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Abstract

We introduce an operator version of the BRST-BFV effective ac-
tion for arbitrary systems with first-class constraints. Using the Schwinger
action principle we calculate the propagators corresponding to: (i)
the parametrized non-relativistic free particle, (ii) the relativistic free
particle and (iii) the spining relativistic free particle. Our calculation
correctly imposes the BRST-invariance at the end-points. The precise
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use of the additional boundary terms required in the description of
fermionic variables is also incorporated.
(PACS: 04.20.Fy 04.60. Ds 11.10.Ef )

1 Introduction

A wide variety of interesting theories in physics which range, for example,

from the standard model of strong, weak and electromagnetic interactions,

to Einstein general relativity and even to more speculative ideas like string

theories, can be understood and unified under the generic label of constrained

systems. All such gauge theories are characterized by the existence of rela-

tions ( constraints) among the original phase space variables, together with

the appearance of arbitrary functions in the solutions of the equations of mo-

tion. The quantum mechanical description of such systems deviates from the

standard prescriptions, like the canonical or path integral quantization for

unconstrained systems. A systematic procedure for dealing with the quan-

tization of constrained systems was proposed some time ago by Dirac [1]

and recently the method has been extended to the BRST-BFV prescription

[2] and also to the antifield method of Batalin-Vilkovisky [3], both in the

context of the path integral and operator approach to quantization. These

methods have been successfully applied to many different problems such as

supergravity [4] , topological field theories [5] and superstrings [6], just to

mention a few interesting cases.

Nevertheless, in the literature we can find alternative methods of quan-

tization, among which the Schwinger action principle [7] constitutes a very

important case. This action principle can be applied to arbitrary quantum

systems and starts from an operator formulation of the action from the very

beginning. The general validity of this principle has recently motivated its
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application to the case of constrained systems. For example, in reference [8] it

is shown that when the Schwinger action principle is applied to a system with

only second class constraints, it leads to (anti)commutations relations cor-

responding precisely to the Dirac bracket prescription. Another application

of this action principle has been the calculation of the quantum-mechanical

BRST-invariant matrix elements of the evolution operator in the cases of the

spinless and the spining relativistic free particle [9], which were previously

obtained using the BRST-BFV path integral formulation in Refs. [10],[11].

Unfortunately, the calculation in Ref. [9] makes use of an incorrect (i.e. non-

BRST invariant) basis for the physical states at the initial and final times.

The Schwinger action principle can be viewed as a generalization of the

Weiss action principle in classical mechanics to the quantum case . The Weiss

principle states that if we make an arbitrary variation of the action

S =
∫ t′′

t′
L(q̇, q, t) dt, (1)

the Euler-Lagrange equations follows from the requirement

δS = G(t′′)−G(t′), (2)

where the G’s are boundary terms [14] . This means that such variation

must not depend upon the trajectory that connects the end-points, thus

leading to the Euler-Lagrange equations of motion. The explicit form of the

boundary terms depends upon the dynamical variables which are kept fixed

at boundaries. For example, if we fix the coordinates q at the boundaries t′′

and t′, then

G(t) = (pδq −Hδt)|t, (3)

where H is the corresponding Hamiltonian function and the notation is pδq =

piδq
i, with the summation being over all the degrees of freedom of the system.
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The notation of deleting the indices will be frequently used in the sequel, in

the cases where no confusion arises.

At the quantum level, the Weiss action principle is replaced by the Schw-

inger action principle which states that the arbitrary variation of the matrix

elements of the evolution operator < a′′|U(t′′, t′)|b′ >≡ 〈a′′t′′|b′t′〉 is given by

δ〈a′′t′′|b′t′〉 = i〈a′′t′′|δ
(
∫ t′′

t′
L( ˙̂q, q̂, t) dt

)

|b′t′〉. (4)

Moreover, the variation of the hermitian action operator Ŝ =
∫ t′′

t′ L( ˙̂q, q̂, t)dt

must depend only upon the end point operators and times, in such a way

that

δ
(
∫ t′′

t′
L( ˙̂q, q̂, t) dt

)

= G(Â′′, t′′)−G(B̂′, t′), (5)

where Â′′ denotes a complete set of commuting operators at the time t′′ with

corresponding eigenvalues a′′ and analogously for the operators B̂′ at t′. That

is to say, the variation of the propagator is given by the corresponding matrix

elements of the variation of a single quantum mechanical operator: the action

operator.

A convenient choice for the quantum Lagrangian is the first order form

L̂ = 1
2

(

p̂ ˙̂q + ˙̂qp̂
)

− H(q̂, p̂, t), where H(q̂, p̂, t) is the hermitian Hamiltonian

operator constructed in the usual way starting from the definition p̂ = ∂L̂

∂ ˙̂q
.

The resulting equations of motion are the standard Hamilton equations for

the quantum operators

˙̂q =
∂Ĥ

∂p̂
, ˙̂p = −

∂Ĥ

∂q̂
(6)

and one can identify the corresponding end-point generators as

G(q̂, p̂) = p̂δq̂ − Ĥδt ≡ Gδq̂ +Gδt . (7)
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At this stage it is also necessary to specify the operator character of

the variations δq̂, δp̂ which imply the above results. When dealing with

bosonic (fermionic) operators, called operators of the first (second) kind

in Schwinger’s notation, the corresponding variations satisfy the standard

commutation (anticommutation) rules of even (odd) elements in a Grass-

mann algebra. The standard notation is that bosonic(fermionic) objects

have even(odd) Grassmann parity in the underlying Grassmann algebra.

By considering a canonical transformation which interchanges the roles

of q̂ and p̂, it is possible to identify the generator of infinitesimal transforma-

tions in p̂ as Gδp̂ = −q̂δp̂. The above expressions for the generators of the

corresponding transformations, together with the quantum mechanical inter-

pretation of them as producing infinitesimal unitary transformations, leads

to the general commutator

[

Â, Ĝδ
b̂

]

= iδb̂(Â). (8)

From this expression we obtain the basic (anti)commutation relations for

the phase space variables, after taking into account the (anti)commutation

properties of the parameters associated to the above transformations.

From Eqs. (4) and (5), the final expression for arbitrary variations of the

propagator is then given by

δ〈a′′t′′|b′t′〉 = i〈a′′t′′|G(A′′, t′′)−G(B′, t′)|b′t′〉. (9)

In order to use the above expression as a practical computational tool,

we must be able to solve the operator Heisenberg equations of motion for the

system in terms of the operators A′′, B′ whose eigenvalues are kept fixed at

the end-points. In this way, we will be able to calculate the corresponding

matrix elements in (9), which provide a set of partial differential equations
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for the propagator, that must be subsequently integrated. In other words, we

need to choose a complete set of (anti)commuting operators at the initial and

final times, together with a well defined inner product in the Hilbert space of

physical states, in order to specify the quantum numbers at the end-points

which, of course, must be compatible with the dynamics.

In this paper we introduce an operator BRST-BFV action for arbitrary

systems with first-class constraints, which is inspired in Schwinger action

principle. This action is defined with appropriate BRST-invariant boundary

conditions. As an application of this quantum action and as an alterna-

tive procedure to the standard path-integral approach, we carefully calculate

the propagators corresponding to the non-relativistic particle, the relativis-

tic spinless particle and the relativistic spining particle. The corresponding

calculations using the BRST-BFV path integral approach can be found in

Refs.[10], [11], [12]. The results presented in our work are based on a consis-

tent choice of end-points conditions and thus allows to clarify some incorrect

points that arise in Ref. [9].

The paper is organized as follows: section 2 contains our general pre-

scription to construct the quantum BRST-BFV action, from which we sub-

sequently calculate the corresponding propagators using the Schwinger action

principle. The next sections, 3, 4 and 5, contain the corresponding calcu-

lations for the following particular cases : the parametrized non-relativistic

particle, the relativistic free particle and the spining relativistic free particle,

respectively.
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2 The quantum BRST- BFV action

Since the action principle does not provide a quantum action to start with,

we follow the usual procedure of defining the quantum action as a consistent

extension of the classical action associated to the problem.

For a system with constraints, one of the most successful prescriptions

to construct a classical gauge independent action is the BRST-BFV method

[15]. The resulting action has the advantage of being invariant under BRST

transformations and since the remaining symmetry is only global, all the

variations of the canonical variables are independent.

We start from a classical system described by canonical coordinates qi, pi

(i = 1, . . . , n), having only first-class constraints Ga(p, q) (a = 1, . . . , m), and

with a first-class canonical Hamiltonian H0(q, p)

Ga(q, p) ≈ 0 (10)

{Ga, Gb}PB = C c
ab (q, p)Gc, {Ga, H0}PB = D c

a (q, p)Gc. (11)

We assume, for simplicity, that all second-class constraints have been elim-

inated, either by solving them or by transforming them into first-class con-

straints, adding new variables and using, for example, the Batalin-Tyutin

conversional method [16].

Consider the variational principle in the class of paths qi(τ), pi(τ), λ
a(τ),

where λa(τ) are Lagrange multipliers associated to the constraints, with pre-

scribed values at the endpoints τ ′ and τ ′′,

Qi(q(τ
′), p(τ ′), τ ′) = Q′

i, Qi(q(τ
′′), p(τ ′′), τ ′′) = Q′′

i, (12)

of a complete set of commuting variables Qi(q, p, τ)

{Qi, Qj}PB = 0, (at equal times). (13)
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The action for this variational principle is

S[qi(τ), pi(τ), λ
a(τ)] =

∫ τ ′′

τ ′
(q̇ipi −H0 − λaGa)dτ −B(τ ′′) +B(τ ′), (14)

(for paths obeying (12)), where the phase space function B(q, p, τ) is such

that

piδq
i = −P iδQi + δB, (15)

for fixed τ [17]. Here, the P i are the momenta canonically conjugated to the

Qj ,

{P i, P j}PB = 0, {Qi, P
j}PB = δji . (16)

We assume that (14) is the final action of the system arising after we have

completed the Dirac procedure of generating all possible secondary con-

straints and after we have eliminated all second-class constraints. This means

that we have already enforced the consistency conditions Ġa ≈ 0.

In order to construct the BRST-BFV effective action according to Ref.

[15], we start from a configuration space where all degrees of freedom, which

can have either even or odd Grassmann parity, are real. Also, we choose

the Lagrangian to be real and even. If some coordinate θ is fermionic ( odd

Grassmann parity), the corresponding momentum pθ is imaginary and odd in

such a way that θ̇pθ is real an even. We assume also that all the constraints

are real. They can have either odd or even Grassmann parity. In the later

case λa is imaginary and odd, so that λaGa is both real and even. Next

we promote the Lagrange multipliers to the status of dynamical variables by

introducing their corresponding canonically conjugated momenta πa and we

demand that πa ≈ 0, in such a way that we have now 2n first-class constraints

GA = (πa, Ga) ≈ 0. The Grassmann parity ǫ of the new variables is such

that ǫ(πa) = ǫ(λa) = ǫ(Ga) ≡ ǫa. The next step is to introduce the ghost
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variables ηA together with the corresponding anti-ghost variables PA, in such

a way that ǫ(ηA) = ǫ(PA) = ǫa + 1. Following the standard convention we

consider the splitting

ηA = (−(i)ǫa+1Pa, Ca), PA = ((i)ǫa+1C̄a, P̄a). (17)

The classical effective BRST-BFV action turns out to be

SBRST =
∫ τ ′′

τ ′

(

q̇ipi − λaπ̇a +
˙̄CaP

a + ĊaP̄a −HBRST

)

dτ − [B]τ
′′

τ ′ , (18)

where the integral is extended over the paths which obey the boundary con-

ditions

Qi(q(τ
′), p(τ ′), τ ′) = Q′

i, Qi(q(τ
′′), p(τ ′′), τ ′′) = Q′′

i .

Ca(τ ′) = Ca(τ ′′) = 0, C̄a(τ
′) = C̄a(τ

′′) = 0, (19)

πa(τ
′) = πa(τ

′′) = 0.

In Eq.(18), HBRST = Hc − {Ψ,Ω}PB, Hc is the canonical Hamiltonian, Ψ

is the so called fermionic gauge-fixing term and Ω is the nilpotent BRST-

charge, which has odd Grassmann parity and satisfies {Ω, Ω}PB = 0. The

general form of the BRST charge is Ω = −(i)ǫa+1Paπa + CaGa+ “more” ,

where “more” stands for terms at least quadratic in the ghosts. A systematic

algorithm for this construction can be found in Ref. [15]. In all the appli-

cations that we will consider in this work, we choose the classical fermionic

gauge to be

Ψ = P̄aλ
a, (20)

which has odd Grassmann parity.

Let us observe that we can read out directly from the action (18) the

classical Poisson brackets for the fundamental variables

{pi, q
j}PB = −δji = (−)ǫ(q

j)+1{qj, pi}PB ,
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{πa, λ
b}PB = −δba = (−)ǫa+1{λb, πa}PB ,

{Pa, C̄b}PB = −δab = (−)ǫa{C̄b,P
a}PB ,

{P̄a, C
b}PB = −δba = (−)ǫa{Cb, P̄a}PB .

The above action (18) has two important properties: (i) all canonical

variables involved are unconstrained. This feature is reflected in the choice

of the associated measure in the path integral formulation of the method,

as the corresponding Liouville measure. (ii) the remaining symmetry of the

action (18) is a global supersymmetry generated by the BRST charge Ω,

which imposes the choice of BRST-invariant end-point conditions.

The classical effective action (18) is our starting point to construct the

quantum version of the BRST-BFV method. First, we promote all (imagi-

nary)real phase space variablesA, including the ghosts, to (antihermitian)her-

mitian operators Â. Since the quantum action must be hermitian in order

to preserve unitarity, we also adopt the standard replacement for extending

real classical products of real variables into hermitian products of hermitian

quantum operators

(i)ǫ(A)ǫ(B)AB →
1

2
(i)ǫ(A)ǫ(B)(ÂB̂ + (−1)ǫ(A)ǫ(B)B̂Â) ≡<< ÂB̂ >> . (21)

Let us observe that the operator properties assumed for the variations δÂ, δB̂

precisely guarantee that δ << ÂB̂ >>= (δÂ)B̂ + Â(δB̂). In particular, the

above prescription has to be applied both to the kinetic term and to the

boundary term in the action. The quantum expression for the latter will be

discussed in each separate situation and the specific form will be dictated by

the classical counterpart. The interplay among the variations of both types

of terms will allow the proper identification of the corresponding quantum
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generators at the end points, thus providing the basic (anti)commutation

relations for the dynamical variables directly from the action principle.

According to the above prescription, the quantum extension of the BRST

charge must lead to an hermitian operator Ω̂† = Ω̂ such that {Ω̂, Ω̂} = 2Ω̂2 =

0, with {Â, B̂} = ÂB̂ + B̂Â denoting the corresponding anticommutator.

Both, the canonical Hamiltonian together with the fermionic gauge fixing

term are also promoted to the corresponding operators Ĥc (hermitian) and

Ψ̂ (antihermitian) respectively, while the effective Hamiltonian operator is

defined by ĤBRST = Ĥc + i{Ψ̂, Ω̂}. Besides, the BRST charge must be

conserved i.e. [Ω̂, ĤBRST ] = 0, where [Â, B̂] = ÂB̂ − B̂Â denotes the

corresponding commutator.

In this way, the full quantum action turns out to be

ŜBRST =
∫ τ ′′

τ ′

(

<< ˙̂q
i
p̂i − λ̂a ˙̂πa +

˙̂̄
CaP̂

a +
˙̂
Ca ˆ̄Pa >> −ĤBRST

)

dτ − [B̂]τ
′′

τ ′ .

(22)

The basis vectors of the Hilbert space at the initial time τ ′, |Q′
i, C

′a, C̄′
a, π

′
a〉,

are labeled by the corresponding fixed eigenvalues and satisfy

Q̂i|Q
′
i, C

′a, C̄′
a, π

′
a〉 = Q′

i|Q
′
i, C

′a, C̄′
a, π

′
a〉 (23)

Ĉa|Q′
i, C

′a, C̄′
a, π

′
a〉 =

ˆ̄Ca|Q
′
i, C

′a, C̄′
a, π

′
a〉 = π̂a|Q

′
i, C

′a, C̄′
a, π

′
a〉 = 0, (24)

according to the classical boundary conditions (19). Analogous expressions

are valid for the basis vectors at the final time τ ′′.

The invariance of the action under quantum BRST transformations is

stated in the property δΩŜBRST = i[Ω̂, ŜBRST ]− = 0. The BRST invariance

of the related transition amplitudes 〈a′′t′′|Ŝ|b′t′〉 is guaranteed provided the

end point states are also invariant under this transformation, which means

that Ω̂|b′t′〉 = 0 = Ω̂|a′′t′′〉.
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3 The parametrized non-relativistic particle

The classical action for this system is

S =
∫ τ ′′

τ ′
Ldτ =

m

2

∫ τ ′′

τ ′

ẋ2

ṫ
dτ. (25)

Next we define px = ∂L
∂ẋ
, pt =

∂L
∂ṫ

as the momenta canonically conjugated to

the coordinates x and t respectively. Here the dot means the derivative with

respect to the parameter τ . In this case, the canonical Hamiltonian Hc is

zero and the application of the standard Dirac procedure leads to only one

(first-class) constraint

G = H0 + pt ≈ 0, (26)

where

H0 ≡
p2x
2m

. (27)

Our application of the Schwinger action principle will start from the ef-

fective action operator constructed according to the ideas of the previous

section. In this case, the subindex a takes just one value, corresponding to

the only constraint of the problem . The quantum effective action is taken

to be

ŜBRST =
∫ τ ′′

τ ′

(

<< ˙̂xp̂x +
˙̂tp̂t − λ̂ ˙̂π +

˙̂̄
CP̂ +

˙̂
C ˆ̄P >> −ĤBRST

)

dτ

+ << x̂′p̂′x + t̂′p̂′t >>, (28)

where

ĤBRST = i{Ψ̂, Ω̂}, Ψ̂ = ˆ̄P λ̂, Ω̂ = −iP̂ π̂ + Ĉ

(

p̂2x
2m

+ p̂t

)

. (29)

In the sequel, all the canonical variables are considered to be operators and we

drop the hat on top of them in order to simplify the notation. The application
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of the action principle to the action (28) leads to the Heisenberg equations

of motion, written in the general form of Eqs.(6) in terms of the BRST-

Hamiltonian, together with the following identification of the generators of

transformations at the end-points

δŜBRST =
(

p′′xδx
′′ + x′δp′x + p′′t δt

′′ + t′δp′t − λ′′δπ′′ + λ′δπ′ − P̄ ′′δC′′

+P̄ ′δC′ − P ′′δC̄′′ + P ′δC̄′ −H ′′
BRST δτ

′′ +H ′
BRST δτ

′
)

, (30)

where the superscript ′ (′′) denotes the evaluation of the corresponding op-

erator at τ = τ ′(τ = τ ′′) respectively. According to the property (8), the

equation (30) implies the following non-zero (anti)commutation relations at

equal times

[x, px] = [t, pt] = [λ, π] = i {C̄,P} = {P̄, C} = −i. (31)

The equation (30) also implies that the eigenvalues which are kept fixed at

the end points correspond to the following operators

px(τ
′), pt(τ

′), π(τ ′), C(τ ′), C̄(τ ′), (32)

x(τ ′′), t(τ ′′), π(τ ′′), C(τ ′′), C̄(τ ′′), (33)

which means that we are selecting the following basis for the Hilbert space

{

|p′x, p
′
t, π

′, C′, C̄′, τ ′〉 ≡ |τ ′〉
}

,
{

〈x′′, t′′, π′′, C′′, C̄′′, τ ′′| ≡ 〈τ ′′|
}

, (34)

at the initial and final end-points respectively. The eigenvalues π′, π′′, C′, C′′,

C̄′, C̄′′ are taken to be zero, according to Eq.(24). Our notation is A′′ (A′)

for the eigenvalues of the operator A(τ ′′) (A(τ ′)). However, in order to make

the notation not too cumbersome, we will denote with the same letter, both

the operator and its corresponding eigenvalue in the sequel, expecting that

no confusion arises.
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From the (anti)commutation relations (31) we can show that the BRST

operator Ω constructed in (29) is hermitian and nilpotent. Also, the BRST-

invariance of the above basis (34) can be directly verified. The calculation

of the effective Hamiltonian can now be performed, leading to

HBRST = iP̄P + λG, (35)

which is an hermitian operator satisfying [HBRST ,Ω] = 0. The equations of

motion can be written in the following explicit form

ṗx = 0, ẋ−
λpx
m

= 0, ṗt = 0, ṫ− λ = 0, π̇ +G = 0, λ̇ = 0,

Ṗ = 0, ˙̄C − iP̄ = 0, ˙̄P = 0, Ċ + iP = 0. (36)

Next we consider the calculation of the propagator. The first step is to solve

the above operator equations. We obtain the general solution

px = p′x, x(τ) = x′ +
λpx
m

(τ − τ ′), pt = p′t, t(τ) = t′ + λ(τ − τ ′), (37)

π(τ) = π′ −G(τ − τ ′), λ = λ′, (38)

P = P ′, C̄(τ) = C̄′ + iP̄(τ − τ ′), P̄ = P̄ ′, C(τ) = C′ − iP(τ − τ ′), (39)

where the superscript ′ denotes the evaluation of the corresponding operator

at τ = τ ′, which are used here to denote arbitrary operator integration

constants to be further specified according to the boundary conditions (34).

A slightly rewritten expression for the variation for the propagator, obtained

from (30), is

δ〈τ ′′|τ ′〉 = i〈τ ′′|p′xδx
′′ + x′δp′x + p′tδt

′′ + t′δp′t − λ′(δπ′′ − δπ′)

−P̄ ′(δC′′ − δC′)− P ′(δC̄′′ − δC̄′)−HBRST (δτ
′′ − δτ ′)|τ ′〉. (40)
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The next step is to calculate the corresponding matrix elements. After we

incorporate the chosen boundary conditions (34) in the above solutions (37)-

(39) of the equations of motion, we can write HBRST in terms of the end-

points operators C′, C′′, C̄′, C̄′′, together with the constant operators λ and G.

The result is

HBRST =
i

(τ ′′ − τ ′)2

(

C̄′′C′′ − C̄′′C′ + C′′C̄′ + C̄′C′ + (τ ′′ − τ ′)
)

+ λ′G (41)

where the well-ordering ( ′′ operators to the left and ′ operators to the right)

has been achieved by using the anticommutator

{C̄′, C′′} = −(τ ′′ − τ ′), (42)

which is calculated from the solutions (37)-(39), together with the equal-

time (anti)commutators (31). The hermiticity of Eq. (41) can be verified

explicitly by using again the relation (42).

All the terms whose matrix elements produce eigenvalues that are fixed

to zero at boundaries do not contribute to the propagator, as it is the case

of the ghosts and anti-ghosts. Furthermore, reparametrization invariance

demands that the propagator be independent of the end-point values of the

parameter τ . This is guaranteed provided that the matrix elements of HBRST

are zero. In order to show this, we need to calculate the matrix elements for

λ = λ′. This can be done as follows: multiply from the left the first Eq.(38)

by λ and take the appropriate matrix elements on both sides of the resulting

equation. Then, use the fact that the eigenvalues of π are fixed to zero at

the boundaries, together with the equal-time commutator of λ and π. The

result is

(τ ′′ − τ ′)〈τ ′′|λ|τ ′〉 = −
i〈τ ′′|τ ′〉

(px′
2/2m) + pt′

, (43)
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which immediately implies that 〈τ ′′|HBRST |τ
′〉 = 0. As usual, we need to

complete the rewriting of the variation (40) in well ordered form . In our

case, this procedure has to be further applied to the operators x′, p′′t and t′.

Using the corresponding equations of motion we obtain

δ〈τ ′′|τ ′〉 = i〈τ ′′|p′xδx
′′ + (x′′ −

λ′p′x
m

(τ ′′ − τ ′))δp′x + p′tδt
′′

+ (t′′ − λ′(τ ′′ − τ ′))δp′t|τ
′〉. (44)

Finally, after substituting the matrix elements of λ, we are able to integrate

the resulting system of partial differential equations, obtaining

〈x′′, t′′, τ ′′|p′x, p
′
t, τ

′〉 = exp{ip′xx
′′ + ip′tt

′′}/[(px
′ 2/2m) + pt

′], (45)

which is the correct propagator for the parametrized free particle.

An important point that we want to emphasize is the following : suppose

we have constructed a reparametrization invariant version of an arbitrary

theory defined through the Hamiltonian H0, by introducing the parameter τ

in complete analogy to the example considered in this section. Under these

circumstances, the extended Hamiltonian will be always proportional to the

first-class constraint

pt +H0(q, p) ≈ 0, (46)

which arises as a consequence or the imposed reparametrization invariance.

The associated quantum condition upon the physical states is that they must

be annihilated by such constraint, which means that such states can not

depend on the parameter τ and, consequently, the propagator must also

be τ independent. In other words, the matrix elements of the extended

Hamiltonian between the physical states must be zero. The same argument

is valid for the matrix elements of the BRST-Hamiltonian between physical
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states, when we consider a non-canonical fermionic gauge fixing Ψ = P̄λ,

in the BRST approach for a reparametrization-invariant theory. The latter

property, which we have explicitly verified in the case of the parametrized

non-relativistic free particle, is in contradiction with the results presented in

Ref. [9].

4 The relativistic particle

Before considering this problem, let us emphasize two important points which

can be directly inferred from the previous example : (i) in the case where the

dynamics of the ghost-antighost sector of the theory decouples from the re-

maining variables, the effective Hamiltonian has the same form as in Eq.(41),

except that G is now replaced by the corresponding first-class constraint. (ii)

we can always calculate the matrix elements of the Lagrange multiplier as-

sociated with the reparametrization-invariance constraint, by imposing the

condition that the matrix elements of the BRST-Hamiltonian are zero.

With this ideas in mind we now consider the calculation of the propagator

for the relativistic free particle from the point of view of the BRST-BFV

operator formulation. We start from the classical action

S =
∫ τ ′′

τ ′
dτ

1

2

(

1

λ
ẋµẋµ − λm2

)

, (47)

which is reparametrization-invariant provided λ transforms as a Lagrange

multiplier. Here we are taking the standard Minkowski metric ηµν =

diag(−1, 1, 1, 1). The corresponding first-class constraint is now

G = pµpµ +m2 ≈ 0. (48)

Our starting point in the quantum problem is the operator effective action

SBRST =
∫ τ ′′

τ ′

(

<< ẋµpµ − λπ̇ + ˙̄CP + ĊP̄ >> −HBRST

)

dτ
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+ << x′µp′µ >>, (49)

with

HBRST = i{Ψ, Ω}, Ψ = P̄λ, Ω = −iPπ + C
(

pµpµ +m2
)

, (50)

where the BRST-charge has the same structure as in Eq.(29) except for the

explicit form of the constraint G. Here we are dropping the hats over the

operators from the very beginning, in order to simplify the notation. Starting

from the action principle, in a manner completely analogous to the previous

section, we obtain the following non-zero commutation relations

[xµ, pν ] = iδµν , [λ, π] = i, (51)

while the ghosts satisfy those anticommutators given in Eq.(31). The (anti)

commutator algebra allows for the calculation of the BRST-Hamiltonian

HBRST = iP̄P + λ(p2 +m2), (52)

together with the explicit form of the equations of motion

ṗµ = 0, ẋµ − 2λpµ = 0, π̇ +G = 0, λ̇ = 0, (53)

Ṗ = 0, ˙̄C − iP̄ = 0, ˙̄P = 0, Ċ + iP = 0. (54)

The solution of the above equations is

pµ = pµ
′, xµ(τ) = xµ′ + 2λpµ(τ − τ ′), (55)

π(τ) = π′ −G(τ − τ ′), λ = λ′, (56)

P̄ = P̄ ′, C̄(τ) = C̄′ + iP̄(τ − τ ′), P = P ′, C(τ) = C′ − iP(τ − τ ′), (57)

where the primed operators denote integrations constants to be determined

according to the choice of the end-point conditions. The BRST-invariant

18



boundary conditions are chosen in complete analogy with the previous section

by fixing the operators

pµ(τ
′), π(τ ′), C(τ ′), C̄(τ ′), (58)

xµ(τ ′′), π(τ ′′), C(τ ′′), C̄(τ ′′), (59)

at the end-points. This choice implies that the corresponding basis of the

Hilbert space are
{

|pµ
′, π′, C′, C̄′, τ ′〉

}

,
{

〈xµ′′, π′′, C′′, C̄′′, τ ′′|
}

, (60)

respectively. Again, the eigenvalues π′, π′′, C′, C′′, C̄′, C̄′′ are taken to be zero

in order to enforce the BRST-invariance. Since the effective Hamiltonian for

this theory has the same structure as in Eq.(41), we calculate the matrix

elements for λ by demanding a null result for the matrix elements of HBRST .

The answer is

(τ ′′ − τ ′)〈τ ′′|λ|τ ′〉 = −i
〈τ ′′|τ ′〉

p′ 2 +m2
, (61)

which is analogous to that of Eq.(43). Next we calculate the propagator. Its

variation is given by

δ〈τ ′′|τ ′〉 = i〈τ ′′|pµ
′δxµ′′ + xµ′δpµ

′ − λ′(δπ′′ − δπ′)

−P̄ ′(δC′′ − δC′)− P ′(δC̄′′ − δC̄′)−HBRST (δτ
′′ − δτ ′)|τ ′〉. (62)

Using the solutions given in Eqs. (55)-(57) written in terms of the operators

fixed at the end-points, we obtain

δ〈τ ′′|τ ′〉 = i〈τ ′′|pµ
′δxµ′′ + (xµ′′ − 2λp′µ(τ

′′ − τ ′))δpµ
′|τ ′〉, (63)

in a manner completely similar to the previous case. Finally, introducing the

matrix elements of λ and integrating with respect to the end point eigenval-

ues, we get the result

〈xµ′′, τ ′′|pµ
′, τ ′〉 = exp{ipµ

′xµ′′}/[p′ 2 +m2], (64)
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which gives the propagator for the free relativistic particle.

5 The spinning relativistic free particle

As our final example we consider the spinning relativistic free particle. To

this end let us start from the following classical action

S =
∫ τ ′′

τ ′
dτ(ẋµpµ+

i

2
(θ̇µθµ+θ̇5θ5)−NH−MQ0)−

i

2
θ(τ ′′)·θ(τ ′)−[B]τ

′′

τ ′ , (65)

where the variables xµ, pµ, N,H are real-even Grassmann-valued, while θµ, θ5, Q0

are correspondingly real-odd andM is imaginary-odd, in accordance with our

general conventions. The first class constraints H and Q0 are

H = pµpµ +m2, Q0 = pµθ
µ +mθ5. (66)

The explicitly written boundary term − i
2
θ(τ ′′) · θ(τ ′) = − i

2
(θµ(τ ′′)θµ(τ

′) +

θ5(τ
′′)θ5(τ

′)) provides the correct end-point conditions for the fermionic co-

ordinates θµ, θ5 leading to the fixing of the following combinations [10]

1

2
(θµ(τ ′) + θµ(τ ′′)) ≡ ξµ,

1

2
(θ5(τ

′) + θ5(τ
′′)) ≡ ξ5, (67)

which provide unique solutions to the corresponding first-order equations of

motion. There could still be additional boundary terms in the action (65),

related to the choice of the end points conditions for the remaining variables,

which are contained in B. Next we go through the classical BRST formalism.

Let us introduce the vector

GA = (πb, Gb) = (πM , πN ,Q0,H), b = 1, 2, (68)

where the new variables πM and πN are the momenta canonically conjugated

to the Lagrange multipliers M and N . Here ǫ1 = 1, ǫ2 = 0. The ghosts and
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anti-ghosts are taken to be

ηA = (−P1,−iP2, C1, C2), PA = (C̄1, iC̄2, P̄1, P̄2), (69)

where (P1, C̄1), (C
1, P̄1) are even canonically-conjugated ghost-antighost vari-

ables while (P2, C̄2), (C
2, P̄2) are correspondingly odd . With these ingredients

we now construct the classical BRST charge. The general expression for the

case under consideration is

Ω = ηAGA −
1

2
(−1)ǫBηBηCCA

CBPA, (70)

where ǫB is the Grassmann parity of the constraint associated with the vari-

able b and CA
CB are the structure functions of the algebra of constraints,

which in this case is given by

{Q0,Q0}PB = iH, {Q0,H}PB = 0. (71)

Accordingly, the only structure function different from zero is C2
11 = i. Taking

this into account and making the required substitutions in Eq.(70) we get

Ω = −P1πM − iP2πN + C1Q0 + C2H + i(C1)2P̄2, (72)

for the classical BRST charge. The theory considered in this section is also

reparametrization invariant and thus the canonical Hamiltonian is zero.

Now we promote all dynamical variables to operators with the follow-

ing reality properties: xµ, p
µ, N , πN , P̄1, C1,P1, C̄1 are hermitian-even op-

erators, P2, P̄2,M are antihermitian-odd operators and C̄2, C
2, θµ, θ5, πM are

hermitian-odd operators. The quantum effective action that we start from is

SBRST =
∫ τ ′′

τ ′
dτ
(

<< ẋµpµ +
i

2
(θ̇µθµ + θ̇5θ5)−Nπ̇N −Mπ̇M

+ ˙̄C1P
1 + Ċ1P̄1 +

˙̄C2P
2 + Ċ2P̄2 >> −HBRST

)

+ << −
i

2
θ(τ ′′) · θ(τ ′) + xµ′pµ

′ >>, (73)
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where

HBRST = i{Ψ, Ω}, Ψ =<< P̄1M + P̄2N >>,

Ω =<< −P1πM − iP2πN + C1Q0 + C2H + i(C1)2P̄2 >> . (74)

The (anti)commutation relations arising from the action principle are

[xµ, pν ] = iηµν {θµ, θν} = −ηµν {θ5, θ5} = −1, (75)

{M,πM} = −i [N, πN ] = i, (76)

[P̄1, C
1] = −[C1, P̄1] = [P1, C̄1] = −[C̄1,P

1] = −i, (77)

{P̄2, C
2} = {C2, P̄2} = {C̄2,P

2} = {P2, C̄2} = −i. (78)

The calculation of the fermionic anticommutators in Eq.(75) is a particular

case of the work in Ref.[8]. Using the above results one can directly ver-

ify the anticommutator {Ω, Ω} = 0 and also we can calculate the BRST-

Hamiltonian

HBRST = −P̄1P
1 +MQ0 + 2iMC1P̄2 + iP̄2P

2 +NH, (79)

which leads to the following explicit form for the quantum effective action

SBRST =
∫ τ ′′

τ ′
dτ
(

<< ẋµpµ +
i

2
(θ̇µθµ + θ̇5θ5)−Nπ̇N −Mπ̇M

+ ˙̄C1P
1 + Ċ1P̄1 +

˙̄C2P
2 + Ċ2P̄2 >> +P̄1P

1 −MQ0

−2iMC1P̄2 − iP̄2P
2 −NH

)

<< −
i

2
θ(τ ′′) · θ(τ ′) + xµ′pµ

′ >> . (80)

The reality properties of the remaining operators are: H, HBRST are hermitian-

even, Q0,Ω are hermitian-odd, while Ψ is antihermitian-odd. The corre-

sponding equations of motion are

ṗµ = 0, ẋµ −Mθµ − 2Npµ = 0, θ̇µ + iMpµ = 0, θ̇5 + iMm = 0,
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π̇M +Q0 + 2iC1P̄2 = 0, Ṁ = 0, ˙πN +H = 0, Ṅ = 0,

Ṗ1 = 0, ˙̄C1 + P̄1 = 0, Ċ1 + P1 = 0, ˙̄P1 + 2iMP̄2 = 0,

Ṗ2 = 0, ˙̄C2 − iP̄2 = 0, ˙̄P2 = 0, Ċ2 − 2iMC1 + iP2 = 0.

The general solution of the above system is

pµ = pµ
′ ,P1 = P1′ ,M = M ′ , N = N ′ ,P2 = P2′, P̄2 = P̄ ′

2, (81)

xµ(τ) = x′µ + (Mξµ + 2Npµ)(τ − τ ′), (82)

θµ(τ) = −iMpµτ + ξµ +
i

2
Mpµ(τ ′′ + τ ′), (83)

θ5(τ) = −iMmτ + ξ5 +
i

2
Mm(τ ′′ + τ ′), (84)

C1(τ) = C′1 −P1(τ − τ ′), (85)

P̄1(τ) = P̄ ′
1 − 2iMP̄2(τ − τ ′), (86)

C̄1(τ) = C̄′
1 − (P̄ ′

1 − iMP̄2(τ − τ ′))(τ − τ ′), (87)

C̄2(τ) = C̄′
2 + iP̄2(τ − τ ′), (88)

C2(τ) = C′2 + iM(2C′1 −P1(τ − τ ′))(τ − τ ′)− iP2(τ − τ ′), (89)

πN(τ) = π′
N −H(τ − τ ′), (90)

πM (τ) = π′
M − (Q0 + i(2C′1 − P1(τ − τ ′))P̄2)(τ − τ ′). (91)

The notation is the same as in the previous sections.

The boundary conditions that we take are completely similar to our previ-

ous cases. The only novelty that we encounter here is related to the fermionic

degrees of freedom described by the θ-variables. In order to clearly elucidate
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this point, let us consider for a moment the contribution of the fermionic

degrees of freedom θµ to the change of the effective action

δθµSBRST =
∫ τ ′′

τ ′
dτ(

i

2
θ̇µδθµ +

i

2
δθ̇µθµ −Mδθµp

µ)

−
i

2
(δθµ(τ ′′)θµ(τ

′) + θµ(τ ′′)δθµ(τ
′))

=
∫ τ ′′

τ ′
dτ((iθ̇µ −Mpµ)δθµ) +

i

2
δ(θµ(τ ′) + θµ(τ ′′))(θµ(τ

′′)− θµ(τ
′)).

(92)

Substituting the solution of the equations of motion for θµ (83), together

with the definition (67) of the variable ξµ we obtain

δθµSBRST = δξµMpµ(τ
′′ − τ ′). (93)

The same analysis can be applied to θ5.

The end-point operators are chosen in such a way that the fixed eigen-

values are

pµ(τ
′) = pµ

′, xµ(τ ′′) = xµ′′ (94)

1

2
(θµ(τ ′) + θµ(τ ′′)) = ξµ,

1

2
(θ5(τ

′) + θ5(τ
′′)) = ξ5, (95)

πN(τ
′) = πN (τ

′′) = Ci(τ ′) = Ci(τ ′′) = C̄i(τ
′) = C̄i(τ

′′) = 0, i = 1, 2, (96)

together with the corresponding BRST-invariant basis

{〈xµ′′, πN
′′, πM

′′, θ′′
µ
(ξµ), θ′′5(ξ5), C

i′′, C̄′′
i , τ

′′|},

{|pµ
′, πN

′, πM
′, θ′

µ
(ξµ), θ′5(ξ5), C

i′, C̄′
i, τ

′〉}. (97)

Before going to the calculation of the propagator, let us rewrite the effective

Hamiltonian (79) in well ordered form. To this end, we use the equations of
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motion together with the following (anti)commutation relations at different

times

[C̄′
1, C

1′′] = −i(τ ′′ − τ ′), {C̄′
2, C

2′′} = −(τ ′′ − τ ′). (98)

The result is

HBRST =
1

(τ ′′ − τ ′)2
[−(C̄′′

1C
1′′ − C̄′′

1C
1′ − C1′′C̄′

1 + C̄′
1C

1′)

+ i(C̄′′
2C

2′′ − C̄′′
2C

2′ + C2′′C̄′
2 + C̄′

2C
2′)]

+ M(ξµp′µ +mξ5) +N(p′2 +m2), (99)

Again, it is a direct matter to verify that HBRST is hermitian.

Before going to the calculation of the propagator it is necessary to estab-

lish the following results

(τ ′′ − τ ′)〈τ ′′|N |τ ′〉H′ = −i〈τ ′′|τ ′〉, (τ ′′ − τ ′)〈τ ′′|M |τ ′〉Q′
0 = i〈τ ′′|τ ′〉, (100)

where H′ = (p′2 + m2) and Q′
0 = ξµp′µ + mξ5. These matrix elements are

calculated from Eqs.(90) and (91) respectively and again imply the condition

that the matrix elements of the BRST-Hamiltonian between physical states

must be zero.

The general variation of the propagator is

δ〈τ ′′|τ ′〉 = i〈τ ′′|p′µδx
µ′′ + xµ′δpµ

′ + δξµMp′µ(τ ′′ − τ ′) + δξ5Mm(τ ′′ − τ ′)|τ ′〉.

(101)

After substituting the solution of the equations of motion for x′µ in terms of

the boundary operators and after performing the necessary integrations, we

obtain the required propagator

〈τ ′′|τ ′〉 = exp[ip′x′′]
(p′µξ

µ +mξ5)

(p′2 +m2)
. (102)
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In conclusion, starting from the quantized version of the BRST-BFV

effective action given in Eq.(22), together with the use of the Schwinger action

principle and the imposition of correct BRST-invariant boundary conditions,

we have obtained the propagators of the parametrized non-relativistic free

particle and of the relativistic free particle, in the spinless and spining cases.
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