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Abstract

The Weil algebra of a semisimple Lie group and an exterior algebra of a sym-
plectic manifold possess antibrackets. They are applied to formulate the models of
non–abelian equivariant cohomologies.
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1 Introduction

The Batalin–Vilkovisky formalism (BV-formalism)[1] is the most adequate and powerful
method for quantizing gauge fields; at the same time it is mathematically the most unusual
formalism: its basic structure, antibracket (see Appendix A), is rather an exotic object.

Study of the BV geometry has shown that it is actually based on first principles
of the theory of integration on supermanifolds, generalization of the Stokes theorem to
pseudointegral (pseudodifferential) forms (see [2] and references therein), therefore the
antibracket should play a fundamental role in (super)geometry.

Recently, in field theory, great interest has been displayed in equivariant cohomologies1,
mainly, in view of the application of the Duistermaat–Heckman localization formulae [3]
connected w ith S1-equivariant cohomology [4], to the calculation of path integrals of
topological field theories (see [6] and references therein). In Ref. [7], the action of the
4d topological Yang–Mills theory was interpreted in terms of non–Abelian equivariant
cohomology, whereas Atiah and Jeffrey interpreted its partition function as an Euler
regularized equivariant class [8]. Witten proposed a generalization of the Duistermaat–
Heckman formula to non–Abelian equivariant cohomologies and used it for calculating
the partition function of the Yang–Mills 2d topological theory [9]. This work stimulated
a more detailed study of non–Abelian equivariant cohomologies and search of related
localization formulae [10].

Non–Abelian equivariant cohomologies are described by a number of equivariant mod-
els. Specifically, in Refs.[8], use was made of the Weil model having a natural geometric
interpretation. The Cartan model convenient for treating the localization formulae was
exploited in Refs.[9, 10]. The authors of Ref.[7] introduced the so–called BRST model
adapted for field–theoretical problems. Kalkman put forward a parametric model of equiv-
ariant cohomology comprising the Weil and BRST models (the latter is naturally reduced
to the Cartan model) [5].

In this note, we construct antibrackets on the basis of Weil algebra W (g) of a Lie
semisimple group G and the exterior algebra ΛM of a symplectic G-manifold (M,ω,G),
with respect to which the operators of the exterior differentiation, contraction and Lie
derivative, are (anti)Hamiltonian. Then we will be able to formulate the Weil and Cartan
models for non–Abelian equivariant cohomology as well as a modified Kalkman model
(further, the BRST and Cartan model) in an (anti)Hamiltonian manner.

The formulation suggested for non–Abelian equivariant cohomology is not only a con-
venient tool for describing equivariant cohomology, rather, it makes richer the theory of
equivariant cohomology and topological field theories dressing them with the apparatus
of BV–formalism and antisymplectic (super)geometry.

Note that the description of S1-equivariant cohomology in terms of antibrackets [11]
allowed one to connect thats with an interesting class of supersymmetric mechanics and
to construct generalizations of S1-equivariant characteristic classes.

1G–equivariant cohomology of G- manifold (M,G) is called the G–invariant cohomology of a quotient
space M/G [4, 5].
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2 Antibrackets on ΛM and W (g).

Let us construct antibrackets on ΛM and W (g) with respect to which the operators of
differentiation, contraction with generators of the G-action and the Lie derivative are
(anti)Hamiltonian.

Let (M,ω,G) be a compact symplectic G–invariant manifold; G be a semisimple Lie
group; g be the Lie algebra of group G; Ia(x), a = 1, . . .dimG be a generators of the
symplectic G-action on (M,ω): ω−1(dIa, dIb) = f d

abId, where fa
bd are structure constants

of the Lie algebra g.
Let ΛM be an (Z–graded) exterior algebra of (M,ω,G), and (xi, θi) be its local coor-

dinates (xi are local coordinates of M ; θi are the corresponding basic 1–forms: θi ↔ dxi).
The Z–grading on ΛM is given by the conditions deg xi = 0, deg θi = 1 .

Then, the antibracket on ΛM is defined by the expression

{f, g}Λ = ωij

(

∂f

∂xi

∂lg

∂θj
−

∂rf

∂θi

∂g

∂xj

)

+
∂rf

∂θi
(θk∂ωij/∂xk)

∂lg

∂θj
(2.1)

where ωijωjk = δik, ωij = ω(∂/∂xi, ∂/∂xj).
The functions

Ia(x), Qa =
∂Ia
∂xi

θi, D0 = −
1

2
θiωijθ

j , (2.2)

define on ΛM the (anti)Hamiltonian vector fields corresponding, respectively, to the con-
traction of differential forms with the ω−1(dIa, ), to the Lie derivative along ω−1(dIa, )
and to the external differentiation [11].

Now consider the (Z–graded) Weil algebra W (g) = S(g∗) ⊗ Λ(g∗) of the Lie group
G. Here S(g∗) is a symmetric algebra of polynomials on the algebra g∗, dual to g, with
(commuting) coordinates φa; Λ(g∗) is an external algebra on g∗ with (anticommuting)
coordinates ca. The Z–grading on W (g) is given by the conditions degφa = 2, degca = 1
(this grading is chosen due to correspondence of ca and φa , respectively, to the the
connection 1-form on the principal G–fiber bundle and to the its curvature).

The antibrackets on W (g) can be defined by the formula

{f, g}W = gab
(

∂f

∂φa

∂lg

∂cb
−

∂rf

∂ca
∂g

∂φb

)

, (2.3)

where gadgdb = δab , and gab is the Cartan–Killing metric of algebra g.
The functions

φa = gabφ
b, qa = f d

baφdc
b, D =

1

2
gabφ

aφb −
1

2
f d
abφdc

acb. (2.4)

act on W (g) as follows:

{φb, c
a}1 = δab , {φb, φ

a}1 = 0; {qb, c
a}1 = fa

dbc
d, {qb, φ

a}1 = fa
dbφ

d. (2.5)

{D, ca}1 = φa − 1
2
fa
bdc

bcd {D, φa}1 = −fa
bdc

bφd, (2.6)

They define, respectively, the contraction of the connection 1–form with generators of the
G-action on W (g), co–adjoint action of G on W (g) and the Weil differential.
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Equipping the metric gab with the grading deg gab = −2 , we obtain

deg { , }α = −1; deg (Iα, Qα, Dα) = (0, 1, 2), (2.7)

where

{ , }α = ({ , }Λ, { , }W ), (Iαa , Q
α
a , D

α) = ((Ia, Qa, D0), (φa, qa, D)) . (2.8)

The sets (2.2) and (2.4) form, with respect to a corresponding antibrackets, the superal-
gebra

{Iαa , Q
α
b }α = f d

abI
α
d , {Qα

a , Q
α
b }α = f d

abQ
α
d , {Iαa , D

α}α = Qα
a , (2.9)

{Dα, Dα}α = 0, {Qα
a , D

α}α = 0, {Iαa , I
α
b }α = 0,

3 Models for equivariant cohomology

Now, we are able to construct a models for equivariant cohomology.

The Weil model. On the space A = Λ(M)⊗W (g), the antibracket

{f, g}A = {f, g}Λ + {f, g}W (3.10)

is defined.
The functions

Ia = (Ia + φa), Qa = (Qa + qa), D = (D0 +D), . (3.11)

form on (A, { , }A) the superalgebra (2.10). They generate anti–Hamiltonian vector
fields corresponding to the contraction with generators of the G-action , Lie derivative
along them and to the total differential, respectively.

The G equivariant cohomology of the manifold M is defined as a subspace of A whose
elements commute with all Ia and Qa with respect to the antibrackets (3.10). It is a
cohomology of the operator, generating by the function D [4, 5].

The Kalkman-like model. Let us deform the Weil model performing the (anti)ca-
nonical transformation preserving the Z–grading and generated by the function

Ψ = −tcaIa(x), deg Ψ = 1, (3.12)

where t is a parameter.
The antibracket (3.10) is invariant under these transformations by definition, and the

Hamiltonians (3.11) are transformed to the following ones:

It
a = Ia − t{Ia,Ψ}1 +

t2

2!
{{Ia,Ψ}1,Ψ}1 + ... =

= φa + (1− t)Ia (3.13)

Qt
a = Qa − t{Qa,Ψ}1 +

t2

2!
{{Qa,Ψ}1,Ψ}1 + ... =
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= Qa. (3.14)

Dt = D − t{D,Ψ}1 +
t2

2!
{{D,Ψ}1,Ψ}1 + ... =

= D − tφaIa +
t2

2
gabIaIb + tcaQa +

t(1− t)

2
f c
abc

acbIc (3.15)

They form the superalgebra (2.10) with respect to (3.10) at any values of the parameter
t. The operators defined by the functions (3.13) and (3.14) coincide with the correspond-
ing operators of the Kalkman parametric model for equivariant cohomology [5]. The
equivariant cohomology in this model is defined like in the Weil model.

The differential given by the function (3.15) differs from that proposed by Kalkman:

DK = {D, }A− t(φa− tIag
ab){Ia, }A+

t(1− t)

2
f c
abc

acb{Ia, }A−−tca{Qa, }A, (3.16)

that is not Hamiltonian with respect to (3.10).

BRST-like model. At t = 1 the functions (3.13)–(3.15) assume the form

I1
a = φa, Q1

a = Qa, D1 = D − φaIa +
1

2
gabIaIb + caQa. (3.17)

Generators generated by the first two functions coincide with the corresponding generators
of the standard BRST model (arising in the 4d topological Yang– Mills theory [7]) to which
the Kalkman model is reduced at t = 1.

The function D1 generates the differential different from the standard BRST one

D̂BRST = {D, }A − φa{Ia, }A + ca{Qa, }A. (3.18)

The equivariant cohomology in the BRST model belongs to the space Λ(M) ⊗ S(g∗) on
which by the expression (2.1) the degenerate antibracket is defined.

Cartan-like models.Restriction of the BRSTmodel to the space Λ(M)⊗S(g∗) results
in the Cartan model. It is defined by the functions (D0 ± Iφ) ≡ D0 ± φaIa, Qφ ≡ φaQa,
forming the superalgebra

{Iφ ±D0, Iφ ±D0}1 = ±2Qφ, {Iφ +D0, Iφ −D0}1 = 0 (3.19)

{Iφ ±D0, Qφ}1 = {Qφ, Qφ}1 = 0.

The function D0 − Iφ determines the differential in the Cartan model nilpotent on the
space of G–invariant elements of the space ΛM . Therefore, the G-equivariant cohomology
of the manifold ΛM is an element of S(g∗)⊗ ΛM commuting with D0 − Iφ with respect
to the antibracket (2.1) [5].

The restriction of the differential of the standard BRST model to S(g∗) ⊗ ΛM gives
rise to that of the standard Cartan model. The limitation of the differential generated by
the function (3.15) at t = 1 results in a different differential

D1
C = D0 +

1

2
gab(φa − Ia)(φb − Ib) : {D1

C,D
1
C}1 = (φa − Ia)Qa. (3.20)
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Appendix

A Antibrackets

The antibracket of the functions f(z), g(z) on the supermanifoldM is called the operation

{f, g} =
∂rf

∂zA
ΩAB

1

∂lg

∂zB
, (A1)

(where r and l denote, respectively, the right– and left–handed derivatives) obeying the
conditions

p({f, g}) = p(f) + p(g) + 1, (gradingcondition)

{f, g} = −(−1)(p(f)+1)(p(g)+1){g, f}, (“antisymmetrysity”) (A2)

{f, {g, h}} − (−1)(p(f)+1)(p(h)+1){g, {f, h}} = {{f, g}, h}. (Jacobi id.) (A3)

With every function f , the antibracket associates an operator (anti–Hamiltonian vector
field) of opposite parity f̂ = {f, }, and, in view of the Jacobi identity (A3), there holds
the following relation:

ˆ{f, g} = f̂ ĝ − (−1)p(f̂)p(ĥ)ĝf̂ .

These fields generate transformations preserving the antibracket (anticanonical transfor-
mations).

On the (n.n)–dimensional supermanifold, antibrackets can be nondegenerate. Then
they can be associated with the antisymplectic structure

Ω = dzAΩABdz
B, dΩ = 0, ΩABΩ

BC
1 = δCA (A4)

Locally, the antibrackets are reducible to the canonical form [12]

Ωcan =
n
∑

i=1

dxi ∧ dηi, {f, g}can =
n
∑

i=1

(

∂rf

∂xi

∂lg

∂ηi
−

∂rf

∂ηi

∂lg

∂xi

)

, (A5)

where p(ηi) = p(xi) + 1. On the space Λ∗M of polyvector fields of the manifold M , the
canonical antibracket can be defined globally; in this case xi are local coordinates of M

and ηi are basis vector fields: ηi ↔
∂̃
∂xi .

Antisymplectic structures on ΛM and W (g) corresponding to the antibrackets (2.1)
and (2.3) are, respectively, given by the expressions

ΩΛ = ωijdx
i ∧ dθj +

1

2
ωij,kθ

kdxi ∧ dxj , ΩW = gabdφ
a ∧ dcb. (A6)
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