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Abstract

A new generalization of the vector Schwinger model is considered where
gauge symmetry is broken at the quantum mechanical level. By proper
extension of the phase space this broken symmetry has been restored. Also
an equivalent first class theory is reformulated in the actual phase space
using Mitra and Rajaraman’s prescription [§, Bl. A BRST invariant effective
action is also formulated. The new dynamical fields introduced, turn into
Wess-Zumino scalar.
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1 Introduction

Whenever a classical symmetry is broken at the quantum mechanical
level an anomaly has come into play which threatens the gauge invariance
of the theory. The mechanisms for restoration of this symmetry by anomaly
cancelation are of particular interest [, B, B, ], since it is the gauge invariance
that regulates the unitarity and renormalizablity of a theory. Jackiw and
Rajaraman(f] shows that a two dimensional quantum field theory is possible
even in the gauge non-invariant formalism. An equivalent gauge invariant
version is possible as was suggested by Fadeev and Satashvilli [[[]. Instead
of that a new kind of quantization procedure was developed by Batalin and
Fradkin(BF) [B]. But the combined formalism developed by Batalin, Fradkin
and Vilkovisky [B, B] is more powerful in deriving the covariantly gauge fixed
systems with first class constraints. Fujiwara, Igararishi and Kubo (FIK) [f]
finaly pointed out that the fields needed for extension of the phase space in
order to make a gauge invariant theory, turn into Wess-Zumino scalars with
the proper choice of gauge condition.

From first principle ,viz., formalism based on Dirac’s procedure of quan-
tization of constrained system, an anomalous theory can be made gauge
invariant, as was done by Wotzasek [[]]. Here also one needs some auxiliary
fields whiich though extend the phase space in order to transform the con-
straints of a particular system from second class to first class, do not change
the physical containts of the theory.

Mitra and Rajaraman [§, f] developed a new way to convert an anoma-
lous theory into a gauge invariant one without extension of the phase space.
Their motivation was like that. If one come across a theory with constraint
the ideal thing to do is to eliminate these and rewrite the theory in terms
of unconstrained variables. But for varity of reason first class constraints
are left and the second class constraints are treated in this way. Unfortu-
nately elimination of full set of constraints is not an easy task. Mitra and
Rajaraman’s suggestion [§, [ is to ignore half of them and convert the rest
to first class constraints. Then the theory can be treated by standard gauge
theoretic method. Of course the Hamiltonian has to be altered.



2 Brief Review of The Model

Recently ordinary (vector) Schwinger model is studied for a one- parameter
class of regularizations [[L0] commonly used in the study of the anomalous
chiral Schwinger model [f, [I] and shown to be sensible and in fact solvable
for a range of values of the parameter. There is a massless boson in the
spectrum except at the value which corresponds to the usual treatment of
the model. As in two dimension a boson can be thought of in terms of a
fermion , the fermions are not confined here. A comment should be made
about this regularization. The regularization is involved when one calculates
the effective action by integrating the fermion out. If one integrates out
the two chiral fermions occurring in the Schwinger model one by one, one
can use the regularization procedures common in dealing with the chiral
Schwinger model at each of the two stages. This is how the one parameter
class of regularizations associated with the chiral Schwinger model enters the
vector Schwinger model. As in the case of the chiral Schwinger model, the
generalized regularization preserves only global gauge invariance and violates
the local invariance of the action. But we have learnt from the study of the
chiral Schwinger model that this does not go against any physical principle.
After all, only the global invariance is a physical symmetry in the space of
states.

The Schwinger model [[[J] is defined by the Lagrangian density

L1 = 50— cA = LPoE, W

where the Lorentz indices run over the two values 0,1 corresponding to a
two dimensional spacetime and the rest of the notation is standard. Notice
that the coupling constant e has unit mass dimension in this situation. The
discussion of the model is simplified by bosonizing the fermion field . This
leads to a Lagrangian density involving a scalar field ¢ instead of the Dirac
field -

. 1 . . 1

Lp=5(0" -0+ (A= AQ)? —e(¢' Ag — 9 A1) — 5%’2(143 —AD. (2)
The first piece is the kinetic energy term for the scalar field and the second
is the corresponding term for the gauge field — note that there is no mag-

netic field strength in two dimensions. The third term represents the gauge



interaction. The last term involves something new, wiz., an undetermined
parameter a, which arises because of the regularization ambiguity [{]. To
be more specific, if the left handed component of 1 is integrated out first,
the regularization of the determinant contains such a parameter, as stated
in [f] and demonstrated in [[J, [4]. The integration over the right handed
component leads to a second parameter of the same type. The final La-
grangian contains the sum of the two parameters, which has been called a
here. As we shall see below, there is a specific value (zero) of a which makes
the Lagrangian density (B]) gauge invariant. It is this value which is normally
considered. However, the explicit calculation of the bosonized action does
throw up the undetermined parameter. Moreover, as discussed above and
demonstrated below, no law of physics is violated if a is greater than zero.
We therefore retain it and investigate the consequences. It is necessary to
carry out a constraint analysis of the theory (f]). The momenta corresponding
to Ag, A1, ¢ respectively are

Ty = 0, (3)
™ = Al - A67 (4)
Ty = (;5—1—6141. (5)

The first of these is a primary constraint which is familiar in gauge theory.
The other two can be used to define the time derivatives of the fields in
terms of the momenta. In this way the canonical Hamiltonian density may
be calculated:

1 1 1 1

H =5 (m — eAr)? + §7T% + §¢’2 + m Ay + e/ Ay + 5%2(,43 — A}, (6)

The preservation of the constraint (fJ) for all time requires the vanishing

of the Poisson bracket between m; and the Hamiltonian. This yields the
secondary constraint

T —e¢ —ae*Ay = 0. (7)

This is Gauss’s law for this theory. Note that if a differs from zero, this
constraint makes the primary constraint (fJ) second class and there are no
further constraints in the theory. This is the generic situation.

The exceptional situation is when a = 0. In this case the Poisson bracket
of the two constraints () and ([]) vanishes.One can check that the preserva-
tion in time of these constraintsdoes not produce any further constraint, so
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that there are two first class constraints in the theory. First class constraints
of course signify gauge invariance: this situation is the conventional one. We
have already found that it is an exceptional situation which, together with
the fact that the Dirac brackets of A; and 7; are canonical, lead to equations
of motion for a scalar field with mass e. Thus there is a massive particle but
there is no free fermion, i.e., the fermion gets confined in this exceptional sit-
uation. The massive particle is to be interpreted as a gauge boson which has
acquired mass or as a bound state of a fermion and an antifermion. To un-
derstand this dual interpretation, note first that the above analysis suggests
that the massive particle is described by the field 7; and is identifiable with
the gauge boson. However,in view of Gauss’s law, the same particle may also
be described by the field ¢ and is related to the fermion. As ¢ is related lin-
early to the fermion current, it is natural to think of it as the field for a bound
state of a fermion and ananti fermion. Thus we have a duality of descriptions.

Let us now study the generic situation a # 0. As mentioned before, the
constraints (f) and ([]) are second class. In fact, ([]) can be solved for Ay:
™
Ag = —5(m —ed). (8)
Using this equation, which can be imposed strongly, one may eliminate A
from the theory, while its conjugate gets eliminated by virtue of (). The
remaining variables are easily seen to have canonical Dirac brackets. The

Hamiltonian density (f) can be written as

2
M= (g — A 4 g b 20? ~ DA e (9)
The first three terms are clearly positive. The last two terms also are positive
if @ < 0. On the other hand if this condition is violated, these terms become
negative and can be made so large in magnitude that the positive terms
cannot compensate for them. Thus the Hamiltonian can be bounded below
only when a < 0. The present case is restricted to a # 0, but we have seen
earlier that a positive Hamiltonian emerges also for a = 0, so that we can
say that the condition for the Hamiltonian to be bounded below is indeed
a <0.
The first order equations of motion for the fields can be found from the
Hamiltonian given by (H):
¢ =my — eAy, (10)
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1 1

A=m— o e (11)
oy = (a7 = 1)¢" + (12)
i = emy — (1 — a)e*A;. (13)
These lead to the simple second order equations
(O+ (1 —a)e®)m =0. (14)
Olm — (1 —a)eg] =0, (15)

These show that 7 +(1—a)e¢ represents a massless free field and m; a massive

free field with mass /(1 — a)e?. In other words, there is a massive particle,
as in the exceptional situation, but now there is a massless particle too. The
massive particle can be regarded as a gauge boson which has acquired mass
or a bound state of a fermion and an antifermion as before. The theory of
a massless boson in two dimensions contains fermionic excitations, so that
there is also a massless fermion in the spectrum now. Indeed, the massless
boson can be regarded as the bosonized form of this massless fermion, which
can be explicitly constructed if desired by standard bosonization formulas.
This suggests that there is no confinement in this scheme.

3 Anomaly Cancelation Based on
Dirac’s Formalism

The variant of the Schwinger model described in Sec. 1 has gauge anoma-
lies. So the model is described by a set of second class constraints. In this
section this theory with second class constraints has been converted into
a theory with first classs constraints following [ formalism. In this new
variant there is two second class constraints

w1 = 7o, (16)
wy = T — e¢) — ae*A. (17)
and they satisfy the commutation relation
_ 2 0 6z —y)
0= et =actx (g0 DYy
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Now two fields #; and #y are introduced to extend the phase space satis-
fying the relation

C™(z,y) = [02(x), 62(y)]. (19)

It is easy to show that the second class constraints ([[§) and ([[7]) turns inti
first class constraints if a new pair of canonical fields 6 and 7y are introduced.
the fields #; and 0y will be defined by the above pair of canonical fields later
on. The second class constraints turns into first class constraints in the
following way

(.:Jl = W1 — 69, (20)

(:12 = wq + €eamy. (21)

The primary Hamiltonian is
H, = H + movo, (22)

where vy = A.
The Hamiltonian with these first class set of constraints will be of the
form

where 6; = 22 0y = L0, My = —ae?d(x — y), Mo = ae?5(z — y).
So the first class Hamiltonian coming out to be

~ 1 1
H = H — 5&62(7{'3 + 5‘9/2). (24)

It is the gauge invariant Hamiltonian corresponding to the Lagrangian
(B). The symmetry is confirmed from the first class nature of the constraints
(B0, P1). The physical containts does not change because the auxiliary fields
just extend the phase space and allocate themselvs in the unphysical sector
of the theory.

The effective action corresponding to the Hamiltonian(R4) is

Serf = /dfc[ﬁvo +m A+ 7T¢¢5 + 7r99 - 7—2] (25)



If the momenta are redefined by

™ = Al - Aé, (26)
7o = €b, (27)
Wd):(é—eAl, (28)
To=0—10. (29)

It can be shown that the effective action (B5) reduces to

Seff = /dx[%(@ugb)(@”gb) + e€, 0" 9 A” — EFWF’W — %ae2AuA”
1
= 5al(8un)(9"n)) + ebun A", (30)

where n = af.

4 Gauge Invariant Reformulation without
extending the phase space

The idea was first developed by Mitra and Rajaraman([§, f]. The method
based on the constrainet structure of the theory. Depending on the con-
strint structure one can get different gauge invariant action. Obviously, the
physical containts are same in all the geuge invariant reformulants. Their
methods are applicable in both the single chain and multi chain constrained
systems. The main idea is to reduce the half of the constraints from a second
class constrained system keeping the first class constraints only. This new
generalized Schwinger model contains only two second class constraints and
there is only one possiblity to make it gauge invariant which is to eleminate
the constraint w, keeping w; as usual i.e., to change the Hamiltonian in such
a way that w; = 0 is satisfied. The Hamiltonian will be of the form

H=H+ i(wi — e — e*Ap)”. (31)

e2

The codition w; = 0 requires d = i



The new equations of motion corresponding to the new Hamiltonian H
are

¢:W¢—6A1, (32)
AO = o, (33)

. 1
A =m — A — %(Wi —ed) — ae’Ay). (34)

The first order Lagrangian is

£ = 26— 07 +e(id— Ant) — Jac*(43 — 4
oLt e+ 2m(dy + L) (35)
a 2 ae

The gauge transformation generator is A [ dxmy, where \ is a c-number
which trans form Ay as —\ and the other fields remain unchanged. It can
be shown easily that the total change in the Lagrangian due to the above
transformation AL = 0. So the Lagrangian (BY) is gauge indariant.

5 BRST Invariant Reformulation

The BRST tecnique is to enlarge the Hilbart space of a gauge theory and
to replace the notation of gauge transformation which shifts the operator by
C-number function with BRST transformation which mixes operator having
different statistics. It is very effective when one tries to discuss the renor-
malization property of a theory. One generaly exploit the BRST symmetry
instead of exploiting the original gauge symmetry.

The combined formalism of Batalin ,Fradkin and Vilkovisky [B, §, [3] for
quantization of a system is based on the idea that a system with second class
constraint can be made effectively first class in the extended phase space.
The field needed for this conversion turns out to the Wess-Zumino scalar
with the proper choise of gauge condition, as pointed out by FIK.

If a canonical Hamiltonian in terms of the canonical pairs (p;,¢"),i =
1,2....... N is considered subjected to a set of constraints 2, = 0,a =1,2....... n
and it is assumed that the constraints satisfy the following algebra.

[Qa, Q] = 1w U, (36)

a



[H., Q] = iQQV2, (37)

then m no of additional condition ®, = 0 with det[®,, 2] # 0 have to be
imposed inorder to single out the physical degrees of freedom.

The Hamiltonian consistent with the set of constraints 2, = 0 and &, = 0
together with Hamiltonian equation of motion is obtained from the action

S = [[dtlpg’ = Holps.g) = N+ 7,9°), (38)

where A* and m, are lagrrangian multiplier field satisfying the relation
(A% ] = @6

Now introducing one pair of canonical ghost field (C*, P,) and one pair of
canonical antighost field (P, C,) for each pair of constraints an equivalance
can be made to the initial theory of the unconstrained phase space. So the
quantum theory can be described by the action

S, = / dt[pig’ + 7Ny + P*Cy+ +CP, — Hppsr +iQ, 4] (39)

Hpgrst is the minimal Hamiltonian as termed by Batalin and fradkin,
given by B
Hggrst = H. + P,V C". (40)

The BRST charge and the fermionic gauge fixing function are given by
1
Q= C"w, — 5CbCC ¢, — P, (41)

= C.x* + P\, (42)

where y, are given by the gauge fixing condition ®, = Ay + Ya.

The model consider here is described by the Lagrangian ([f), The canonical
Hamiltonian and the momenta are given in (B),(B), () and(f]). The two
second class constraints are

W1 = To, (43)

Wy =) — ed — ae*Ag. (44)

Now introducing BF field # and 7y the constraints are made first class

(:Jl = W1 — 69, (45)
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(:12 = wq + €eamy. (46)

The time involution of the constraints are
Wi = 1w, (47)

Gy = iw" (48)

In general the first class Hamiltonian consistent consistent with the con-
straints w; and Wy will be the original Hamiltonian added with a polynomial
of BF field. And the polynomial will be determined by the condition that
the new first class constraints will satisfy the same time involution like the
old second class set of constraint ([[7) and (§)The extra term Hpgp is found
out to be

Lo 1.,
Hpr = —5(% + 59, )- (49)
The BRST charge and the fermionic gauge fixing condition are
Q= / dz[BiP' + ByP? + Cyio' + Coi?), (50)
= /dx[C’lxl + Cox® + PLN' + PyN?). (51)

Here the gauge fixing function are chosen to be y; = Ay and yo = 9'A; +
5Bs. It is easy to check that

[Q, Hprst] =0 (52)
[, Q], Q] =0 (53)
Q*=1Q,Q =0 (54)

The effective action is given by

Serf = /dx[wo/lo + 1A + wd,é + mhetad + ByN?
+ plc’l + PQC2 + C_’QP2 - Ht0t7 (55)

where H;,, = Hprst — 1[Q, V).
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Here the term [ dz[B;N' + C1 P! = i[Q, fda:BlNl] is suppressed in the
Legender transformation by replacing x; with y; + N;. The generating func-
tion is now given by

7 = / [DM]exp(iSess), (56)
where
[DM] = [DAyDr°|[DA,Dr'|[DéDry)[DO D)
X [DClel][DC2DP2][DP1Dél]
x [DP?DC,|[DN'DB,|[DN?D B, (57)

~ In order to derive the covariant action one should eliminate Ny, By, Cl,
C1, P, P, Ay and my by Gaussian integration.After integration the effection
reduces to

Sepf = /dl’[ﬂ'vo‘l—?TlAl+W¢¢+W99+BN+pC'+C_'P

1 1
_ [5(7rf + 75+ ¢ — Ay, — §(a —1)e?A?] — eat)

a, o 1 . a
+ §(w9+¥9’)+B(A’1+§B)

+ N(7) — ed' + eamy) — CC". (58)
Again integrating over 7,74, mp and P one can obtain
1 1

Seff = /dz[%(au¢)(au¢) + 66/wau¢AV - ZF;WF/W - 5&62/1#14”
1

— Sa(Bu)(@"n)) + enA”

— 9,00"C + A,0"B — %32. (59)
where N is replaced by —Aq and 7 is defined by n = afl. The action is
invariant under the BRST transformation 0.X = A [ dz[Q, X] where X stands
for the field variables of the above action and A is a grassmanian parameter.

6 Conclusion

To summarize, we have looked at the familiar Schwinger model in the one
parameter class of regularizations used in studies on the chiral Schwinger
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model and shown that although only global gauge invariance is maintained,
the theory is sensible in every way and can be solved exactly. The spectrum
consists of the usual massive boson with the mass explicitly depending on
the regularization parameter — but there is also a massless fermion, which is
the main difference from the usual treatment.

Gauge invariant reformulation is done in two ways one in the extended
phase spaces and the other in the original phase space both the cases the
gauge invariant action is superficially different from the actual action but
the physical containts are alike. The external field introduced to enlarge
the phase space is shown to be identical to the Wess-Zumino scalar when
Woutzasec’s formalism is considered. But in case of Mitra and Rajaraman’ s
formalism a gauge invariant action is obtained without the emergence of any
Wess-Zumino term.

Following BVF formalism a BRST invariant action is obtained. In the
usual Hamiltonian formalism of a gauge invariant theory one some times need
to destroy the gauge symmetry under the introduction of some gauge fixing
terms. However, BRST invariant Hamiltonian which has beeen reformulated
will help one to work in an extended phase space on which only a subspace
corresponds to the state of physical interest.

The Schwinger model is well known to be solvable, the new generaliza-
tion differs from the usual one by the mass terms of the gauge fields do not
loose the solvablity. A gauge invariant as well as a BRST invariant reformu-
lation is made so that calculations ordinarily made with the gauge invariant
Schwinger model can be repeted here. New physical consequences will arise,
as is indicated by the fact that even the spectrum gets altered.
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