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Abstract

We consider entropy and relative entropy in Field theory and establish relevant mono-

tonicity properties with respect to the couplings. The relative entropy in a field theory

with a hierarchy of renormalization group fixed points ranks the fixed points, the lowest

relative entropy being assigned to the highest multicritical point. We argue that as a con-

sequence of a generalized H theorem Wilsonian RG flows induce an increase in entropy

and propose the relative entropy as the natural quantity which increases from one fixed

point to another in more than two dimensions.
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§ 1. Introduction

The concept of entropy was introduced by Clausius through the study of thermodynam-

ical systems. However it was Boltzmann’s essential discovery that entropy is the natural

quantity that bridges the microscopic and macroscopic descriptions of a system which

gave it its modern interpretation. A more general definition, proposed by Gibbs allowed

its extension to any system where probability theory plays a rôle. It is a variant of this

entropy which we discuss in a field theoretic context. Boltzmann also defined, in kinetic

theory, a quantity H, that decreases with time and for a non-interacting gas coincides

with the entropy at equilibrium (H-theorem). These ideas also admit generalization and

in our context we will see that analogous “non-equilibrium” ideas can be associated with

Wilsonian renormalization in our field theory entropic setting.

Probabilistic entropy can be defined for a field theory and in terms of appropriate

variables is either a monotonic or convex function of those variables. A variant of it, the

relative entropy is suited to the study of systems where there is a distinguished point as

in the case of critical phenomena, where a critical point is distinguished.

We shall see that monotonicity of the relative entropy along lines that depart from the

distinguished point in coupling space entails its increase in the crossover from the critical

behavior associated with one domain of scale invariance or fixed point to that associated

with a “lower” fixed point, thus providing a quantity that naturally “ranks” the fixed

points. This property is a consequence of convexity of the appropriate thermodynamic

surface, which in turn is reflected in the general structure of the phase diagram [1]. The

phase diagrams of lower critical points emerge as projections of the larger phase diagram.

We shall see that the natural geometrical setting for these phase diagrams is projective

geometry.

There have been many attempts to capture the irreversible nature of a Wilson renor-

malization group (RG) flow in some function which is intended to be monotonic under the

iteration of a Wilson RG transformation [2]. These attempts have been successful in two

dimensions where the Zamolodchikov C function has the desired property. The monotonic-

ity of the flow of the C-function under scale transformations is reminiscent of Boltzmann’s

H-function and this result has been accordingly called the C theorem. Boltzmann’s H

function was the generalization of entropy to non-equilibrium situations, in particular,
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to a gas with an arbitrary particle distribution in phase space. He proved that H in-

creases whenever the gas evolves to its Maxwell-Boltzmann equilibrium distribution [3],

effectively making this evolution an irreversible process. We will argue that an analogue

“non-equilibrium” probabilistic entropy for a field theory provides a natural function that

must increase under a Wilsonian RG flow. We shall consider a version of the H theorem

suited to our needs, to see how the increase occurs. A differential increase along the RG

trajectories demands detailed knowledge of the flow lines; however, statements about the

ends of the flows are more robust and thus more easily established. It is such statements

that we shall establish.

Among other attempts to apply the methods of entropy and irreversibility to Quantum

Field Theory, it was shown in [4] that an entropy defined from the quantum particle density,

understood as a probability density, should increase as the field theory reaches its classical

limit. If we regard this limit as a crossover between different theories, that result should

be directly connected to ours. Regarding the connection with two dimensional conformal

field theories and Zamolodchikov’s C theorem it is noteworthy that calculations of the

geometrical or entanglement entropy (see [5] for background) give a quantity proportional

to the central charge c [6], we will not however pursue possible connections with the

entanglement entropy here.

The structure of the paper is as follows: In section 2 we review the definitions of

entropy and relative entropy and adapt them to field theory. We study some of their

properties, especially the property of monotonicity with respect to couplings, related with

convexity. Section 3 discusses the crossover of the relative entropy between field theories.

We provide some examples, ranging from the trivial crossover, in the Gaussian model as a

function of mass, to the tricritical to critical crossover, which illustrates the generic features

of this phenomenon. This section ends with a brief study of the geometric structure of

phase diagrams relevant to crossover phenomena. Although section 3 heavily relies on RG

constructs, the picture of the RG used is somewhat simple minded. In section 4 we improve

on that picture, introducing Wilson’s RG ideas. We see how these ideas naturally lead

one to interpret crossover from cutoff dependent to cutoff independent degrees of freedom

as an irreversible process in the sense of Thermodynamics and therefore to consider a

non-equilibrium field-theoretic H theorem type entropy.
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§ 2. Entropy in Field Theory, definition and properties

For a normalized probability distribution P, we take as our definition of probabilistic

entropy,

Sa = −TrP lnP (2.1)

and will refer to this as “absolute probabilistic entropy”. For example for a single random

variable φ governed by the normalized Gaussian probability distribution

P = e−
1

2
m2φ2−jφ+W [j,m2] (2.2)

where W [j,m2] = − j2

2m2 + 1
2 ln

m2

2π and Tr is understood to mean integration over φ. The

absolute probabilistic entropy is given by

Sa =
1

2
− 1

2
ln

m2

2π
(2.3)

A natural generalization of this entropy known as the relative entropy [7] is given by

S[P,P0] = Tr[P ln(P/P0)] (2.4)

where P0 specifies the a priori probabilities. The sign change relative to (2.1) is con-

ventional. Relative entropy plays an important rôle in statistics and the theory of large

deviations [8,9]. It is a convex function of P with S ≥ 0 and equality applying iff P = P0.

It measures the statistical distance between the probability distributions P and P0 in the

sense that the smaller S[P,P0] the harder it is to discriminate between P and P0. The in-

finitesimal form of this distance provides a metric known as the Fisher information matrix

[10] and provides a curved metric on the space of parameterized probability distributions

and the space of couplings in field theory [11]. For example if we consider the probability

distribution (2.2), with j = 0, for simplicity, the entropy of the Gaussian distribution with

standard deviation m2 relative to the Gaussian distribution with standard deviation m2
0

is given by

S[m2, m2
0] =

1

2
ln

m2

m2
0

+
m2

0

2m2
− 1

2
(2.5)

and can be easily seen to have the desired properties. By taking the a priori probabilities

to be given by the uniform distribution we recover (2.1), modulo a sign. However, we see

that (2.5) approaches (2.3) but modulo a divergent constant as m0 → 0. This reflects the
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fact that the uniform distribution is not normalizable. The uniform distribution in this

setting doesn’t strictly fit the criteria of a suitable a priori distribution P0 and therefore

violates the assumptions guaranteeing the positivity of the relative entropy. More generally

for a continuously distributed random variable a more suitable distribution, with respect

to which one can define the a priori probabilities, is one that resides in the same function

space.

In the case of a field theory Tr will be a path integral over the field configurations and

just as when defining the partition function of a field theory an ultraviolet and an infrared

regulator are, in general, necessary. Convenient infrared regulators will be to consider a

massive field theory in a finite box. It is then convenient to deal with the entropy per unit

volume or specific entropy S = S/V where V is the volume of the manifold, M, on which

the field theory is defined. One would generally expect that S would contain divergent

contributions as the regulators are removed. However, these contributions disappear in an

appropriately defined relative entropy.

For a field theory consider

Pz = e−I0[φ,{λ}]−z Ic[φ,{l}]+W [z,{λ},{l}] (2.6)

where W [z, {λ}, {l}] = − lnZ[z, {λ}, {l}], with

Z[z, {λ}, {l}] =
∫

D[φ] e−I0[φ,{λ}]−zIc[φ,{l}] (2.7)

i.e. the total action for the random field variable φ is given by I = I0[φ, {λ}] + zIc[φ, {l}].
We have divided the parameters of the theory into two sets: The set {λ} is the set of

coupling constants associated with the fixed distribution P0 and {l} are those associated

with the additional, or crossover, contribution to the action zIc. The two sets are assumed

to be distinct, the set {l} may, however, incorporate changes to the couplings of the set

{λ}.

We have introduced the variable z primarily for later convenience. For a given func-

tional integral “measure”, associated with integration over a fixed function space (this may

be made well defined by fixing for example ultraviolet and infrared cutoffs), W [z, {λ}, {l}]
reduces to W 0[{λ}] when z = 0. With the notation

〈X〉 =
∫

D[φ]X [φ] e−I0[φ,{λ}]−zIc[φ,{l}]+W [z,{λ},{l}] (2.8)
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assuming analyticity in z in the neighborhood of z = 1, the value of principal interest to

us, we have
dW [z, {λ}, {l}]

dz
= 〈Ic〉 (2.9)

and more generally
d〈X〉
dz

= − (〈XIc〉 − 〈X〉〈Ic〉)

We can therefore express the relative entropy as

S[z, {λ}, {l}] = W [z, {λ}, {l}]−W 0[{λ}]− z〈Ic[φ, {l}]〉 (2.10)

It is, the Legendre transform with respect to z of W c = W −W 0:

S[z, {λ}, {l}] = W c[z, {λ}, {l}]− z
dW c[z, {λ}, {l}]

dz
(2.11).

Next consider the derivative with respect to z of S.

dS[z, {λ}, {l}]
dz

= −z
d2W [z, {λ}, {l}]

dz2
(2.12)

Re-expressing this in terms of expectation values we have

z
dS[z, {λ}, {l}]

dz
= z2〈(Ic − 〈Ic〉)2〉 (2.13)

implying that S is a monotonic increasing function of |z| which is zero at z = 0. We also

deduce from (2.12) and (2.13) that W is a convex function of z.

Note that the expression (2.11) is amenable to standard treatment by field theoretic

means. In perturbation theory, it is diagrammatically a sum of connected vacuum graphs.

Furthermore, if the action is a linear combination of terms

Ic[φ, {l}] = lafa[φ] (2.14)

then with zla = ta (z is an overall factor) we have

S[{λ}, {t}] = W [{λ}, {t}]−W [0]− ta∂aW [{λ}, {t}] (2.15)

where ∂a = ∂
∂ta . Thus for this situation the relative entropy of the field theory is the

complete Legendre transform of the generating functionW with respect to all the couplings

ta. The negative of the “absolute” entropy or entropy relative to the uniform distribution
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(equivalent to I0[φ, {λ}] = 0) would be the complete Legendre transform with respect to

all the couplings in such a field theory. In terms of its natural variables 〈fa〉 = ∂aW the

relative entropy itself is a convex function (see below). It proves useful in what follows to

regard it as a function of the couplings through 〈fa〉(t).

Let us consider the change in relative entropy due to an infinitesimal change in the

couplings of the theory. This can be expressed as a 1-form on the space of couplings. A

little re-arrangement shows that such a change can be expressed in the form

dS = z(d〈Ic〉 − 〈dIc〉) (2.16)

which implies that z−1 performs the rôle of an integrating factor for the difference of

infinitesimals d〈Ic〉 − 〈dIc〉, just as temperature does for the absolute entropy. We could

more generally consider different z’s for each of the composite operators fa[φ] and obtain

the generalization of (2.16)

dS =
∑

a

Zfa(d〈fa[φ]〉 − 〈dfa[φ]〉)

In renormalization theory the Zfa play the rôle of composite operator renormalizations

(e.g. lafa[φ] =
1
2

∫

t φ2 the composite operator φ2 gets renormalized by Zφ2). Thus one

could interpret composite operator renormalization factors Zfa (or in the example Zφ2) as

integrating factors.

Again for the case (2.14) since

z2〈(Ic − 〈Ic〉)2〉 = ta〈(fa − 〈fa〉)(fb − 〈fb〉)〉tb (2.17)

and each of the la are arbitrary, we see that the quadratic form

Qab = 〈(fa − 〈fa〉)(fb − 〈fb〉)〉 = − ∂2W

∂ta∂tb
(2.18)

is a positive definite matrix. This establishes the key property that W is a convex function

of the couplings. S is similarly a convex function of the 〈fa〉, since

Qab = Q−1
ab =

∂2S
∂〈fa〉∂〈fb〉

. (2.19)

The matrix Qab is the Fisher information matrix and plays the rôle of a natural metric

on the space of couplings {l} measuring the infinitesimal distance between probability

distributions.
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We end this section by emphasizing that in the above we have established that W

is a convex function of the la and S is a convex function of the 〈fa〉. Note that: the

usual effective action can be viewed as the relative entropy with zIc[φ, {l}] =
∫

M Jφ and

is therefore a convex function of 〈φ〉. The relative entropy is equivalently a generalization

of the effective action to a more general setting. A final observation is that the relations

f̄a = 〈fa〉 = ∂aW (t) (2.20)

are our field equations (on-shell conditions) and can be associated with equilibrium. If one

releases these constraints by for example leaving the equilibrium setting, one can consider

S as a function of both the f̄a and la. The equilibrium conditions are then specified by

(2.20).

§ 3. Crossover between Field Theories

The concept of crossover arises in the physics of phase transitions, where it means the

change from one type of critical behavior to another. This implies a change of critical

exponents or any other quantity associated with critical behavior. In our context, a field

theory (FT) is defined by a Lagrangian with a number of coupling constants. We will

restrict our considerations to the case of super-renormalizable theories, in which case the

theories can be taken to provide well defined microscopic theories. The Lagrangian captures

the universality class of a particular phase transition when the relevant couplings are tuned

to appropriate values; these relevant couplings constitute a parameterization of the space

of fields and couplings close to the associated fixed point (FP) of the RG. The functional

integral provides global information, which can be depicted in a phase diagram, with

variables W, {l}. The most unstable FP will therefore have the largest dimensional phase

diagram and far from this FP may exist another where one (or more) of the maximal set of

couplings becomes irrelevant* and drops out. This implies the change to a universality class

with fewer relevant couplings, hence a reduced phase diagram corresponding to projecting

out the couplings which became irrelevant. The second FP and the reduced phase diagram

define a new field theory.

It is fairly easy to see that in the region where homogeneous scaling holds and the

RG trajectories satisfy linear RG equations there can be no more fixed points. One can

* Here relevant and irrelevant have both their intuitive and RG meaning.
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define new coordinates called non-linear scaling fields [12] where homogeneous scaling

applies throughout the phase diagram. This possibility is also well known in the theory

of ordinary differential equations (ODEs), where it is called Poincaré’s theorem [13, pg.

175]. In these co-ordinates, then, any other FP must be placed at infinity in a coordinate

system adapted to the first FP. To study the crossover, when a FP is at infinity, we need to

perform some kind of compactification of the phase diagram. Thus, we shall think of the

total phase diagram as a compact manifold containing the maximum number of generic RG

FP. This point of view is especially sensible regarding the topological nature of RG flows.

Furthermore, thinking of the RG as just an ODE indicates what type of compactification

of phase diagrams is adequate: It is know in the theory of ODEs that the analysis of the

flow at infinity and its possible singularities can be done by completing the affine space to

projective space [14]. This as we shall see is also appropriate for phase diagrams.

We will restrict our considerations in what follows to scalar Z2 symmetric field theories

with polynomial potentials and non symmetry breaking fields. For illustration, we will

discuss some exact results pertaining to solvable statistical models, which illuminate the

behaviour of the field theories in the same universality classes.

§§ 3.1 Case (0), The Gaussian model and the zero to infinite mass crossover

Consider the action

I00 [φ, {λ(0)}] =
∫

M

{α

2
(∂φ)2 +

rc
2
φ2
}

(3.1)

The action associated with Pz is then

I0[φ, {λ(0)}, t] = I00 [φ, {λ(0)}] +
∫

M

t

2
φ2 (3.2)

The crossover here is that associated with z = t. The model is pathological in that it is

not well defined for t < 0 where there is no ground state, but our interest is in t ≥ 0.

The crossover of interest here is then from t = 0 to large values of t. To make the model

completely well defined we place it on a lattice and take the continuum limit.

For the Gaussian model on a square lattice with lattice spacing, taken for simplicity

to be a
√
α, and with periodic boundary conditions and sides of length L = Ka

√
α, in d

dimensions, we have in the thermodynamic limit K → ∞[15]

W [a, r] =
Kd

2

∫ π

−π

dω1
2π

· · ·
∫ π

−π

dωd
2π

ln

{

4
a2

sin2(ω1

2 ) + · · ·+ 4
a2

sin2(ωd
2 ) + rc + t

2π

}

(3.3)
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With the critical point of the model at t = 0 we have rc = 0. The relative entropy is

S[a, t] = W [a, t]−W [a, 0]− t
dW [a, t]

dt
(3.4)

so if W [a, t] took the form W [a, t] = W̃ [a, t] + c + bt the linear term c + bt would not

contribute to the relative entropy. In the thermodynamic limit, if we restrict our consider-

ations to a dimensionally regularized continuum model then for d < 4 the divergences that

require subtraction are indeed of the linear form and we find that the relative entropy per

unit volume is given by

S =
(d− 2)π

2 sin(
π(d+2)

2 )Γ(d+2
2 )(4π)

d
2

t
d
2 (3.5)

For d > 2 and sufficiently small t, in the neighbourhood of the critical point, the

relative entropy of both the continuum model and the lattice model agree. This can be

seen by noting that the second derivative of W with respect to t diverges for small t and,

for d < 4, the coefficient of divergence is the same for both the lattice and continuum

expressions. Thus integrating back to obtain W [t] will give expressions which differ by

only a linear term in t for small t but this does not affect the relative entropy. From (3.5)

the increase in relative entropy with t is manifest.

§§ 3.2 Case (i), the Ising universality class

Let us next consider the two dimensional Ising model on a rectangular lattice. For simplic-

ity we will restrict our considerations to equal couplings in the different directions. Since

the random variables here (the Ising spins) take discrete values it is natural to consider the

absolute entropy which corresponds to choosing entropy relative to the discrete counting

measure and a sign change. This is the standard absolute entropy in this case. This model,

as is well known, admits an exact solution [16] for the partition function with

W [k] =− (1/2) ln(2 sinh(2k))−
∫ π

0

dω

2π
cosh−1 [cosh(2k) cosh(2K(k))− cos(ω)] (3.6)

for a rectangular lattice where K(k) = 1
2 ln coth(k) and k = J

kBT
. The entropy is then

Sa = −
(

W (k)− k
dW (k)

dk

)

(3.7)

and plotted against k in figure 1a. The monotonicity of the entropy becomes one of

convexity when the entropy is expressed in terms of the internal energy U as can be seen

in figure 1b.
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Fig. 1a: The Entropy Sa(k) for the 2d Ising Model
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Fig. 1b: The Entropy Sa(U) for the 2d Ising Model
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Now, of course, we can also consider relative entropy in this setting. Since near its

critical point the two dimensional Ising model is in the universality class of a φ4 field theory,

to facilitate comparison with the field theory it is natural to choose entropy relative to the

critical point lattice Ising model. This is also natural since the critical point is a preferred

point in the model. This relative entropy is given by

S = W (k)−W (k∗)− (k − k∗)
dW (k)

dk
(3.8)
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where k∗ = 1
2 ln(

√
2 + 1) ∼ 0.4406868 is the critical coupling of the Ising model. We have

plotted this in figure 2a. We see that it is a monotonic increasing function of |k− k∗| and
is zero at the critical point. In figure 2b we plot this entropy as a function of the relevant

expectation value, the internal energy U = dW
dk , and set the origin at U∗, the internal

energy at the critical point. Naturally, the graph is convex.

Fig. 2a: The Relative Entropy S(k, k∗) for the 2d Ising Model
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Fig. 2b: The Relative Entropy S(U, U∗) for the 2d Ising Model
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In more than two dimensions the Ising model has not been solved exactly. Its critical
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behaviour is in the universality class of a φ4 field theory, so we expect the general features

of the two models to merge near the critical point. We will next consider the φ4 theory.

We will choose the fixed probability distribution P0 for the φ4 theory to be that

associated with the critical point, or massless theory, which is described by the action

I01 [φ, {λ(1)}] =
∫

M

{

α

2
(∂φ)2 +

rc
2
φ2 +

λ

4!
φ4
}

(3.9)

with λ some arbitrary but fixed value of the bare coupling constant. We restrict our

considerations to d < 4 where the theory is super-renormalizable. The parameter rc

depends on the cut-off (UV regulator) needed to render the theory at a path integral level

well defined, and is chosen such that the correlation length is infinite. The complete action

associated with Pz is

I1[φ, {λ(1)}, t] = I01 [φ, {λ(1)}] +
∫

M

t

2
φ2 (3.10)

The crossover of interest here is that associated with z = |t|. There are clearly two

branches to the crossover, that for t positive, and negative respectively. We will restrict

our considerations to the positive branch, corresponding to 〈φ〉 = 0, and the range of t is

from 0 to ∞. The identification of z with t allows us to use the arguments of the previous

section. From (2.13) we conclude that the relative entropy is a monotonic function along

this crossover line. This is the crossover line from the Wilson Fisher fixed point to the

infinite mass Gaussian fixed point.

In the presence of a fixed UV cutoff one could consider the reference probability dis-

tribution to be that for which λ = 0 and then place λ into the crossover portion of the

action. This provides us with another crossover and in this more complicated phase dia-

gram there are in fact two Gaussian fixed points; a massless and infinite mass one, both

associated with λ = 0 (see [17] for a description of the total phase diagram). The crossover

between them is that associated with “case (0)” described above. If one further restricts

to λ = ∞, this is equivalent to restricting to the fixed point coupling and is believed to be

equivalent to the Ising model in the scaling region. The parameters t and k then should

play equivalent rôles, and describe the same crossover. In the φ4 model one can further

consider crossovers associated with varying λ at fixed t, by including a term
∫

M
l
4! φ

4 in

Ic. In this family there will be a crossover curve at infinity which varies from one infinite

mass Gaussian Fixed point to another. Such crossovers can be viewed as a special case of

the next example.
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§§ 3.3 Case (ii) Models with two crossover parameters

Here the action for the fixed distribution from which we calculate the relative entropy is

taken to be

I02 [φ, {λ(2)}] =
∫

M

{

α

2
(∂φ)2 +

rtc
2
φ2 +

λtc
4!

φ4 +
g

6!
φ6
}

(3.11)

(g fixed) and the action of the model is

I[φ, {λ(2)}, t, l] = I02 [φ, {λ(2)}] +
∫

M

{

t

2
φ2 +

l

4!
φ4
}

(3.12)

The tricritical point corresponds to both t and l zero. There is now a plane to be considered.

First consider the line formed setting l = 0 and ranging t from zero to infinity. This is a

line leaving the tricritical point and going to an infinite mass Gaussian model. Again we

see from the arguments of the previous section that the relative entropy is a monotonic

function along this line. Similarly we can consider the line t = 0 and l ranging through

different values. Again for positive l the relative entropy is a monotonic function of this

variable. The critical line is a curve in this plane, since the critical temperature Tc should

depend on l and one needs to change t as a function of l to track it.

It is interesting to consider the reduction of the two-dimensional phase diagram associ-

ated with the neighbourhood of the tricritical point to the one-dimensional phase diagram

of the critical point. This latter fixed point is associated with l = ∞ and the crossover

from it to the infinite mass Gaussian fixed point at t = ∞ lies completely at infinity in

the tricritical phase diagram. In the previous setting the crossover started from a finite

location because we did not include the tricritical point. The reduction can be achieved

as a projection from the tricritical phase diagram as follows: For any value of (t, l) we can

let both go to infinity while keeping their ratio constant. The value of t/l parameterizes

points on the line at infinity. Moreover, that projection is realized by letting z run to

infinity, thus ensuring that the relative entropy increases in the process.

One can further appreciate the structure of the phase diagram commented on above in

terms of the shape of RG trajectories, identified with scaling the non-linear scaling field,

where the phase diagram is presented in these coordinates. In the present case, the family

of scaling curves is t = c lϕ for various c, with only one parameter given by the ratio of

scaling dimensions of the relevant fields ϕ = ∆t

∆l
> 1, called the crossover exponent. These

curves have the property that they are all tangent to the t axis at the origin and any
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straight line t = a l intersects them at some finite point, li = (ac )
1

ϕ−1 and ti = ali. For

any given c the values of li and ti increase as a decreases and go to infinity as a → 0.

This clearly shows that the stable fixed point of the flow is on the line at infinity and, in

particular, its projective coordinate is a = 0. The point a = ∞ on the line at infinity is

also fixed but unstable. In general, as the overall factor z is taken to infinity we shall hit

some point on the saparatrix connecting these two points at infinity.

The tricritical flow diagram that includes the separatrix can be obtained by a projective

transformation (see subsection 3.5). It is essentially of the same form as that considered

by Nicoll, Chang and Stanley [17], with the axes such that the tricritical point is at the

origin (figure 3).

Fig. 3: Tricritical flow diagram showing the tricritical, critical and

Gaussian FP (with the mean-field crossover exponent ϕ = 2)
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The critical line is the vertical line (the l axis), and the crossover to the Gaussian fixed

point which is the most stable fixed point, is the line at infinity, in the positive quadrant

of the (t, l) plane. The Gaussian fixed point is at the end of the horizontal t axis. Our

variable z will parameterize radial lines in this (t, l) plane. As far as the parameter α

is concerned, one could introduce another axis in the phase diagram, corresponding to

this variable. This can be done for every crossover, and corresponds to crossover as the
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momentum is varied.

§§ 3.4 The general case of many crossovers

The question arises as to the naturalness of the choice of a priori distribution P0. In the

case of Z2 models in dimension 4 > d > 2 there is a natural choice for P0. It is that

field theory with the maximum polynomial potential that is super-renormalizable in this

dimension. This theory admits the maximum number of non-trivial universal crossovers

in this dimension. For this range of dimensions we therefore choose

I0k [φ, {λ}] =
∫

M







α

2
(∂φ)2 +

k+1
∑

a=1

λ2a
(2a)!

φa







(3.13)

and the full action is then

Ik[φ, {λ}, l2, . . . , l2k] = I0k [φ, {λ}] +
∫

M







k
∑

n=1

l2n
(2n)!

φ2n







(3.14)

The different crossover lines from the multicritical point can then be arranged to correspond

to flows from the origin along straight lines (in particular, the coordinate axes). From

the general arguments of the previous section the relative entropy increases along those

trajectories.

The crossovers in the above system can be organized in a natural hierarchical sequence,

descending from any one multicritical fixed point to the one just below in order of crit-

icality. In this way one loses one irrelevant coupling at each step. The reduced phase

diagram at each step is the hyper-plane at infinity of the previous diagram. Thus with,

our compactification, they constitute a sequence of nested projective spaces, ending in a

point. This structure deserves a more detailed treatment.

§§ 3.5 The Geometrical Structure of the Phase Diagram

The phase diagrams for the critical models corresponding to different RG fixed points are

nested in a natural way as projective spaces,

RPk ⊃ RPk−1 ⊃ · · · ⊃ RP1 ⊃ RP0,

with RP0 being just a point that represents the infinite mass Gaussian fixed point. In the

action (3.14) the set of couplings l2n together with the coupling λ2k+2 lend themselves to
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an interpretation as homogeneous coordinates for the projective space RPk. The value of

λ2k+2 is to be held fixed along any crossover so that the ratios r2n = l2n
λ2k+2

become affine

coordinates. Moreover, in the crossover from an upper critical point to a lower critical

point, e.g. the tricritical to critical crossover, the phase diagram for the latter is realized

as the codimension-one (hyper)plane at infinity, which is equivalent to λ2k+2 = 0. Thus

λ2k+2 effectively disappears from the action of the next critical point, which has l2k as the

highest coupling in the sequence. The set of couplings l2, . . . , l2k then constitute a system

of homogeneous coordinates in the reduced phase diagram. One can reach a point of this

phase diagram by making z go to infinity for different (fixed) values of l2i
l2k

. This realization

ensures that the relative entropy of points in this second phase diagram is lower than that

of points of the first via monotonicity in z as discussed earlier.

One might, however, think that both phase diagrams cannot be incorporated in the

same picture. This is not so: One can perform a projective change of coordinates so as to

bring the (hyper)plane at infinity to a finite distance. This can be achieved by first rescaling

to λ2k+2 = 1. For example, in the tri-critical to critical crossover of §3.2, the condition

that g be fixed (e.g. g = 1 where we now use dimension-less couplings, the original g,

which we now label gB, setting the scale) places the phase diagram of the critical fixed

point at infinity. However, new homogeneous coordinates r̄ and λ̄ and ḡ, defined so that

the projective space is realized as the plane r + λ + g = 1 rather than by g = 1, can be

specified by defining
r̄ = r

λ̄ = λ

ḡ = r + λ+ g.

(3.15)

In these co-ordinates our previous ratios, that is, the affine coordinates, take the form,

r

g
=

r̄
ḡ

1− r̄
ḡ − λ̄

ḡ

,

λ

g
=

λ̄
ḡ

1− r̄
ḡ − λ̄

ḡ

.

(3.16)

The phase diagram in the new co-ordinates, drawn in figure 3, is patently compact. Trans-

formations of the this type have been used before in global studies of the RG [17]. Another

possible realization of the phase diagram would be to project onto the plane λ + g = 1.
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The new coordinates are given by

r

g
=

r̄
ḡ

1− λ̄
ḡ

,

λ

g
=

λ̄
ḡ

1− λ̄
ḡ

.

(3.17)

The resulting projective coordinate change converts the line at infinity into the line λ = 1.

The critical fixed point is on this line at r = 0 but the infinite mass Gaussian point remains

at r = ∞. Hence we can identify the resulting phase diagram as that of the critical model.

Similar considerations apply quite generally to the entire hierarchy.

We see that the new ratios in (3.17) resemble the solution of typical one loop RG

equations. This is not necessarily accidental. In practice when one goes from bare to

renormalized co-ordinates one defines the new co-ordinates in terms of normalization con-

ditions [18], which can be chosen so that the range of these renormalized co-ordinates ranges

over a finite domain, e.g. from zero to the fixed point value of the renormalized coupling.

For example, in the φ4 model the relation between bare and renormalized couplings at one

loop is given by

λb =
λr

1− a(d)λrR4−d

with R the IR cutoff and a(d) a dimension dependent factor. If terms of the dimension-

less couplings a(d)λR4−d we have precisely (3.17). However, at higher order in the loop

expansion such normalization conditions may realize the projective space of the phase

diagram in a more complicated fashion than (3.17). Nevertheless, one can think of the

change from “bare” to renormalized co-ordinates as the transition from affine co-ordinates

to a realization of the projective space.

§ 4. Wilson’s RG and entropy growth

Field theoretic renormalization groups that are based on reparameterization of the cou-

plings are a powerful tool for the study of crossovers and the calculation of crossover

scaling functions, as discussed in [18]. In essence they can be viewed as implementing

appropriate projective changes of co-ordinates implied by the above discussion. We now

wish to discuss the relative entropy in a Wilsonian context. A Wilson RG transformation

is such that it eliminates degrees of freedom of short wave length and hence high energy.
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Typical examples are decimation or block spin transformations. It is intuitively clear that

their action discards information on the system and therefore must produce an increase

of entropy. Indeed, as remarked by Ma [19] iterating this type transformation does not

constitute a group but rather a semi-group, since the process cannot be uniquely reversed.

In the language of statistical mechanics we can think of it as an irreversible process.

For concreteness we illustrate our approach by a very simple example, the Gaussian

model with action

I =
1

2

∫ Λ

0
ddp φ(p)

(

p2 + r
)

φ(−p), (4.1)

which yields

W [z] =
1

2

∫ Λ

0

ddp

(2π)d
ln

p2 + r

Λ2
. (4.2)

This model has been already considered in subsection 3.1 but with a lattice cutoff instead

of a momentum cutoff. The relevant coupling that effects the crossover is z = t = r − rc.

The corresponding relative entropy

S[z] =
1

2

∫ Λ

0

ddp

(2π)d

(

ln
p2 + r

p2 + rc
− t

p2 + r

)

(4.3)

is finite when Λ goes to infinity, agreeing with (3.5), and vanishes for t = 0. The Wilson

RG is implemented by letting Λ run to lower values. Let us see that S is monotonic with

Λ.

We have that
∂S

∂Λ
=

Λd−1

2dπ
d
2 Γ(d/2)

(

ln
Λ2 + r

Λ2 + rc
− t

Λ2 + r

)

, (4.4)

except for an irrelevant constant. With the change of variable x = Λ2, we have to show

that the corresponding function of x is of the same sign everywhere. Then we want

ln
x+ r

x+ rc
− r − rc

x+ r

not to change sign. Interestingly, the properties of this expression are independent of x

somehow for if one substitutes in ln ρ− ρ−1
ρ the value ρ = x+r

x+rc
then one recovers the entire

function. Now it is easy to show that ln ρ ≥ 1 − 1
ρ . (The equality holds for ρ = 1—the

critical point.) This proof resembles somehow the classical proofs of H-theorems.

We plot in figure 4 the associated relative entropy for this model as a function of Λ to

show that it is again a monotonic function. This behavior is actually closely related to the
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monotonicity with r considered before: The relative entropy as well as W is a function of

the ratio r
Λ2 , which is precisely the solution of the RG for this simple model.

Fig. 4: The Wilsonian Relative Entropy of the Gaussian Model
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There are certain features common to all formulations of Wilsonian RGs for a generic

model. Even if the theory is simple at the scale of the cutoff, as may happen when we use

a lattice model as our regularized theory, a Wilson RG transformation complicates it by

introducing new couplings. Thus the action of Wilson’s RG is defined in what is called

theory space, typically of infinite dimension, comprising all possible theories generated by

its action. In practice, one is interested in the critical behavior controlled by a given fixed

point and the theory space reduces to the corresponding space spanned by the marginal and

relevant operators. Under the action of the RG, the irrelevant coupling constants approach

values which are functions of the relevant coupling constants. In the language of differential

geometry, the RG flow converges to a manifold parameterized by the relevant couplings,

called the critical manifold. Therefore, the information about the original trajectory or

the value of the couplings at the scale of the cutoff is lost. In the language of FT, we can

say that the non-renormalizable couplings vanish (or, in general, approach predetermined

values) when the cutoff is removed [20].

As described above, the action of the Wilson RG is reminiscent of the course of a

typical non-equilibrium process in statistical physics. The initial state may be set up to be

simple but if it is not in equilibrium then it evolves, getting increasingly complicated until
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an equilibrium state is reached, where the system can be described by a small number

of thermodynamic variables. This idea can be rigorously formulated as Boltzmann’s H

theorem. In the modern version of this theorem [21] H is a function(al) of the probability

distribution of the system defined as H = −Sa of (2.1). It measures the information

available to the system and has to be a minimum at equilibrium. To be precise, the actual

probability distribution is such that it does not contain information other than that implied

by the constraints or boundary conditions imposed at the outset.

The simplest case of the H theorem is when there is no constraint wherein H is a min-

imum for a uniform distribution. This is sometimes called the principle of equiprobability.

From a philosophical standpoint, it is based in the more general principle of sufficient

reason, introduced by Leibnitz. In our context, it can be quoted as stating that if to our

knowledge no difference can be ascribed to two possible outcomes of an aleatory process,

they must be regarded as equally probable. This is the case for an isolated system in statis-

tical mechanics; all the states of a given energy have the same probability (micro-canonical

distribution). Another illustrative example, is provided by a system thermally coupled to

a heat reservoir at a given temperature where we want to impose that the average energy

takes a particular value. Minimizing H then yields the canonical distribution.

In general, we may impose constraints on a system with states Xi that the average

values of a set of functions of its state, fr(Xi), adopt pre-determined values,

〈fr〉 :=
∑

i

Pi fr(Xi) = f̄r,

with Pi := P (Xi). The maximum entropy formalism leads to the probability distribution

[22]

Pi = Z−1 exp

(

−
∑

r

λr fr(Xi)

)

.

The λr are Lagrange multipliers determined in terms of f̄r through the constraints. In

field theory a state is defined as a field configuration φ(x). One can define functionals

of the field Fr[φ(x)]. These functionals are usually quasi-local and are called composite

fields. The physical input of a theory can be given in two ways, either by specifying the

microscopic couplings or by specifying the expectation values of some composite fields,

〈Fr[φ(x)]〉. The maximum entropy condition provides an expression for the probability
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distribution,

P [φ(x)] = Z−1 exp

(

−
∑

r

λr Fr[φ(x)]

)

,

and therefore for the action,

I =
∑

r

λr Fr;

namely, a linear combination of relevant fields with coupling constants to be determined

from the specified 〈Fr〉.

The formulation of the H theorem described above is very general. The situation that

concerns us here is the crossover from the critical behavior in the vicinity of a multicritical

point to another more stable multicritical point under the action of the RG. As soon as a

relevant field takes a non-vanishing value, the action of the RG drives the system away from

the first fixed point towards the second. In our hierarchical sequence of critical points this

was achieved by the couplings being sent to infinity relative to one another in a fashion that

descended along this hierarchy. As described above, the condition represented by fixing

the expectation value of the relevant field can be understood as imposing a constraint

via the introduction of a Lagrange multiplier which appears as a coupling λi in the field

theory. As in the case of the introduction of β (inverse temperature), when λi is sent to

infinity we expect the entropy to decrease and thus our relative entropy should increase.

Conversely, releasing the constraint is equivalent to sending the coupling to zero and the

relative entropy decreases. In the above description the underlying theory is held fixed

and only one parameter varied as one moves through a sequence of “quasi-static” states.

In theWilson RG picture certain expectation values are held fixed while the microscopic

theory is allowed to evolve. This involves the crossover from cutoff dependent degrees of

freedom to cutoff independent ones and generically falls into the non-equilibrium situation

described above. In this process one expects that the entropy will actually increase as

the system evolves. This means that our relative entropy should decrease. One can easily

see from figure 4 in the example described at the beginning of this section that this is

indeed the case. In terms of renormalized couplings for given values of the couplings, we

can start with any value of λi and let the RG act. All the trajectories converge to the

critical manifold where λi is determined by the other couplings, λi (λr). The trajectories

approach each other in a sort of reverse chaotic process. In a chaotic process there is great

sensitivity to the initial conditions, however, in the RG flow there is great insensitivity to
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the initial values of the irrelevant couplings which diminish as the flow progresses and in

fact vanish at the end of the flow.

§ 5. Conclusions

We have established that the field theoretic relative entropy provides a natural function

which ranks the different critical points in a model. It grows as one descends the hierarchy

in the crossovers between scalar field theories corresponding to different multicritical points.

This is a consequence of general properties of the entropy and, in particular, of the relative

entropy.

We have further established that the phase diagrams of the hierarchy of critical points

are associated with a nested sequence of projective spaces. It is convenient to use coordi-

nates adapted to a particular phase diagram in the hierarchy. Hence a crossover implies

a coordinate change. The transition from bare to renormalized co-ordinates provides a

method of compactifying the phase diagram. By changing from the bare coordinates, in

which the phase diagram naturally ranges over entire hyper-planes to appropriate renor-

malized ones the phase diagram can be rendered compact.

We discussed the action of the Wilson RG and argued that the relative entropy in-

creases as more degrees of freedom are integrated out, when the underlying Hamiltonian is

held fixed. However, when the Hamiltonian is allowed to flow, as it generically is in a Wil-

son RG, the resulting flow corresponds to a non-equilibrium process in thermodynamics.

Nevertheless, the general formulation of the H-theorem provided by Jaynes allows us to

conclude that the entropy increases in such a process and that the relative entropy (due to

our choice of signs) decreases. In contrast, the field theoretic crossover wherein one moves

from one point in a phase diagram to another by varying one of the underlying parameters

(such as temperature) corresponds to a sequence of quasi-static states and in the case of

our hierarchical sequence as one descends the sequence by sending various parameters to

infinity one is gradually placing tighter constraints much as reducing the temperature does

in the canonical ensemble. Thus one expects the entropy should reduce and the relative

entropy increase. This is indeed what we find.

One might wonder as to the connection between our entropy function and the Zamolod-

chikov C function. It is unlikely that in two dimensions the two are the same. Zamolod-

chikov’s C function is built from correlation data and in the case of a free field theory it

is easy to check that the two functions do not coincide.
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