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Abstract

In this paper we show how the BRST quantization can be applied
to systems possessing only second-class constraints through their con-
version to some first-class ones starting with our method exposed in
[Nucl.Phys. B456 (1995)473]. Thus, it is proved that i) for a certain
class of second-class systems there exists a standard coupling between
the variables of the original phase-space and some extravariables such
that we can transform the original system into a one-parameter fam-
ily of first-class systems; ii) the BRST quantization of this family in a
standard gauge leads to the same path integral as that of the original
system. The analysis is accomplished in both reducible and irreducible
cases. In the same time, there is obtained the Lagrangian action of the
first-class family and its provenience is clarified. In this context, the
Wess-Zumino action is also derived. The results from the theoretical
part of the paper are exemplified in detail for the massive Yang-Mills
theory and for the massive abelian three-form gauge fields.
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1 Introduction

During the last years, the BRST method imposed itself as the only covariant
quantization method for gauge theories. It is well-known that at the Hamil-
tonian level, to gauge theories correspond first (and eventually second)-class
constraints. The canonical quantization of the theories with both first and
second-class constraints has been accomplished in [1] and [2], while the BRST
quantization of such theories is presented in [3]. A natural tendency is that
of also quantizing the systems possessing only second-class constraints in the
BRST formalism. This cannot be done directly because these theories do not
possess gauge invariances. This is why it is necessary to implement in the
theory some gauge invariances. This can be achieved by transforming the
original second-class system into a first-class one in the original phase-space
[4] or into a larger one obtained from the original phase-space by introducing
some extra variables [5]-[6]. The BRST quantization of those second-class
systems whose constraint matrix does not depend on the canonical variables
is shown in [4] and is realized through implementing some gauge invariances
in the original phase-space. Many authors [7]-[16] have applied the methods
from [5]-[6] and succeeded in quantizing (in the BV, BRST or other methods)
various models. The BRST quantization of second-class systems in a larger
phase-space has not been gained in a general manner up to present. This
is actually the purpose of our work. Namely, in this paper it will be shown
how to realize in general the BRST quantization in a larger phase-space for
systems subject only to second-class constraints. More precisely, starting
with an original second-class system, we shall implement the following steps:
i) we shall transform this system into a first-class one in the original phase-
space [4]; ii) from this last system we shall build a one-parameter family of
first-class systems in a larger phase-space in the case of irreducible original
second-class constraints, as well as in the case where these initial constraints
preserve somehow the trace of reducibility of a certain first-class system; iii)
we shall quantize the first-class family in the light of the BRST formalism,
obtaining in the end that its path integral is identical with the one of the
original system. This is the meaning of applying the BRST quantization
to second-class systems. We mention that our method of turning the origi-
nal second-class system into a first-class family to be employed in step ii) is
different from that exposed in [5]-[6]. In this paper we use for the sake of
simplicity the notations of finite-dimensional analytical mechanics, but the



analysis can be straightforwardly extended to field theory. Related to the
BRST quantization, we follow the same lines as in [17].

The paper is organized into seven sections. In Sec.2 we shall briefly review
the BRST quantization of second-class constrained systems in the original
phase-space. Sec.3 is devoted to the construction of the one-parameter family
of first-class systems. There it will be proved the existence of the Hamiltonian
of the first-class family and it will be obtained its concrete form. In Sec.4
we shall quantize in the antifield BRST formalism the first-class family and
prove that its path integral coincides with the one of the original system.
Sec.5 focuses on the Lagrangian approach of the first-class family. Here it
will be inferred the Lagrangian form of the path integral for the first-class
family under some simple assumptions and it will be clarified the origin of
this family. The Wess-Zumino action [18] associated with the introduction
of extravariables is also emphasised. In Sec.6 there will be exposed two
examples illustrating the results derived in the theoretical part of the paper.
Sec.7 outlines some conclusions.

2 The BRST quantization of second-class sys-
tems in the original phase-space

We follow the presentation of Ref. [4], to which we refer for details and proofs.
Our starting point is represented by a system with the canonical Hamiltonian
H, described by N canonical pairs (¢, p;), and subject to the second-class
constraints y, = 0, where x, = (G,, C,) such that the constraint functions
G, to satisfy

[Ga, Gb] = C, “Ge. (1)

The symbol [, ] denotes the Poisson bracket. Because the constraint functions
Xa are second-class, it results simply from (fll) that

det Ch3 = (det (Ag))? # 0, (2)

where Cup = [Xa, Xp) and Ay = [Cy, Gp]. We treat only the case where Ayy's
do not depend on the canonical variables.

The first step in our quantization procedure consists in the construction
of a first-class Hamiltonian with respect to the functions GG,. Related to this
matter, the next theorem holds.



Theorem 1 Let H be the canonical Hamiltonian of the system subject to
the second-class constraints, xo = 0. Then, there exists a function H =
H+ “extraterms in q’s and p’s” such that H is first-class with respect to the
constraints G, =0

(7,G.| = .G, (3)

with f° some functions of ¢’s and p’s.

Proof.  The proof is given in [4].0
The concrete form of H reads [4]

7= ity LG A @] amea,]-
= (]{7 + 1)| ’ mrg41 ’ mg ) ) mi
AU, Cr . Oy + NG, (4)

where A% is the inverse of Ay, and A\*’s are some functions taken such that
fo=xC, v+ (=) [)\b, Ga]. In the last formula, €, denotes the Grassmann
parity of the function G,. Making a co-ordinate transformation of the type
[4]

(qlvpi) — (Qav Pa7 ZAvﬁA) 9 (5)

such that P, = G,, Q* = Ay, [ZA,PG} = [Pa, Pu) =0, and (ZA,]_DA) to be
canonical pairs, we associate to the original system described by the action

&Wmmﬂz/ﬁ@%—H—Wm) (6)
a first-class system with the action
S0 [Q", Par 22 Bss 0] = [t (Q"Pu+ #2pa — H=v"R). (7)

In (), H (Q“, zA,]_)A) =H-)\G,=H (0, zA,]_)A) =h (zA,]_)A), as deduced
in [4]. Action ([]) is invariant under the gauge transformations §.Q* = €,
Sv® = €2, 622 = 6pa = 0P, = 0. Transformation ([]) is not canonical in
general, but its Jacobian is equal to unity, as indicated in [4].

Let’s pass now to the antifield BRST quantization of action ([]). More
precisely, we shall show that the path integral associated to action ( [f) is
the same with the one corresponding to ([]) after its BRST quantization in
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a gauge-fixing fermion implementing the canonical gauge conditions C, = 0.
These gauge conditions are equivalent to the conditions Q* = 0. The next
theorem is helpful in finding the correct form of the above mentioned gauge-
fixing fermion.

Theorem 2 There ezists a set of functions f*(Q) such that

( )k+1 E)k—i-lH

E: (k+ 1)1 0Q™ ... 9Q

—Aabf“ @) f QU ...Q". (8

Proof.  The proof is given in [4].0
The form of the functions f*(Q) reads [4]

%
¢ _ et (“b)a—gH by b2
Q) = Q- 3|A QPO OQP2 Q"Q” +
Q=0
%
> 1 akfc (Q) . .
> 5 agm. ogn| @@ (9
Q=0
where
1 5>ka (Q) B (em) 1 o kLET
Moge . ogr o \Grniagrage oge|
9= Q=0
G fa S k—jt1 4b
LS S ) T (Q)

0Q¢% . ..0Q¢%
Q=0

)

In the last formulas, A is the inverse of the matrix Awap) = % (Agp + Apa)-
It appears clearly from (f) that f*(Q) = 0 implies Q* = 0. Taking the
gauge-fixing fermion of the form ¥ = — [ dt (ﬁ“Aab fb (Q)), we obtain

21 (k—j + ! 0QmaQer ... Qe

Zy =7, (10)

where Zy is the path integral of the first-class system in the gauge ¥, and Z
is the path integral of the original system and is given by [17]

7 = /DquDu (det Ca5)1/2 exp (iSO [qi,pi,uo‘}) . (11)
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At the level of independent variables (ZA,]_DA), formula ([[T]) becomes
7 - /DZA Dp, exp (i/dt (+*Pa —h (ZA,pA)D . (12)

3 The construction of the one-parameter fam-
ily of first-class systems

Within this section we shall extend the original phase-space and shall con-
struct in the new phase-space a one-parameter family of first-class systems
associated to the original theory. In the sequel we shall consider only those
purely bosonic systems with the primary constraints G, = 0 and the sec-
ondary ones C, = 0, and whose phase-space is described by the real functions
(¢, pi). The case of the systems having only primary second-class constraints
is treated in [19]. We make, without affecting the generality, the assumption
that the functions C, can be written under the form

C,=0C"+C, (13)

such that [CY, CP] = [G,, C}] = 0 strongly, and [C}, Gy] = Au. Indeed, the
form ([[3) is not an additional restriction because if we make the transforma-
tion () we can always take C? = m, (p,) and C} = C, — m, (Dp), for some
functions m,. In order to build the first-class family invoked above, the next

theorem is crucial in order to couple the original variables with the ones to
be added below.

Theorem 3 Let H be the canonical Hamiltonian of a system possessing the
primary second-class constraints P, = 0, and the secondary ones @), = 0.
Then,

i) the sole real solution of the system f*(Q) =0, where f*(Q) fulfill (§),
s Q% = 0;

ii) det (WT&Q)) # 0, for every Q* real.
Proof. i) From (J) it results directly that @* = 0 is solution for f* (Q)) = 0.
It remains to prove that this is the only real solution. Representing the



canonical Hamiltonian as a series of powers in Q%’s, [4]
H((Q"2%7a)) = H(0,2%7a) +
< 1 &H (Qaa ZAJ_)A)

= “QY, 14
= G0 .. QW oo Q Q (14)
and introducing ([[4) in (§), we obtain
AWf Q@ =H (0.5 5,) - H (@ A7) (15)
Differentiating ([3) with respect to Q°, it follows
Ly 0rQ) gy OH(Q2%7)
5@ a0 Q) =— 90° : (16)

On the other hand, as Q* = 0 are a consequence of the constraints P, = 0,
it results
B 0H (Q“,ZA,ﬁA)
c aQC

Comparing ([@) and ([[7), it is clear that if there exists an other real solution
of f*(Q) =0 than Q* = 0, e.g. Q% # 0, then the system will also have the
secondary constraints Q3 = 0, which contradicts the hypotheses. Thus, i) is
proved.

ii) From (g) we get det ( a];g?)) ‘Q—O = 1, so the last determinant is non-
vanishing. In this way, it remains to be proved that

i (212

Using the result from i), it follows that we can represent f(()) under the
form

=0=Q°=0. (17)

£ 0, for every Q% real. (18)
Q#0

Q) =ve Q" (19)
where V4 , is an invertible matrix depending on Q%’s, z2’s and p,’s. With
the aid of the fact that Q* = 0 are the only secondary constraints, we have

B OH (Q“,ZA,]_)A)

S 4 b
5o =V, (20)




with V, an invertible matrix depending on the same variables as V¢ p- In-

troducing ([[9) and (RQ) in ( [[4), we infer

af°(Q)
c an

1
— AV

5 = Ve, for every real Q* # 0. (21)

Taking the determinant in both hands of (BI]) and taking into account that
the V® s and V4 are both invertible, it results immediately ([§). This
proves ii).0

It is easy to see that ii) implies det (%a—(gbc)) # 0, for every real functions

Cy. In the last relation, f(C) is obtained from f?(Q) using Q* = A®C,.
The importance of the last theorem resides in the fact that we can implement
in a simple manner some secondary first-class constraints ~, = 0 for the first-
class family we intend to construct through the term v, f* (C') which we shall
introduce in the Hamiltonian of this family. It is precisely this term which will
couple the original variables with the new ones. This way of coupling is one
of the main points in our approach and reveals the main difference between
our conversion method and the one presented in [5]-[6]. Indeed, choosing 7,

such that [G,, 7] = 0 strongly, we infer that [Ga, Yo rf? (C’)} —Ag 6’(;}0 Yo

If we succeed in finding a Hamiltonian H* for the first-class family satisfying
[H*, G,] = {% (G NE } then the consistency of the primary constraints

G, = 0 will imply the secondary constraints v, = 0 as det ( ) # 0. This
problem will be treated in the next two subsections. The sphttlng ([3) of the
functions C, will evidence two important cases, namely the irreducible case
where the functions C? are all independent, and the reducible case where
these functions are reducible. These cases will be treated separately.

3.1 The irreducible case

In this subsection we shall consider the case of the functions C? being all
independent. Then, the construction of the first-class family goes as follows.
For every pair (G,,C,) we introduce a canonical pair (2%,7,), so the new
phase-space will have the local co-ordinates (¢*, p;, 2%, p,). We construct the
Hamiltonian H* of the first-class family such that the gauge algebra to be

2f°(C)

[GaaH*] = _Aca o0 Yo,

(22)



fran E] = [C2, £2()] . (23)
[Gaa 'Vb] =0, (24)

with the choice
Ya = Cq + AP, (25)

A being the non-vanishing parameter of the first-class family. We take the
Hamiltonian H* of the form

* )\2 ab— — a i a —
H :H/—?A bpapb—l-%f (C)+g(Q>piaZ>pa)> (26)

where

-1
H =H+ 5&*’0302, (27)

and g (¢', p;, 2%,P,) is a function to be further derived. We notice that the
first piece of H* is the Hamiltonian of the first-class system in the original
phase-space associated to the original theory. In fact, H and H are in the
same class of gauge invariant functions with respect to the G,’s. In principle,
the second term in the right hand of (27) can be taken any function of C2’s.
As it will be seen, the necessity of taking this term quadratic in C%’s is
directly connected with the choice of the quadratic term in the momenta p,’s
from (24). This last quadratic term is motivated by a simpler passing to the
Lagrangian formalism (see Sec.5). Replacing ( P8) in (29) and (B3)), we get
the equations

(Gag (¢',pi2",7,)] =0, (28)

[C’S, H'} + A {]_Ja,g (ql,pi, z“,]_aa)] =0. (29)
Now, it appears more obviously the reason of choosing the gauge algebra
of the form (R3-R4), the secondary first-class constraints as in ( BJ) and
the Hamiltonian H* like in (Bg). With these choices, the first-class family is
determined from the original system up to the function g (¢*, p;, 2%, D, ), which
has to fulfill (B§29). The next theorem shows that this function can be also
completely gained from the original system.

Theorem 4 There exists a function g (¢', p;, 2%, PD,) satisfying (28-29).



Proof. The proof is intended to be constructive, finally obtaining the
concrete form of g (¢, p;, 2%, P,). We represent this function as a series of
powers in 2%’s with coefficients depending on (¢*, p;, P,)

g (d',pi,2"B,) = i Vs (¢ pinP) 2 2™ (30)
k=1

Inserting (B() in (BY) and identifying the coefficients of the same powers in
z%’s, we find the following tower of equations

(1)

N ga=[COH, (31)

(2) (1)
N G aray= lejl, g@] : (32)

(k) (k—1)
kX gal...ak: [Cgﬂ g ag...ak] ) (33)

Using (BI}B3), we deduce in a simple manner

(k) 1
i |

9aran= 737 or AN ex e [or iy L IO I B (34)

ag?

In this way, we proved that (B{) with the coefficients (B4) is the solution of
(R9). Using the Jacobi identity we get immediately

(k)
[Gau g al...ak‘| = Ov fO’I‘ every k? (35>

so (BY) is also fulfilled. This ends the proof.O
Because [C?, H'] = [03, f]}, we finally obtain

g (qi>Pi,2a>Z_9a) = i ﬁ [021, {022, e [ng,ﬁl} H 2% 2% (36)

k=1
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In this way, we associated to the original system depicted by action (f]) a
one-parameter family of first-class systems described by the action

SO [qi>pia Za,Z_%, 'Ua> ua} = /dt (quZ + zapa - H* - UaGa - ua7a) . (37)

Action (B7) is invariant under the gauge transformations:

0’ = [¢', Ga] € + |¢',C2] €5, (38)
6epi = [plu Ga] 6(11 + {pm CS} 6(217 (39>
0.2" = ey, (40)
0¢p, =0, (41)
50" = €4 — C,, 0P, (42)
a ~a a afa C
b = & + [CF. 1 (C)] & — B CS iy (43)

These gauge transformations will be used in Sec.4 to the BRST quantization
of the irreducible first-class family.

3.2 The reducible case

Within this subsection, we shall examine the case where the functions C? are
not all independent. This means that there exist some functions on ¢*’s and
pi’s denoted by Z¢ , not all vanishing, such that

7Z% C% = 0. (44)

a1 ~a

We note that relations ([4) represent some identities holding for all ¢* ’s and
p;’s. Taking the Poisson brackets of G,’s and C?’s with both hands of (f4),
we get the following identities

Gy, 78, ] =0, (45)

v, 25, ] =o. (46)

With the aid of () we deduce, supposing that ([[4) are the sole reducibility
relations for C%’s, the identities

2%, 2%, ] = 0. (47)

ai?
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At this point we are able to build consistently the first-class family in the
reducible case. This construction goes as follows. For every pair (G,, C,) we
introduce a new canonical pair (2%,p,) such that the consistency of the G,’s
to imply the secondary constraints v, = 0, with v* given by (5). From ([4)
it results simply

2% 70 = A2 5, = 0. (48)

For every relation (fI§) we add a new canonical pair (y*,m,, ) together with
the constraint
Yar = Tay = 0, (49)

such that the consistency of the last constraints to imply the secondary ones
of the form
7{11 = _Z?zlpa = 0’ (50)

which are precisely () up to a factor. Through this mechanism we cannot
generate new constraints even if the reducibility functions Z¢ are not all
independent. In general, we can assume that there exist some non-vanishing
functions of (¢*, p;), denoted by Z e Z%=1, such that the next identities
to hold

25,2 =, (51)
Z%-2 791 = 0, (52)

From (B1)) we draw that
2%, =0. (59)

If we repeated now the procedure between formulas (E§-50), we would in-
troduce some new canonical pairs (z%,11,,) together with the constraints
IT,, = 0, such that their consistency to induce the “tertiary constraints”

Fon = 2 7,, = 0. (54)

Relations (B4) are not constraints but identities due to (BIl). Thus, the
maximal set of constraints we can generate through the above procedure is
given by G, = 0, v, = 0 and (E9E0). From (E3-H7) it follows that all the
previous constraints are first-class. A new feature of these constraints is that
they become reducible. The reducibility relations read

Z‘Z/llfya _I_ )\7[11 = O (55)
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In the sequel, we shall build the Hamiltonian H* of the reducible first-
class family to satisfy

[Ga, I:I*} = _Aca%é?%a (56>
[7a1a F[*} = Yar+ (57)

e, 5] = [C2, £2(O)] (58)
Ty H*| = M5, 70, (59)

with M some functions to be subsequently determined. In the reducible
case, we take the Hamiltonian H* of the form

~ A2 ar
H = H' - ?Aabpapb + f}/a.fa (C) - ya17a1 +9 (qzaph Zaa]_)a’ ya17 7Ta1) ’ (60)

with g (¢%, ps, 2%, D,, Y™, Ta, ) @ function to be further obtained. Inserting (BQ)
in (pG-HY) we achieve the following equations

(Gar 3 (491 2" s y™ 701 )| = O, (61)
|:7ra1’§ (qi>pia Za@w?f“a ﬂ-al)} = 0’ (62)
[02, H/} + A [pa,g (qi,pi, 2% Doy Y, ﬁal)] =0. (63)

It is simply to observe that the function g (¢*, p;, 2%,P,) given by (Bf) verifies
automatically (FTH6J). Thus, it is left to be shown that g (¢*, p;, 2%, D, verifies
also (B9). This is the aim of the next theorem.

Theorem 5 Let f be a solution of equations ([631463). Then, f satisfies (P9),
where H* is given by ([6Q) with g = f.
Proof.  Taking the Poisson bracket of both hands in (53) with H* we get

2% 70 H| + A [7,,, HY] = 0. (64)
From (B§) (which is verified if f is solution for (F1463)) and (£4) we infer

1

For B = =5 (2%, [0, £ (@)] + [0, B ) 7 (65)
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The last relations are nothing but (f9), with

1

M, = ;N

(24, [C3. £ (O)] + |74, HY]) - (66)

This completes the proof.0 .
Now it is clear the reason for choosing H* to fulfill (F6-59). Indeed,
accordingly the above theorem equations (bG-H9) are compatible with

3 (¢, 2" Pur ™ 7ar) = 9 (0,12, Pa) (67)
with g given by (Bg).

To conclude with, we associated to the original theory (f) a reducible
first-class family described by the action

S(/] [qiapia ZQJ_?@, ya1> Tays Uaa Ua1>uaa ual} = /dt (quz_l_
2D, + YT, — H* —v°G, — V4, — Uy, — u‘“%l) ) (68)

The gauge invariances of action (B§) are deduced to be

0t = |d', Ga] €6 + [0, CF) & — ', 2%, | Pacs (69)
8epi = [pi, Gl € + [pi. C% € — [pi, 2%, ] Puct, (70)
02" = Neyg — 29, €, (71)
0P, = 0, (72)
dey™ = €§t, (73)
deTq, = 0, (74)
dv® = éf — O, “vbef, (75)
o™ = é, (76)

5Eu“ = 6(21 + [01?7 .fa (C)} 63 - Acb aj;c(,C) Eli -
(28, 08 5] + 78, B e + 7ot ()

14



deu™ = €3' + €] + Aez'. (78)

The gauge parameters eg' appear due to the reducibility relations (Fj) which
allow us to introduce the additional gauge invariances [17], [20]

seut = 745 €, (79)
where u® = (u®,u™), and Z4 = ( 5> A0 ) are the reducibility functions

from (B3). The gauge invariances (BH7g) will be employed within the BRST
quantization of the reducible first-class family.

4 The antifield BRST quantization of the
first-class family

In this section we shall quantize the first-class families constructed earlier
in the context of the antifield BRST formalism based on path integrals. As
there appear major differences between the reducible and irreducible cases,
we shall treat them separately.

4.1 The quantization in the irreducible case

The starting point is given by action (B7) together with the gauge transfor-
mations (B-fL3). Because the constraints are irreducible, the minimal ghost
spectrum [17] will contain only the ghosts (7§, n§) correspondent to the gauge
parameters (€f, €5). The Grassmann parities and ghost numbers of the above
ghosts are all equal to one. For all the variables ® = (¢*, p;, 2%, D,, v*, u®) we
introduce the antifields [17]

(I);:(Q;Z? a’p ) a? )>

all of Grassmann parity one and ghost number minus one. The non-minimal
sector is taken to contain the variables

(Blll’ B>1km Bg? B;a?ﬁimﬁ?ﬁ;a’ﬁg) ‘

Then, the non-minimal solution of the master equation reads

| oG, , 9C°
S = SO [qlaphzaapa?va’u /dt <q’ < ap + ap )
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oG, n aco
p 8 i 771 8q2
o (s 0 9 (C)
Uq (772 + {Cl())v f (C)} 773 - Acb oC Wlf +
MaB1 + 7285 +..) (80)
where " signify the terms of antighost numbers greater than one. These
terms are not essential because of the special form of the gauge-fixing fermion

to be outlined below. The standard gauge-fixing fermion in our methods
reads

s ) + Azgng + vy (7 — Gy, ') +

(13

= — [t (DS () — NEAW) (81)
where )
pe=Ce— .. CP] 2. (82)

We observe that U’ reduces to ¥ (given in Sec.2) in the absence of the ex-
travariables (z* = 0). The gauge-fixing fermion (BI]) implements the canon-
ical gauge conditions C; = 0 and 2* = 0. Eliminating in the usual manner
the antifields from (B(), we derive the next gauge-fixed action

Sy = So [qi pi,z“,ﬁa,v“,u“} +/dt >\2ﬁ‘21Aabng + AA 3, Bs 2 —
af’ (p)
e (Beant = 520 [[Cer 8] €2 ) -
220 (5t L8] 2]
AwBif* (p)). (83)
Employing repeatedly the Jacobi identity together with the fact that the
term %f 6(” ) is symmetric in b and ¢, it is simply to see that (§3) is invariant

under the followmg BRST transformations

sq' = |¢', Ga| i + |d', ] s, (84)
spi = [pi, Gal i + i, CY) 1 (85)
524 = Anjs, (86)

P, =0, (87)

sv* =1 — Gy, "1, (88)
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of* (C)

sut =g + |G f* ()] mh = D=5 5=, (89)
sny = sng =0, (90)

sy = BY, (91)

sty = —B3, (92)

sB{ = sBy = 0. (93)

The path integral correspondent to action (B3) takes the form

Ly = / Dq' Dp; Dz* Dp, D1t Dt D13 Dy Dv® Du* DB DB -
exp (iSy) . (94)

Integrating in (P4) over all the variables excepting the ¢'’s and p;’s we derive
the following form of the path integral for the irreducible first-class family

Ty = / Dq Dp; det @A) [T G T3 () e (z / dt ('pi — ﬁz)). (95)

If we integrate in ([[1]) over u®’s, it follows
T = 2. (96)

After performing the above integration, the exponents of the path integrals

(1) and (P3) differ through a term which vanishes when C, = 0, but this

term is not important because of the factors [[¢ (C}) in the measure from
b

(PT). Tt is not hard to see that if we make the transformation (f]) in (93) and
further integrate over (Q%, P,), we get that Zy  will be given by ([J). We
notify that (D7) is identical to the path integral derived in [3] in the case of
purely second-class systems. Formula (Df]) represents the main result of this
subsection and one of the major results in this paper. It states that the path
integral of the irreducible first-class family is the same with the one of the
original second-class system in our standard gauge (B1]). This is the meaning
of applying the BRST quantization to second-class systems.
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4.2 The quantization in the reducible case

In this subsection we start with action (B§) and its gauge invariances (9-
[[§). For the sake of generality, we presume that the first-class family is k-th
order reducible, with £ > 2. Then, the ghost spectrum [17] contains the
ghosts (n{,ns,ns*,ny*,ne'), all with the Grassmann parities and ghost num-
bers equal to one, as well as the ghosts n% . these ones with the Grassmann
parities k (mod 2) and ghost numbers k. The antifield spectrum contains
the antifields (q;-*, P, 2k DM, Yoy T 00, UG U, U, 1), all with the Grassmann
parities equal to one and ghost numbers equal to minus one, as well as the
antifields n;  with the Grassmann parities & (mod 2) and ghost numbers

(—k). Then, the minimal solution of the master equation is expressed by

/ . o . oG, , 0CY .
S :SO |:q7pi7z 7pa7y 7Tf117v v U U1 /dt{ql <8 n 8

i - 8G T+ aCO - aZ?“— + 2, (A 4 ) +
apl pan4 8 i 8 i a i an4 a 7]2 17]4

Yo 5" + v (fff — Gy, “vbnf) gt g, (75 et Ang) + g [+

8.5 @] s - 22 = S (2, [ 57 (O] + [0, 7)o +
Z%. s } + Zna] A/ } : (97)

(13 7

where signify other terms with antighost numbers greater than one,
which are not important due to the concrete form of the gauge-fixing fermion
to be given below. We introduce a non-minimal sector [17] such that the non-
minimal solution of the master equation to become

S" = '+ [t (75Bs + 750 B5 + T Buay + 75 Boa, + 75" Bay
k
27" B, | (98)
j=2

The gauge-fixing fermion in the reducible case has the form

k
\Il// = \I]/ + /dt <_ﬁ1a1ya1 - ﬁ2a17]zl - ﬁi’)alual + Zﬁajnaj) ) (99>

=2
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where U’ is given in (B)). The gauge-fixing fermion (09) implements the canon-
ical gauge conditions C, = 0, 2% = 0, y** = 0, u** = 0. Eliminating as usually
the antifields from (9§), we infer the following gauge-fixed action

b

—a af p — al —=a a
v = Sw +/dt (nlAab% (es 2%, | Bt = M5 0w 2%, i

— a 1— - a a a a a
Tay 3" — Xn&zl (7741 + 3t + >\7751) — Yy Bia, — 14" Boa, —

1 k
XualBgal +> % Baj) : (100)

Jj=2

with Sy as in (BJ). Integrating now in the path integral of the reducible first-
class family, Zy~ (corresponding to ([[00)) over all the variables excepting ¢"’s
and p;’s, we find

Loy = Z. (101)

Formula ([[01]) is the basic result of this subsection and, actually, of this
paper. It expresses the fact that in the reducible case the path integral of
the first-class family is the same with the one of the original second-class
theory. We are able now to explain in what sense the original second-class
system maintains the trace of reducibility of a certain first-class system. At
the classical level, we obtain from (B§) putting all the extravariables equal
to zero the Hamiltonian action of the original system. Thus, at the classical
level the second-class system comes from the reducible first-class family (Bg).
At the path integral level, formula ([[0]) shows that the path integral of
the original system is coming from the BRST quantization of the reducible
first-class family. So, the original system can be regarded at both levels
as coming from the reducible first-class family. This is the meaning of the
original system preserving the relic of the reducibility of the first-class family.

5 The Lagrangian approach of the first-class
family

In this section we shall derive under some simplifying assumptions the La-
grangian form of the path integrals deduced in the previous section and clarify
the physical origin of the first-class family in both reducible and irreducible
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cases. Related to the physical origin, we shall emphasise the Wess-Zumino
action in these cases. A different way of deriving the Lagrangian form of
the path integral is presented in [22]. There, the linear part in the Lagrange
multipliers associated to the secondary, tertiary, ... constraints are elim-
inated through a canonical transformation.Further, the integration in the
path integral over the momenta and the Lagrange multipliers of the primary
constraints leads to a Lagrangian, while the integration over the remaining
multipliers (by stationary-phase method) gives the Lagrangian measure in
the path integral. In the sequel, we expose an alternative method under
special hypotheses. Again, we shall consider separately the two cases.

5.1 The Lagrangian approach in the irreducible case

If in (B3) we make the transformations f* (p) — f*(p) + 3 B¢, which do not
affect its BRST invariances (as sB{ = 0), and integrate in the corresponding
path integral over all the variables excepting (q', p;), we find

. af (C
Zy = / Dq' Dp; [[0(G.) det (Aab%&d)

exp <z’/dt (qipi — H)) . (102)

If the C,’s depend only on the ¢'’s, the integration over the p;’s in ([[02) leads
us to the following form of the Lagrangian path integral

Ly = /in det <Aab%c(f>Acd> exp (i/dt Lo (qi’ qz)> ’ (103)

where Ly (¢', ") is the Lagrangian of the original second-class system. From
(L0J) it results that if the original canonical Hamiltonian is more than quad-
ratic in the functions C, (see (f)) in the Lagrangian path integral it will
appear the non-trivial local measure

n = det (Aab%AaO . (104)

In the case of H at most quadratic in the C,’s, the measure ([[04) reduces to
= det (Auq), so the Lagrangian path integral takes the simple form

Zu = [ D4 (det Co) " exp (z [ Lo (qq)) (105)
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The last formula remains also valid when the C,’s depend on p;’s because in

this case = 0 for any k > 2.

okH
9Cay~9Cay | ¢ g

In the sequel we shall make clear the physical provenance of the irreducible
first-class family. In this end, we consider for simplicity C°? = 0. Under this
circumstance, action (B7) (which describes the irreducible first-class family)
reduces to

So [qi,pi, 2%, Py %, u“} = /dt (q'ipi + P, — H —v°G,y — Au“ﬁa) ., (106)

where \2

H = H = - A"p,p, + A" (O). (107)
Action ([[0q) takes into account the primary, as well as the secondary con-
straints. Passing from this extended action to the total one [17] (taking
u® = 0) and making in the resulting action the transformation (), we infer
[4]

SO [Qav Pa7 ZA7]_9A7 Zavpav v =

/ dt (Q" Py + £5Pa + 2D, — h* — v"Fy), (108)

with \2

W= h(%Pa) = G AYPR, + A0S Q). (109)
and h (zA,]_)A) = (Q“,ZA,]_)A) =H (0, zA,]_)A) [4]. Eliminating from ([L0§)
all the momenta and Lagrangian multipliers on their equations of motion [21],

we get the Lagrangian action of the irreducible first-class family under the
form

SOL [Q“, 22, z“} =

[ae (1(2,24) - %Aab O (@ = ) (M@ = 2. (110)

In (LI0) ! (zA, ZA) is the Lagrangian corresponding to h (zA,ﬁA). It is clear
that for 2* = 0 action ([[I() reduces to the original Lagrangian action. The
gauge invariances of ([[I0) are as follows

0.Q" = R} (Q) &, (111)
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dez® = Ae, (112)
525 =0, (113)

where R% (Q) is the inverse of the matrix a]gg?) (from Theorem 3 it is obvious

that the inverse exists). The gauge transformations ([I]{II3) result from
(B}H3) via d.u* =0 [21].

In order to reveal the origin of the first-class family we consider the La-
grangian action

So[29] = / dt (—%Aabzazb) . (114)

This action is invariant under the rigid (Noether) transformations
0c2" = Ne®, (115)

with all €* constant. Gauging now symmetries ([15) (i.e. € are arbitrary
functions of time), action ([I4) is no more gauge invariant. Thus, it is
necessary to introduce in ([[14) some additional variables in order to obtain a
gauge-invariant action. Under this observation, it results clearly that action
(II0) comes from the gauging of the rigid symmetries ([[I5) through the
introduction of the variables (Q“,ZA) which transform accordingly ([TT]),
(I13). The action of the first-class family contains some mixing-component
terms of the type “current-current”, with the “currents”

. 1 b b
jo = 380 (A (Q) = 2). (116)
These “currents” are conservative and gauge-invariant and come from the
rigid invariances ([[I§) of the action ([[I0) via Noether’s theorem.

The Wess-Zumino action in the irreducible case is defined by

SWA[Q A ] = SE[QU AR, 2] - sE[Qe 2R 2 = 0] =
/dt <—2LA2Aab2“2b+ %A(awf“ (Q) zb), (117)

and obvious vanishes when 2% = 0. The Wess-Zumino action was introduced
for the first time in the context of anomalous field theories [18]. For the chiral
Schwinger model this action was discovered by Fadeev and Shatashvili in the
framework of the canonical quantization of this model. In the case of our for-
malism the Wess-Zumino action is necessary in order to make gauge-invariant
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the original second-class system, such that to apply subsequently the BRST
formalism. We remark that a piece in the Wess-Zumino action is precisely ac-
tion ([14). From ([[I7), we observe that the “Wess-Zumino variables” 2% are
introduced in order to compensate in a certain sense the unphysical variables
from the original theory, Q% Indeed, in ([1() the z%’s are coupled only to
the unphysical variables Q* through the “current-current” terms. The earlier
separation in physical and unphysical variables is a consequence of the fact
that we took C° = 0. In the case of field theory it is exactly the presence
of CY non-identically vanishing in 7, which ensures the Lorentz covariance
of the Lagrangian action of the first-class family due to the fact that the
function g given in (Bg) is non-vanishing. The proof of this last conclusion is
technically difficult in general, and this is why we shall exemplify it on the
models exposed in Sec.6.

5.2 The Lagrangian approach in the reducible case

The Lagrangian path integral of the reducible first-class family is obtained
analogously with the irreducible case. Making in ([[00) the transformation
f*(p) — f*(p) + %Bf and integrating in the correspondent path integral
over all the variables excepting (q*, p;) we get that Zg« is also given by formula

(I02). The procedure of passing from ([0F) to ([03-L0F) is identical with the
one from the irreducible case, finally deriving the same results.

Next, we shall analyze the origin of the reducible first-class family. We
shall consider the case CY = 0, too. Now, action (f§) takes the form

S |a iy 2 B Y™ Ty, 0%, 0% U U | = /dt (¢'pit
2D, + Yy, — H* — G, — vy, — Aup, — u‘“%l) . (118)

where H* = H — y“17,,- The passing from the extended action (II§) to its
correspondent total action is gained putting u* = u* = 0. Making in this
total action the transformation (), we get

S(/) [Qav Pa7 ZAvav Za7]_ja7 yalvﬂ-amvav /Ual} = /dt (Qapa+
P+ B Pa+ U Ta — B+ YTy — 0 P — 0™, ). (119)

Eliminating from action ([I9) the momenta and the Lagrangian multipli-
ers on their equations of motion, we deduce the Lagrangian action of the
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reducible first-class family as

Sik [Q“,ZA,za,y‘“] = /dt (l (ZA,2A> -
1

S Ba (M (Q) + Zy = 2) (V@) + Zh — ) ). (120)

In order to obtain action ([[20)) we presumed that Z¢ ’s do not depend on
the momenta. Action ([20) is invariant under the gauge transformations

0:Q" = R, (Q) (& + 24, & — 24, ), (121)
02" = N — Z €, (122)

Soy™ = —€M — Xe™, (123)

522 =0. (124)

The gauge transformations ([2IHI24) result from (63-[g) via d.u® = d.u™ =
0.Due to (ff) it follows that Z¢ do not depend on the Q*’s, such that,
from ([24) we have 6.Z% = 0. As expected, ([2TH[24) represent a set of
reducible gauge transformations. If the functions C? are k-th order reducible,
then ([2IH[24) possess the same reducibility order. Indeed, denoting X* =

(Q“, 22, 2%, y‘”) we have the reducibility relations
756X =0, (125)

with ‘

7% = (76%,0, RS, RYZ%,). (126)
Obviously, the reducibility relations ([25) are written in De Witt notations.
Because of (BI}HpY) we further find the reducibility relations

Zh gz =0, (127)
2075 =0, (128)
LA 207 =0, (129)

Ak—jt+1

where Z41 = (0,0,0,2%), and Z =(0,0,0,2%7,.).
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In the reducible case, too, action ([[20) results from the gauging of some
rigid symmetries. In this case, there appear two important cases.
i) Firstly, we consider

ANCLIE)) (130)

for all ©"’s constant, (i.e. the Z¢ ’s do not contain derivative terms to act
upon the ©’s). Next, we shall show that action ([2() also comes from the
gauging of some rigid symmetries of action ([[14). Action ([[T4) is invariant
under the rigid transformations (with two sets of constant parameters)

02" = N — Z% ™. (131)

The gauging of the last symmetries implies the necessity of introducing some
new variables in order to obtain from ([T4) a gauge-invariant action. As
650 = [dt (—%A(ab)zb ()\é“ — 4% €M — Z‘flle‘“)) it follows that it is neces-
sary to introduce the variables (Q“, ZA,y‘”) having the gauge transforma-
tions

0:Q" = R, (Q) (¢ — 74, , (132)
Sy = —ém, (133)
52 =0, (134)

such that the gauge-invariant action deriving from Sy to have precisely the

form ([20). We notice that the introduction of the terms Af? (Q) + Z¢ y™

in Sy (in order to get ([20)) allows the additional gauge invariances of this
term of the form

0.Q" = R, (Q) 24", (135)

dey™ = —Ae™, (136)

which are due to the manifest reducibility of the first-class family. The gauge
invariances ([32H[30) are nothing but ([2IH[24). In this way we evidenced
that action ([20) comes from the gauging of the rigid symmetries ([31]) of
action ([I4). At the same time, action ([2() is invariant under the rigid
transformations ([[31)). Then, there result from Noether’s theorem the con-
served “currents”

1

ja = XAab ()\fb (Q) + Zl;nybl - Zb) ) (137)
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corresponding to the rigid parameters €%, and

‘ 1, : o
o = =33 B (MY @)+ Z4y" = ) = AZijes (139)

associated to the rigid parameters €. These “currents” present an interest-
ing feature, namely they are k-th order reducible. Using (I37{I3§) we have
the reducibility relations

Z°% Go+ Nay = Z% ja =0, (139)

a

where Z4 = (Z‘;l,mb;l) and jan = (Ja,Jo, ). From (BPI}pY) we further find
the reducibility relations

Z%. 75 =0, (140)
ZN, 2%, =0, (141)
Ap—1 A

ZAIj€ ZAIZ,21 - 07 (142)

with Z%, = (Z‘“ O) and Z?\’j:;l = ( [Zii];l,()). The reducible “currents”

a’

(I373]) are gauge-invariant under the gauge transformations ([2IH[29).
Thus, the action of the reducible first-class family contains some mixing-

component terms of the type “current-current” —%A“b JaJb, With j, given by
(E37).
ii) Secondly, we consider

ARCLI) (143)

only for all ©%’s constant, (i.e. the Z¢9 ’s contain derivative terms to act upon
the ©%’s). Now we prove that action ([[20) also results from the gauging of
some rigid symmetries, but not for action ([14). We start with the action

O a . a 1 a a .a .
So[2*,y™] = _/dt (2—)\2Aab (Zaly i ) (lelybl - Zb)) , (144)
which is invariant under the rigid transformations

0e2% = Ae?, (145)
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Soy™ = — e, (146)

Gauging these symmetries, we infer
G 1 a —a a :
5.5 = / At 0w (25,7 + &) (Zhy" = ).,

so that it is necessary to introduce the new variables (Q“, ZA) with the gauge
transformations

0:Q" = R (Q) (& + 24,2 , (147)

and () for the 2z2’s, further resulting the gauge-invariant action derived
from Sy precisely of the form ([[20). We observe that action ([44) possesses
the additional gauge invariances

1 .
50" = R (Q) 24,7, (145)
02" = —Z% ", (149)
Syt = —€, (150)

such that o, ()\ fUQ)+ 24,y — 73“) = 0 under the prior transformations.
Thus, the last transformations are independent of the non-invariant form of
([44) under the gauge version of ([4314G). In the case of Z%l = 0, the
invariances ([48150) reduce to ([49-I50), the last ones representing some
gauge symmetries characteristic to the terms (Z LYt z'“) containing only
extravariables. To conclude with, action ([2(0) comes from the gauging of the
rigid symmetries ([43-[46) of action ([44) and, in the same time, possesses
some supplementary gauge invariances because ([[43) do not hold if ©%’s are
functions of time. Obviously, action ([[2() is also invariant under ([45-[4@) so
that we obtain via Noether’s theorem the gauge-invariant “currents” ([[37)
(the rigid symmetries ([44) lead to some trivial “currents”) which are no
longer reducible.

In the end of this subsection we emphasise the Wess-Zumino action cor-
responding to the reducible case

- [t (gt (2o - 22) (2 = ) +
B Q) (Zht = ). (151)
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We remark that in the reducible case the Wess-Zumino action contains action

(L49).

6 Examples

In this section we illustrate the general theory presented in this paper on two
representative models.

6.1 The Massive Yang-Mills theory

The Lagrangian action describing the massive Yang-Mills theory reads

1 1
Sk1A] = [ dt (—Zngng - §M2AZA5> , (152)

where F, = 0,A} — 0, A}, — %CAZAIC,. The canonical analysis of this model

furnishes the canonical Hamiltonian

1 1 g |
H= [ (iwm,@ + FuFd — ALDimi + §M2AZAZ> , (153)

together with the primary, respectively secondary constraints

G, =7 =0, (154)
C, =Dy’ + M*A% =0, (155)
where D;rl, = 9;m), — f¢,miA? and 7/ denote the canonical momenta of A%

It is easy to see that the above constraints are second-class as the matrix
(C,, Gy] = M?64 = Ay has a non-vanishing determinant. We observe that
[Ga, Gy) = 0 strongly. We choose

C% = o (156)

a’

and '
Cl = e, m AY + M2A, (157)

such that [C?,CY] = [C?,Gy] = 0, and [C},Gy] = Ay Tt follows that
the massive Yang-Mills theory verifies the hypotheses of our methods. The
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Hamiltonian H’ for our model is given by

ijta

1
/ B ( TiaTe 4 = F“F”+ SMEALAL -

c a b_d pgje
2M2 de™ cAz ]A]> (158)

such that [H', G,] = 0. The functions C? being irreducible, we introduce the
additional canonical pairs (¢ 1I,) in number equal to the number of pairs
(G4, Cy). The above canonical pairs play the role of the pairs (2%,7p,) from
the general theory. The functions f(C') for our model have the form

f4(C) = A", (159)

The Hamiltonian of the first class family is

A2
o =i /3 T, T1°—
+ da:( Ve

% (ML, — 0yml) (£, mbATe — M2AG) + g) : (160)

where
g(Am %H) =
[ @ (S hlantd e + 5 (fancdiA (4707 — A0 ) -
@ Fare AT AT AP —f“bcfamn e AL o — M2Agaigoa> +
;2 @MQ@Z "0ipa 2M2
3 fann ALy (AT — AP ) 4 S AT A )

fabcfmn T ]maZ bajgp _.fabcaiA(;aiSObajSOC“‘

)\3 famnAmaZ b&]gocajgo + 4)\4 cfamnﬁiSObaj(PC Z(pm j(pn> . (161)

The first-class constraints of the first-class family are G, = 70 = 0 and
Yo = M, — d;m: = 0, such that the gauge algebra of the first-class family
reads

[GaaGb] - [Gm’yb] = h/aa%] = 07 (162)
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[Go, H] = =, (163)
[Va, H] = 0. (164)

The gauge invariances of the extended action are in this case: J.Af = €,
0cAY = 0;€5, 0 =0, .0 = Ae3, 011, = 0, 6.0 = €], du® = €5 — €. The
gauge-fixing fermion (B1l) for our model reads

1 .
== [t (7 (P42 - A+ P (165)

with flz = A} — $9,9". The path integral (Pg) for the massive Yang-Mills
theory in the gauge ([65) after integration over (A%, 70) is given by

Ty = / DA Drl, exp (i) | (166)
where
S = /d4x (A“ﬁi — 17? T — 1F"Fij—
- i "a 2 wa’ty 4 iy a
Lo vagi 1 i\2
SMPALAL + —— (Dir) ) (167)

The results obtained in (L66-L[67) are identical to the ones derived in [2], [4]
through other methods.

The gauge invariances of the total action for our model are inferred from
the ones of the extended action taking d.u® = 0, which further implies €5 = €.
Then, the gauge invariances of the total action are given by: 6.Af, = 0,€3,
demh =0, 0" = Aeg, O 1l, = 0, dv® = €. These gauge transformations
are written now under a manifestly covariant form. This is because of the
non-trivial term —d;7¢ = C? in the secondary constraints ~,. It is precisely
this term which induces 6. Ay = 0,e5 # 0 and so further implies the above
covariance of the gauge transformations and also g (A, m, ¢, 1) # 0. We
shall see below that g (A, w, ¢, II) of the form ([[6]]) ensures the manifestly
covariance of the Lagrangian action for the first-class family. We can reach
this action eliminating from the total action the momenta and Lagrange
multipliers v* on their equations of motion, namely

m = —Fy, (168)
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0, (M2A° + fane FGA™), (169)

=0, (170)

with F, = &Jlﬁ - 8,,[1; - %CAZAﬁ. Then, the Lagrangian action of the
first-class family reads

>/|H

I@o

/d4 (—ZngF;W - §M2AGA“> . (171)

This action has the gauge invariances 0. Aj, = 9,63, 0.9 = Aej and comes
from the gauging of the action

/ d'z 2—)\28ug0a8“g0a, (172)
which allows the rigid symmetries d0.¢% = Ae§, with €5 all constant. The

conserved gauge-invariant currents corresponding to the last rigid invariance,

but for action ([[71]) are

1 ~
o b c pY 2 Ap
=3 (oA Fp™ — M2AL) . (173)
Action ([7]) together with the currents ([[73) coincide in the abelian limit
(f%. = 0) with our results derived in [24]and also with the one resulting from
Stueckelberg’s formalism [25]. The Wess-Zumino action in this case takes
the form

1
SWZIA ] = / &z < <Ab L 0° + ACD,0b — A(f)\mpbaygpc> .
1
(Féw + ﬁg”ag'/ﬁfade <Aa05906 + A%aa%@d . Xaa%@daﬁSDe)) +
1
e (Xauwaﬂ% - 2AZ@“%>) . (174)

This ends the analysis of the model under consideration.

6.2 Massive abelian three-form gauge fields

This model is an example of reducible theory. We are starting with the
Lagrangian action [26]

[e7 M «
/d4 ( 2. 41 Fapypl” Bw_z—g,AocﬁvA Bv>’ (175)
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where FoB7r = glo APl = g AP — 98 AevP - 97 APeB — g A7B | with A*P7’s
antisymmetric in all indices. The canonical analysis of this model provides
the canonical Hamiltonian

M2
2.3l

H= /d3x (37Tijkﬂ'ijk — 3A0jkaiﬂ'ijk + AagfyAaBPy> y (176)

as well as the primary, respectively secondary constraints

G =r% =0, (177)
- - M?2
C = =307 4 TAOU =0, (178)
where 7%9°s are the canonical momenta of the Apij’s. Tt is simple to check

that the above constraints are second-class, the matrix [G;;, Ci] = Qi =
—MT2 (9ik9j1 — gug;,) having a non-vanishing determinant. In the last relation
gi;’s denote the spatial part of the Minkowskian metric. It is clear that
|Gij, Gri] = 0 strongly. We take the analogous of C’s, respectively C}’s of
the form

Cyy = =30 mi;, (179)
M2
Cz'lj = TAOija (180)

so the model satisfies the conditions from our methods. In this case, the func-
tions Cf; are second-order reducible, the reducibility relations being 0'C; = 0
and &9'CY; = 0. The Hamiltonian H’ is in the present case
3 M? ik
/ 1,
H = /d xT (37Tijkﬂ'ijk + 2—3‘A2]k14j ) . (181)

Because we are in the reducible case, we extend the original phase-space
as follows. For every pair (G;;, C;;) we introduce a bosonic canonical pair
(A% 1I;;), with the new fields antisymmetric in their indices, such that the
new secondary constraints to be

Yij = M — 30%m,; = 0. (182)
It is simply to check that
' = AT = 0. (183)
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For every relation ([[83) we introduce the new canonical pair (A% IIy;) and
the constraint

such that its consistency to imply the constraint
5, = —&1L; = 0. (185)

In this way we associated to the original system a one-parameter family of
first-class systems with the first class constraints ([77), ([832), ([84HLST).
Now, the first-class constraints become reducible

Ny, + 0"y = 0. (186)
The first-class Hamiltonian of the reducible first-class family reads

H" = H/ + /d3l’ (—>\2Hinij + AOij”yij - 2A0j8iHij+

M? .
where
g=[d+ W <—a AN Ay — Aij’fa[iAj,ﬂ) . (188)
The gauge invariances of the extended action for this model are 6, A% = ¢/
S AT = 0, 6 A% = €, 5AY = e + 30, Gy = Sy = 0TI =
011, = 0, 6,09 = ¢, §0' = 6(1”, Sout = & —€ — 10Ul §oul = € ¥ =2 e,

with ¢/ due to the reducibility relations (-) (they play the role of €' in the
general theory).
The gauge-fixing fermion (99) for our model is

2

M 1
—/d4ff< Cij + ThAoi + A n2 JAij + T2, + T m) , o (189)

where the bar variables belong to the non—minimal sector, while the ghosts
T, correspond to the gauge parameters €. The path integral in this case
will read

T = / DA Dy exp (i5), (190)
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where

_ M? 9 . 2
S = /d4x <A”k7r,~jk — 3Tk Tk — 5.3l ijk + = e (8’7r,~jk) ) . (191)

The gauge invariances of the total action in this case are obtained from the
extended ones making 8,u® = §,u = 0. They take the form 5, A% = dloe)
04 = Ny + 106} Semo; = demijp = 0y = 001;; = 0, vV = & —
10l st = 1 (&) + AéP). In this case, the gauge transformations of the
fields A%?7’s and A°*?’s are manifestly covariant too, due on one hand to the
presence in ([[82) of the non-vanishing functions C7; and on the other to the
constraints ([[83). The Lagrangian action of the reducible first-class family
reads

1
SSL {Aaﬁv’Aaﬁ} _ /d4x (_ 5 4'Faﬁfpramp) _

M? 1 1
/d4.f1}' 2—3' (Aaﬁfy — XFaﬁﬁ/> (Aaﬁ'y - XFQB»Y> y (192)

where Fo%7 = gle AP = 92 APY + 97 A% + 9P A7, Action ([[03) allows the
gauge invariances 6, A = 9@ §, AP = \e®? + 0l*€Pl. This action comes
from the gauging of the rigid symmetries 6. A% = Xe®? (here, €’ are all
constant) of the action

M2 L,
0 [4°7] = / 0 s P Fag, (193)

We are under the conditions of Sec. 5.1, case ii) because Z%" = 0, for €’’s
constant, with Z% = 9. When ¢”’s depend on z action ([[93) possesses some
gauge symmetries independent of the presence of the fields A*?7, namely

5 AP = ploed), (194)

Formula ([[94) is the analogous of ([49HI50) from the general theory, in the
case Z4 = 0. The conserved gauge-invariant currents correspondent to the
rigid symmetries 5. A% = \e*® for action ([92) take the form

, M? 1
jfyaﬁ - 3' (Afyaﬁ X Fﬁ/aﬁ) . (195)
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Action ([[93) describes a field theory with abelian two and three-form gauge
fields coupled through a mixing-component term of the type current-current,
with the gauge-invariant current ([[97).

The Wess-Zumino action in this case is precisely

M? 1
W Z af aB| _ 7 4 af _ _
SqVZ (A7, A7) = 12)\/dxF V(AFQBV QAW). (196)
More on abelian p-form gauge fields can be found in [27]. This completes our
analysis.

7 Conclusion

In this paper it was shown in detail the way of quantizing the systems with
only second-class constraints in the BRST formalism by converting the origi-
nal second-class constraints into some first-class ones in a larger phase-space.
The main advantage of our method consists in the fact that it is standard.
Thus, the existence of the functions we are working with is fully proved and,
in addition, their concrete form is output. The way of implementing the
secondary first-class constraints exposed in this paper emphasises the main
difference between our conversion method and the BFT method [5]-[6]. In-
deed, the presence of the term ~,f* (C) in the Hamiltonian of the first-class
family is decisive in underlining this difference as the functions f¢(C) are
a characteristic of our method and do not appear in the BFT method. In
addition, we expose a conversion method for the reducible case, too.

At the same time, it is clarified the provenance of the first-class family
in the reducible, as well as irreducible case. As was exhibited, the first-class
family results from the gauging of some rigid symmetries of a certain action.
In the context of building up this family, the Wess-Zumino action appears
natuarally, its concrete form being computed in both cases.

The two examples illustrating the theoretical part of the paper also evi-
dence that our method lead to a manifestly covariant form of the Lagrangian
action corresponding to the first-class family. The presence of the non-
identically vanishing functions C? in (BH), and implicitly in (B@) is crucial
in order to establish the covariance.
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