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Abstract

We show that abelian bosonization of 1+1 dimensional fermion systems can be

interpreted as duality transformation and, as a conseguence, it can be generalized
to arbitrary dimensions in terms of gauge forms of rank d − 1, where d is the

dimension of the space. This permit to treat condensed matter systems in d > 1
as gauge theories. Furthermore we show that in the “scaling” limit the bosonized

action is quadratic in a wide class of condensed matter systems.
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1. Introduction

The procedure of writing 1 + 1 dimensional fermionic systems in terms of

boson fields (bosonization) has now a long history [1]. (Few years ago a somewhat

different procedure of bosonization have been discovered for 2 + 1 dimensional

systems, involving the introduction of Chern–Simons gauge fields and generalising

Jordan–Wigner transformation [2]; here we are not dealing with it).

Only recently it has been realized [3,4] that the abelian bosonization of

one–dimensional systems is a special case of a more general (and now obiquitous!)

transformation:duality, without restriction on dimensions. It then follows that

one can generalize the abelian bosonization to arbitrary dimensions (although in

general it is less powerful) in terms of gauge forms (antisymmetric tensor gauge

fields) of rank d− 1, where d is the space dimension, playing the role of the scalar

field in d = 1.

One can then apply the bosonization in particular to condensed matter

systems [4]. This permits to treat non–relativistic Fermi systems with positive

density at T ∼ 0 as gauge theories (d > 1) and to apply to them methods devel-

oped in the analysis of gauge theories in high–energy physics. As an application

we will briefly discuss the Wilson criterion for the existence of the charge operator.

Furthermore, for a large class of systems (free electron gas, insulators, Hall

fluids, B.C.S. superconductors...) one can prove that the bosonic action is quadratic

in a suitably defined “scaling limit”. It also follows from general properties of

bosonization that density–density or current–current (two–body) perturbations

are exactly gaussian in the bosonic field, this lead to the conjecture that it is pos-

sible a classification of large–scale charge properties of condensed matter systems

in universality classes, using vacuum polarization tensor.

Some applications of these ideas are sketched and the relation of this bosoni-

zation procedure with Luther–Haldane bosonization of Fermi liquids is exhibited.

2. Bosonization

Bosonization corresponds roughly to the following statement: in d = 1

a quantum theory of a fermion field ψ̂ with linear dispersion relation can be

written in terms of a quantum scalar field φ̂ with quadratic dispersion relation,

describing fluctuations of fermion–antifermion pairs. [In condensed matter sys-

tems, fermions with linear dispersion are obtained linearizing the dispersion re-
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lation of non–relativistic fermions around the two points of the Fermi surface,

a procedure legitimate if we are interested in large scale properties. In high–

energy physics ψ̂ is just the massless Dirac field]. More precisely, setting the

Fermi velocity vF = 1 in condensed matter systems, and the velocity of light

c = 1 in relativistic systems, let ψ, ψ̄ denote two–component Grassman fields and

φ a complex field describing in the euclidean path–integral formalism a mass-

less Dirac field ψ̂ and a neutral scalar field φ̂, respectively. Bosonization can

be stated as follows: the (euclidean) correlation functions corresponding to the

lagrangian LF = ψ̄∂/ψ of the (euclidean) fields : ψ̄γµψ : (x) ≡ Jµ(x) (the 2–

current), : ψ̄ψ : (x), ψR(x) ≡ ( 1+γ5
2

)ψ(x), ψL(x) ≡ ( 1−γ5
2

), are identical to the

correlation functions corresponding to the lagrangian LB = 1
8π (∂µφ)

2 of the fields
1
2π εµν∂

νφ(x), : cosφ : (x), : e+
i
2
φ(x) : D(x, 1),: e−

i
2
φ(x) : D(x, 1), .... where : :

denotes normal ordering (and from now on it will be omitted) and D(x, 1) is a

disorder field [4,5] creating a vortex of unit vorticity at x ∈ R2.

It has been realized in [3] (and independently in a preliminary version of [4])

that this bosonization formulas are just a special version of the duality transformation

in d = 1.

3. Duality

We now outline the general structure of duality.

Remark on notations To avoid topological complications we work in Rd+1, fur-

thermore to avoid the cumbersome use of multiindices we use the language of forms:

given an antisymmetric tensor field Fµ1,..µk
we define a k-form F ≡ 1

k!Fµ1...µk
dxµ1∧

... ∧ dxµk , where ∧ is the wedge (≡ antisymmetric tensor) product. We denote

by Λk(Rd+1) the group of k-forms on Rd+1 under pointwise addition, by d the

exterior differential d : Λk → Λk+1, with dF = 1
k!∂µFµ1...µk

dxµ ∧ dxµ1 ∧ ...∧ dxµk ,

by ∗ the Hodge–star ∗ : Λk → Λd+1−k, with ∗F = 1
k!

1
(d+1−k)!F

µ1...µkεµ1...µk...µd+1

dxµk+1 ∧ ... ∧ dxµd+1 and by (,) the inner product in Λk: for F, F ′ ∈ Λk(Rd+1)

(F, F ′) =
1

k!

∫

dd+1xFµ1...µk
Fµ1...µk(x) =

∫

F ∧∗ F ′.

To discuss duality we need two basic facts

i) Poincarè lemma: let F ∈ Λk(Rd+1) be closed, i.e. dF = 0, then there exists

A ∈ Λk−1(Rd+1) such that F = dA

ii) Denote by Λk/dΛk−1 the quotient group of equivalence classes [F ] =
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{F ′ ∈ Λk|F ′−F = dζ, ζ ∈ Λk−1}, then d establishes a group isomorphism between

Λk/dΛk−1 and the image of d in Λk+1, the group of closed (k + 1)-forms.

Basic formula

Suppose we can formally write the euclidean partition function of a quantum

field theory in terms of a k-form F in Rd+1 as

Z =

∫

DFe−S(F )δ(dF ). (1)

Then we have a “dual formulation” of such a theory in terms of a (d− k)-form B,

invariant under the gauge transformation

B → B + dζ, ζ ∈ Λd−k−1(Rd+1)

or, alternatively, in terms of a (d− k + 1)-form H, satisfying dH = 0.

To find, (heuristically) this dual formulation we first express the constraint

dF = 0 in (1) by a Fourier representation of the δ–functional:

δ(dF ) =

∫

D[B]ei
∫

F∧dB

where D[B] denotes the normalized measure on the gauge equivalence classes

[B] = {B′ ∈ Λd−k(Rd+1)|B′ −B = dζ, ζ ∈ Λd−k(Rd+1)}.

Alternatively one can use the gauge–fixing + Faddev–Popov ghost procedure to

properly define a BRS invariant measure for B [6]. Define S̃(dB) through the

functional integral Fourier transform

e−S̃(dB) ≡

∫

DFe−S(F )ei
∫

F∧dB. (2)

Then

Z =

∫

DFe−S(F )δ(dF ) =

∫

DFe−S(F )

∫

D[B]ei
∫

F∧dB = (3)

∫

D[B]e−S̃(dB) =

∫

DHe−S̃(H)δ(dH),

where in the last equality we used the previously defined properties i) and ii).
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Examples: a) Abelian gauge theories

Consider a quantum field theory described in the euclidean formulation

in terms of a (k − 1)-form A and whose action S is invariant under the gauge

transformation

A→ A+ dζ, ζ ∈ Λk−2.

Then, using the isomorphism established by d, one can change variable in the path–

integral representation of the partition function from A to a k-form F , constrained

by dF = 0:

Z =

∫

D[A]e−S(dA) =

∫

DFe−S(F )δ(dF ).

[For k = 1, dζ is replaced by a closed 0−form, i.e. a constant]. The corre-

sponding duality is widely known as Wegner – t’Hooft duality [7]. In the lat-

tice version, in d = 1 for Z2-valued 0-forms, it has already been introduced by

Kramers and Wannier [8] in 1941 for the Ising model.

b) Theories with global abelian gauge invariance

Consider a quantum field theory expressed in euclidean formalism in terms

of “charged” fields χ, χ∗ whose action S(χ, χ∗) is invariant under an abelian (e.g.

U(1)) global gauge transformation

χ(x) → eiαχ(x), χ∗(x) → e−iαχ∗(x).

We promote the global gauge invariance to a local gauge invariance introducing

a minimal coupling between χ, χ∗ and a U(1)-gauge field A. Integrating over A

and setting dA = 0 one recovers the original theory. In formulas, for the partition

function we have:

Z =

∫

DχDχ∗e−S(χ,χ
∗) =

∫

DχDχ∗DAe−S(χ,χ
∗,A)δ(dA) =

∫

DAe−S(A)δ(dA),

where S(χ, χ∗, A) is gauge invariant and S(A) is the effective action obtained

integrating out χ, χ∗. A suitable version of duality for models of class b) gives

the abelian T–duality [9] and as we shall see, bosonization is just duality in case

b when χ is the Fermi field ψ.
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4. General features of duality

Let us outline some general properties of duality following simply from the defini-

tion.

1) From the property that the square of a Fourier transformation is parity it follows

that:

˜̃S(F ) = S(−F )

2) Correlation functions at non–coinciding arguments of −i( δS
δF

)µ1...µk
are given

in the dual theory by correlation functions of (∗dB)µ1...µk
(or (∗H)µ1...µk

).

In fact, denoting by 〈 〉 the expectation value in the original (F ) theory and

by 〈 〉̃ the expectation values in the dual (B or H) theory, and omitting all indices,

we have that

〈
∏

j

(

−i
δS

δF (xj)

)

〉 = Z−1

∫

D[B]

∫

DF
∏

j

(

−i
δ

δF (xj)

)

e−S(F )ei
∫

F∧dB =

Z−1

∫

D[B]

∫

DFe−S(F )
∏

j

(

−i
δ

δF (xj)

)

ei
∫

F∧dB =

= 〈
∏

j

(∗dB)(xj)〉̃ = 〈
∏

j

(∗H)(xj)〉̃, (4)

where in the second equality integration by parts has been used.

For models in class a) the equation of motion of the F theory are written as

d∗ δS
δF

= 0. They are mapped by duality to the Bianchi identities dH = 0 and

conversely the Bianchi identities given by dF = 0 are mapped to d∗ δS̃
δH

= 0.

Hence, duality interchanges equations of motions and Bianchi identities.

Remark In d = 3, for k = 2, also H is a two-form and we denote it by F̃ . Under

duality

(

−i δS
δF

∗F

)

→

(

∗F̃

i δ̃S
δF̃

)

=

(

0 1
−1 0

)(

−i δS̃
δF̃

∗F̃

)

. (5)

Furthemore for such values of d, k one can add to the action the θ term θ
2π

∫

F ∧F

and the theory is invariant under θ → θ + 2π . Under this transformation

6



(

−i δS
δF

∗F

)

→

(

−i δS
δF

+∗ F
∗F

)

=

(

1 1
0 1

)(

−i δS
δF

∗F

)

. (6)

One recognizes the 2 × 2 matrices in (5) (6) as the S and T generators of

SL(2,Z), hence one can construct a full SL(2,Z) group of equivalent descriptions

of the theory. An N = 2 supersymmetric version of these transformation is a

building block of Seiberg-Witten discussion of low-energy N = 2 Super-Yang Mills,

with gauge group SU(2) [10].

For models in class b),−i δS
δAµ

(x) = Jµ(x), the current associated to the global U(1)

symmetry, hence current correlation functions are expressed in the dual theory as
∗dB–correlation functions and the analogue of the equation of motion in models

of class a) is just current conservation:

d∗(−i
δS

δA
) = d∗J = 0

3) order–disorder duality

Let Σp be a p-dimensional surface and denote by Σ̃p its Poincarè dual (d+

1− p)-current, so that for F ∈ Λp(Rd+1) we have:

∫

Σp

F =

∫

F ∧ Σ̃p.

In a theory of gauge forms F of rank k the “Wilson loop” order field Wα(Σk),

α ∈ R, is defined by

Wα(Σk) = e
iα
∫

Σk

F
= eiα

∫

F∧Σ̃k (7)

and it measures the “magnetic flux” through Σk.

The “Wegner– t’Hooft” disorder field Dα(Σd+1−k) in the same theory is

obtained instead shifting F in the action by αΣ̃d+1−k, i.e.

〈Dα

(

Σd+1−k

)

〉 = 〈e−[S(F−αΣ̃d+1−k)−S(F )]〉 (8)

and it measures the “electric flux” through Σd+1−k (Normalisation factors are

omitted in (7) (8), see [4]).

Duality exchanges Wegner – t’Hooft disorder field and Wilson loop order field, in

fact
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〈Wα(Σk)〉 =

∫

DFD[B]e−S(F )ei
∫

F∧dBeiα
∫

F∧Σ̃k

=

∫

DFD[B]e−S(F−αΣ̃k)ei
∫

F∧dB = 〈Dα(Σk)〉̃,

where in the second equality we use the change of variable F → F + αΣ̃k.

5. Bosonization in condensed matter system

It has been proved in [3,4], that abelian bosonization is duality for a model

in class b) with χ ≡ ψ the massles Dirac field in d = 1.

The proof for the partition function is immediate [3] using the old result by

Schwinger

∫

Dψ̄Dψe−
∫

ψ̄(∂/−A/)ψ = e−
1
2π

(dA,∆−1dA)

where ∆ is the two–dimensional laplacian. In fact, with B ∈ Λ0(R2),

Z =

∫

Dψ̄Dψe−
∫

ψ̄∂/ψ =

∫

Dψ̄DψD[A]DBe−
∫

ψ̄(∂/−A/)ψei
∫

A∧dB =

∫

D[A]e−
1
2π

(dA,∆−1dA)ei
∫

A∧dB =

∫

DBe−
π
2
(B,∆B) =

∫

Dφe−
1
8π

(∂µφ)
2

,

where we identify B ≡ φ
2π

. The proof for current correlation functions [3] follows

from property 2) in sect 4 at non–coinciding arguments and can be extended also

to coinciding points, using gauge invariance [4]. The proof for fermion correlation

functions is slightly more involved, see [4].

A basic message we learn from this identification is the possibility to extend

bosonization to arbitrary Fermi systems replacing φ by a (d − 1)-gauge form B

and in particular one can obtain a bosonized (dual) action S̃(dB) for condensed

matter systems in arbitrary dimensions.

However, the problem we are faced on, is that even if bosonization as duality

is always in principle applicable, it becomes useful only if S̃(dB) has a tractable

form at least for some “reference systems”. This is not true in general, of course;

in this respect Schwinger result for massless Dirac fields in d = 1 is very special!

However, one can hope that S̃(dB) simplify at large scales. To discuss large-scale

properties of T ∼ 0 systems we proceed as follows: we confine our Fermi system
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in cubes Ωλ = {λx|x ∈ Ω},Ω being a fixed cube in Rd and λ, 1 ≤ λ < ∞, a scale

parameter. We keeps the particle density constant and couple the fermions to a

U(1)-gauge field Aλ(λx) ≡ λ−1A(x) where A is an arbitrary but λ-independent

gauge potential. Let SΩλ(Aλ) denote the corresponding gauge-invariant action

and expand it in Laurent series around λ = ∞:

SΩλ(Aλ) ∼
λր∞

λk
∞
∑

n=0

λ−nS(n)(A). (9)

We call the leading term in this expansion the “scaling limit” of the effective

action S(A) of our system and we denote it by S⋆(A). It is expected to give a

good description of large scale properties of S(A). The dual action is denoted

by S̃⋆(dB). Somewhat remarkably, one can prove [4,11,12] that S⋆(A), and hence

S⋆(dB), is quadratic for insulators (I), Hall fluids (H), free electron gas (F), B.C.S.

superconductors (S). [The proof does not use small - A arguments nor in general

follows from dimensional analysis, furthermore an analogous statement is false for

an analogous treatment of the spin degrees of freedom, where A is non–abelian.

Let us outline the basic ideas of the proof in cases I,H,F.] The proof is easy if

the spectrum is gapful (I,H). In fact, as a consequence, the connected current

correlation functions 〈
∏

j J
µj (xj)〉

c decay exponentially as |xi−xj | → ∞, so that

in the scaling limit they become distributions with point-like support, given by

linear combinations of δ-functions and a finite number of derivative of δ. In turn,

one easily realizes that

∏

j

δ

δAµj
(xj)

S(A) = 〈
∏

j

J µj (xj)〉
c,

so that connected current correlation functions are just the coefficients of a series

expansion of S(A) in power of A. As a result S⋆(A) is local and its form can then

be determined by using dimensional arguments and symmetries.

For example for parity preserving rotation symmetric insulators one finds [11]

S⋆(A) =

∫

dd+1x{c1Fij(A)F
ij(A) + c2F0i(A)F

0i(A)}(x) (10)

where Fµν(A) = ∂[µAν], so that S⋆(A) is Maxwell–like; for Laughlin fluids (Hall

fluids at Laughlin plateaux, where only a U(1) symmetry appears) one finds, as a

conseguence of broken parity [11] the Chern-Simons action
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S⋆(A) = c

∫

A ∧ dA. (11)

The proof [4,12] is less easy for electron gas and superconductors where the

absence of gap forbids any argument of locality. Let us outline the idea for the

electron gas, it will turn out that the result follows, roughly speaking, treating a

d-dimensional Fermi surface as the union of 1-dimensional Fermi surfaces corre-

sponding to its rays. We start noticing that at large scale only regions close to the

Fermi surface contribute to the fermion propagator, which can be approximately

written as

〈ψ∗(λx)ψ(λy)〉 ∼
λր∞

1

λ

∫

Sd−1

dωωωeikF λωωω·(x−y)(
kF
2π

)d−1Gωωω
(

x0 − y0, ωωω · (x · y)
)

, (12)

with

Gωωω(x0, ωωω · x) =

∫

dk0
2π

dk1
2π

e−i(k0x0+k1ωωω·x)

ik0 − vF k1
(13)

where dωωω is the uniform measure on the d− 1–dimensional unit sphere Sd−1, kF is

the Fermi momentum and vF the Fermi velocity and from now on we set vF = 1.

Let us introduce a field ψωωω for each point indexed by ωωω of the Fermi surface and

using a “relativistic notation” set ψ[ωωω] =
(

ψωωω
ψ−ωωω

)

, where [ωωω] ≡ {ωωω,−ωωω}. Then, the

approximate formula (12) is recovered identifying

ψ(λx) ∼
λր∞

∫

dωωωe−ikF λ ωωω·xψωωω(λx
0, λ ωωω · x)

and replacing the free electron action in the scaling limit by the integral of one–

dimensional massless Dirac action:

(
kF
2π

)d−1

∫

Sd−1

d[ωωω]

∫

dd+1xψ̄[ωωω]∂/ωωωψ[ωωω](x) ≡ S0(ψ[ωωω], ψ̄[ωωω]) (14)

where ∂µωωω = (∂0, ωωω · ∇∇∇). The possibility of expressing the action in the limit of

λ ր ∞ as an integral over one-dimensional actions persists if we couple the free

fermions to a gauge field A, in fact

S(ψ, ψ∗, Aλ) ∼
λր∞

S0(ψ[ωωω], ψ̄[ωωω]) + λdi

∫

d[ωωω]

∫

dd+1x Aωωωµ(x)j
µ

[ωωω](x;λ) (15)
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where Aωωωµ = (A0, ωωω ·A) and

jµ[ωωω](x;λ) =
1

λ

∫

d[ωωω′]e−iλkF (ωωω−ωωω′)·xψ̄[ωωω′](x
0,x · ωωω′)γµψ[ωωω](x

0,x · ωωω).

Remark Formally, in the limit λր ∞

jµ[ωωω](x;λ) →
1

λd
δ(x ∧ ωωω)ψ̄[ωωω]γµψ[ωωω](x

0,x · ωωω),

however perturbation by A and λր ∞ limit do not commute! [12].

Since for every ray [ωωω] in (15), the action of ψ[ωωω] is 1-dimensional, the effective

action is quadratic in A0 and as a consequence the full effective action is also

quadratic in A, being integral of quadratic actions. One can easily verify that

denoting by (Π⋆F )
µν the scaling limit of the free electron vacuum polarization

tensor,

S⋆(A) =

∫

dd+1xdd+1yAµ(x)(Π
⋆
F )
µν(x− y)A(y) ≡ (A,Π⋆FA). (16)

Remark Relation with Luther–Haldane bosonization [12]

Since ψ[ωωω] is a 1+1 Dirac massless Fermi field, one can directly bosonize (15)

in terms of a scalar real field ϕ[ωωω], and one obtains

jµ[ωωω] =
1

2π
ǫµν∂ωωωνϕ[ωωω]

This procedure gives the (euclidean version of the) Luther-Haldane bosonization

[13]. The relation of ϕ[ωωω] with the dual field B is given by

J 0 = (∗dB)0 =
1

2π

∫

d[ωωω]ωωω · ∇∇∇ϕ[ωωω]

J k = (∗dB)k =
1

2π

∫

d[ωωω]ωk∂0ϕ[ωωω]
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6. Adding perturbations

According to property 2) of duality, density-density or current-current pertur-

bations in the dual theory are quadratic in B. Hence, if we have a “reference”

system with scaling limit effective action S⋆0(A) = (A,Π⋆A) and, as a conseguence,

bosonized action S⋆0 (dB) = (∗dB, (Π⋆)−1 ∗dB), one would be tempted to say that

the perturbed system have a quadratic (!) scaling limit bosonized action given by

S⋆(dB) = (∗dB, ((Π⋆)−1 + V ⋆)∗dB), where V is the perturbation kernel.

However this holds only if the following perturbative assumption (P ) is

satisfied: perturbation and scaling limit commute.

Remark: What could happen is that the perturbation drive the reference system

away from its fixed point in the scaling limit. A typical example is obtained

choosing S0 as the action of free fermions and V a Cooper interaction: the scaling

limit of the perturbed system is known to describe a superconductor!. Assumption

P can be argued to hold for perturbed free systems if V is long range and the

Cooper channel is tunnel off [12,14].

If assumption P holds, then, in the scaling limit of the perturbed system,

the two–point current correlation function is given by

〈J µ(x)J ν(y)〉⋆ = 〈(∗dB)µ(x)(∗dB)ν(y)〉⋆ = [((Π⋆)−1 + V ⋆)−1]µν(x, y), (17)

Equation (17) is exactly the result of R.P.A.! Hence, assumption P implies exact-

ness of R.P.A. in the scaling limit. This explains e.g. why in a free electron system

perturbed by a Coulomb potential the plasmon gap obtained by R.P.A. coincides

with the non–perturbative exact result obtained by Morchio and Strocchi [15] by

a “generalized Goldstone theorem”.

To summarize, bosonization combined with assumtpion P gives a method

to treat non–relativistic T ∼ 0 systems in the scaling limit as gauge theories for

d > 1. One can then apply to them the techniques elaborated in the analysis of

gauge theories. As an application we discuss the Wilson criterion for the existence

of the charge operator.

7. Existence of the charge operator

As remarked before, by duality a Wilson loop Wα(Σd) measures the charge

contained in a d-dimensional surface Σd in the dual (B) theory. One can prove
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that, if it exists, the charge operator Q can be defined through the (weak) limit

eiαQ = lim
Rր∞

Wα(Σ
R
d )

〈Wα(ΣRd )〉̃
, (18)

where ΣRd is a ball of radius R in the time 0 (hyper-)plane. The normalization

ensures that if Q exists it annihilates the vacuum. For the existence of the limit

(18), one can use the Wilson criterion, proved to be correct for many lattice gauge

theories: the limit exists if for Rր ∞

〈Wα(Σ
R
d )〉 ≥ e−c|∂Σ

R
d |,

where |∂Σ| denote the volume of the boundary of Σ, i.e. if the Wilson loop has

“perimeter decay”, and the limit does not exist if it has a faster decay, e.g. as

Rր ∞

〈Wα(Σ
R
d )〉 ≤ e−c|∂Σ

R
d |lnR.

In the B–theory one can easily compute

〈Wα(Σ
R
d )〉 ∼

Rր∞















e−c|∂Σ
R
d | I

1 H
e−c|∂Σ

R
d |lnR F

e−c|∂Σ
R
d |lnR S.

This implies existence of the charge operator Q for insulators and Hall

fluids, so that in these systems Q defines a superselection rule. Viceversa, Q

does not exists for the free electron gas and for superconductors, signalizing that

charge fluctuations diverge in the thermodynamic limit. Under assumption P

it follows that for a long-range repulsive density-density perturbation we obtain

perimeter decay also for perturbed free systems and superconductors: the long

range perturbation depresses charge fluctuations and Q is again well defined.
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