech-
niques of Ref. 11, by means of which results analogous to those of the present paper
were found for X5, in the rather simpler, two-dimensional situation. Such tech-
niques might ultimately furnish more information on the homology of configuration
space, but in our experience, they have been more cumbersome in application than
the Morse-theory techniques of the present paper, and their complexity escalates as
the spatial dimension grows.

We conclude by returning briefly to the 2-dimensional situation with which we
began Section 8, which concerns particles moving in IR? and carrying SO(2) frames.
In that situation, we showed above that, although H; can only decrease in going
from X; to Xs1, Ho can (and in fact does) increase, giving rise to the possibility
of a Wess-Zumino term in the Action. In this connection, an interesting question

would arise if the critical indices were indeed to enlarge considerably when going to
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X3 and beyond, as suggested above in the 3-dimensional case; for this would mean
that Hs would necessarily remain nonzero, and the Wess-Zumino possibility would
persist. We have shown elsewhere!! that Hy(X51; Z) = Z and have exhibited a non-
trivial closed two form defined on ()2; which vanishes at the lower stratum .
The question arises as to what is expected about realizing, say, H*(X32) by closed
two forms. Should one expect a closed form on ()32 which reduces on approach to
(2,1 to the form of Ref. 117 We have sought such a form to no avail. Does this mean
that Ho(X32) = 07 Or does it mean that Hy(X32) remains non-zero, but it cannot
be realized by closed two forms which go over continuously from @32 to X5 1, and if
so, then what is the physical significance of this impossibility? The answers await
further analysis.
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Figure Captions

e Fig.1 Depiction of subspaces ¥, 3;, and M, and the retraction flow through z

. See text.

e Fig.2. Depiction of subspaces involved when retracting through a critical

point. See text .

e Fig.3 . Contour plot for V' for © = (m, 7, 0), showing three critical points, one
at (01,04,0,p1 p2) =~ (m,7,0,1.5,1.5) and a symmetrical pair, one partner of

which is at (01, 0,,0, p1 p2) =~ (m,7,0,0.7,8.0).

e Fig.4. Contour plot for V for © = (m,m,m) showing a critical point at

(01,04,0,p1 p2) = (w,m,7,16,0.6).

e Fig.5. Contour plot for V with © = (0,7, 7), showing a critical point at
(91,92,9,p1 pg) ~ (0,71',77', 12,06)

e Fig.6. Geometries of the three configurations which exhibit critical points.

The heavy arrow represents the antiparticle and the light arrows the particles.



