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Abstract

Standard lattice-space formulations of quartic self-coupled Euclid-
ean scalar quantum fields become trivial in the continuum limit for
sufficiently high space-time dimensions, and in particular the moment
generating functional for space-time smeared fields becomes a Gaus-
sian appropriate to that of a (possibly generalized) free field. For
sharp-time fields this fact implies that the ground-state expectation
functional also becomes Gaussian in the continuum limit. To overcome
these consequences of the central limit theorem, an auxiliary, nonclas-
sical potential is appended to the original lattice form of the model
and parameters are tuned so that a generalized Poisson field distribu-
tion emerges in the continuum limit for the ground-state probability
distribution. As a consequence, the sharp-time expectation functional
is infinitely divisible, but the Hamiltonian operator is such, in the gen-
eral case, that the generating functional for the space-time smeared
field is not infinitely divisible in Minkowski space. This feature per-
mits the models in question to escape a manifestly trivial scattering
matrix imposed on all infinitely divisible covariant Minkowski fields.
Two sequentially related proposals for an alternative lattice formu-
lation of interacting covariant models in four and more space-time
dimensions are analyzed in some detail.
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1 Introduction and Overview

One of the more useful techniques to generate a Euclidean scalar quantum
field theory is to take the continuum and infinite volume limit of a model
theory defined on a finite space-time hypercubic lattice. Let the expression

〈eΣhkφka
n〉 ≡

∫

e[Σhkφka
n−W(φ)]Πdφk

schematically represent the generating functional for such a lattice theory.
Here {hk} is an external field, k = (k1, k2, . . . , kn), kj ∈ Z ≡ {0,±1,±2, . . .},
labels a lattice site, a denotes the lattice spacing, and n denotes the space-
time dimension. The expression W(φ) denotes the lattice action, which for
a ϕ4

n model, for example, is conventionally taken to be

W(φ) = 1
2
Y (a)Σ(φk∗ − φk)

2an−2 + 1
2
m2

0(a)Σφ
2
ka

n + g0(a)Σφ
4
ka

n,

where k∗ denotes one of half of the nearest neighbors to k and the summa-
tions run over the sites and nearest neighbors as needed on a finite size lattice.
The continuum limit includes an increase in the number of lattice sites as
well as sending a → 0. To facilitate convergence to potentially interesting
results, cutoff-dependent coefficients (Y, m0, and g0) have been included. For
n = 2, 3 the resultant theory that emerges in the continuum limit is nontrivial
(non-Gaussian) and is in accord with that computed from a (renormalized)
perturbation theory in the coupling constant g0 [1]. When n ≥ 5, and pos-
sibly for n = 4 as well, the theory that emerges in the continuum limit is
trivial (Gaussian), to wit

〈e
∫

h(x)φ(x) dnx〉 = e
1
2

∫

h(x)C(x−y)h(y) dnxdny ,

which corresponds to a Minkowski theory that is a (possibly generalized) free
field [2]. The manifest non-Gaussian character of the model on the lattice
is subsumed into a possible influence on the correlation function C in the
Gaussian limiting behavior.

The limiting behavior described above for n ≥ 5, and possibly n = 4
as well, is characteristic of the general behavior that goes under the name
of the Central Limit Theorem (CLT)[3]. Although the simplest illustrative
examples of a CLT behavior are for independent identically distributed ran-
dom variables, neither independence nor identity of the various distributions
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are essential for its validity. If we accept for the further sake of argument
that a CLT mechanism is behind the Gaussian limiting behavior for n ≥ 4
(including n = 4 for convenience), then we are also drawn to consider Pois-
son distributions as they are the very kind that resist the vise grip of the
CLT and lead to non-Gaussian and thereby potentially nontrivial continuum
limits. By Poisson distributions we mean all those that go under the name
Poisson, compound Poisson, or generalized Poisson distributions [4], which
are described below as needed. It is the latter of these distributions that will
be of physical interest in the present work.

Once the possibility of Poisson distributions is raised, there are (at least)
two ways to proceed. From the point of view of Euclidean quantum field
theory—where we presently find ourselves—a natural procedure, which we
shall initially discuss, suggests itself, but we shall find it wanting in that al-
though the Euclidean theory may be non-Gaussian the associated Minkowski
theory is forced to have trivial scattering [5]. Our second construction of a
Poisson distribution is qualitatively different than the first one, and nontriv-
ial scattering in the Minkowski theory is not manifestly excluded. Although,
in hindsight, the second approach may appear more natural, both stand-
points are included for completeness. We now outline the two alternative
approaches in more detail.

One may first be tempted to insist that the entire space-time dependent
field distribution should be made into a generalized Poisson distribution in
Euclidean space. This change of distribution is presumed to arise by the ad-
dition of an auxiliary, nonclasssical [O(h̄2)] potential P to the conventional
lattice action. Assuming for the moment we could find such a P let us ex-
amine its consequences for potential nontriviality. In particular, we suppose
that both the Euclidean and Minkowski fields have the property of infinite
divisibility [6][7]. For the Minkowski field this means that the generating
functional for the smeared field operator

ϕ(h) ≡
∫

h(x)ϕ(x) dnx

has a form implicitly given by

〈0|eiϕ(h)|0〉 ≡ lim
R→∞

exp{R〈0R| [eiϕR(h) − 1]|0R〉},

where |0R〉 is a normalized state and ϕR(h) is a field operator for each R. As
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a consequence of this structure it follows, for example, that

〈0|ϕ(f1)ϕ(f2)ϕ(f2)ϕ(f1)|0〉T ≥ 0 .

Combined with Schwarz’s inequality we have

0 ≤ |〈0|ϕ(g1)ϕ(g2)ϕ(f2)ϕ(f1)|0〉T |2
≤ 〈0|ϕ(g1)ϕ(g2)ϕ(g2)ϕ(g1)|0〉T

×〈0|ϕ(f1)ϕ(f2)ϕ(f2)ϕ(f1)|0〉T ,

which for the asymptotic states of the Haag-Ruelle scattering theory implies
that

0 ≤ |〈0|ϕout(g1)ϕout(g2)ϕin(f2)ϕin(f1)|0〉T |2
≤ 〈0|ϕout(g1)ϕout(g2)ϕout(g2)ϕout(g1)|0〉T

×〈0|ϕin(f1)ϕin(f2)ϕin(f2)ϕin(f1)|0〉T = 0 .

The vanishing of this expression implies an absence of two-particle elastic
scattering. Similar arguments may be extended to multi-particle scattering
including particle production and annihilation [5]. Accepting the hypothesis
that all asymptotic states are covered in this way leads to a unit S-matrix.
Thus, insisting that the entire space-time dependent field distribution be a
generalized Poisson distribution leads to trivial scattering, and so this par-
ticular hypothesis loses its appeal. However, there is also another route to
follow.

Let us assume for the sake of argument that the sharp-time field is well
defined (a discussion of lifting this assumption appears in the next Section).
We observe that if the space-time smeared field has a Gaussian generating
functional then this property is inherited by the sharp-time field as well. If
we set

h(x) = g(x)δ(t) , x ∈ IRs , s ≡ n− 1 ,

then, for n ≥ 4,

〈e
∫

g(x)φ(x) dsx〉 = e
1
2

∫

g(x)C(x−y)g(y) dsx dsy .

At sharp time, e.g., t = 0, the Euclidean theory expectation coincides with
the Minkowski theory expectation, and thus it follows that

〈0|eiϕ(g)|0〉 = e−
1
2

∫

g(x)C(x−y)g(y) dsxdsy ,
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where we have changed g to ig for later convenience. We may diagonalize
the field at t = 0 so that

〈0|eiϕ(g)|0〉 =
∫

eiφ(g)|ΨG{φ}|2 δφ

where we have adopted a formal notation for a straightforward Gaussian
functional integral. The expression ΨG{φ} represents the ground state func-
tional, a Gaussian eigenstate of the Hamiltonian operator.

The Gaussian character of the continuum ground state contrasts with
the non-Gaussian ground state of the lattice Hamiltonian operator prior to
taking the continuum limit. The lattice Hamiltonian may be readily deduced
from the lattice action, and it has the form

Ha = −1
2
Y −1(a)a−sΣ′ ∂

2

∂φ2
k

+ 1
2
Y (a)Σ′(φk∗ − φk)

2as−2

+1
2
m2

0(a)Σ
′φ2

ka
s + g0(a)Σ

′φ4
ka

s + const. ,

where we assume that g0(a) > 0 and that the prime on various sums indi-
cates that only lattice sites with the same “time” value (equal k1, say) are
included. The “const.” is adjusted so that the ground state Ψa(φ) of the
lattice Hamiltonian satisfies

HaΨa(φ) = 0 .

In view of the nonvanishing quartic interaction, Ψa(φ) can not be a Gaussian,
and as a consequence the characteristic functional

∫

eiΣ
′φkgka

s |Ψa(φ)|2Π′ dφk

is non-Gaussian although, as noted above, the continuum limit of this lattice
characteristic functional is Gaussian. Thus, we may reasonably conclude that
the distribution of field values at sharp time (e.g., t = 0) succumbs to the
CLT, and in the continuum limit passes from a non-Gaussian to a Gaussian
distribution.

Our strategy at this point is to add an (alternative) auxiliary, nonclas-
sical [O(h̄2)] potential P to the lattice Hamiltonian which has the effect of
changing the ground state in such a way that in the continuum limit the
characteristic functional for the sharp-time field corresponds to a generalized
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Poisson distribution. In symbols, in the first approach we adopt, we modify
the lattice Hamiltonian so that its ground-state characteristic functional has
the form given by
∫

eiΣ
′φkgka

s |Ψa(φ)|2Π′dφk = exp{−
∫

[1− cos(Σ′φkgka
s)]|ψa(φ)|2Π′dφk} ,

where ∫

|ψa(φ)|2Π′dφk = ∞ ,

and insist, moreover, in the continuum limit and written formally, that

〈0|eiϕ(g)|0〉 =
∫

eiφ(g)|ΨP{φ}|2 δφ

= exp(−
∫

{1− cos[φ(g)]}|ψ{φ}|2 δφ) ,

where ∫

|ψ{φ}|2 δφ = ∞ .

In writing these expressions we have made explicit use of the expected sym-
metry ψa(−φ) = ψa(φ) appropriate to the ground state in order to introduce
the “cosine”. The expression in the exponent in both of the last equations
is often termed the second characteristic [6]; it also serves as the genera-
tor of the truncated equal-time correlation functions, when such moments
exist. We suppose that the characteristic functional—and thus the sec-
ond characteristic—is well defined for a wide class of test functions g, say
g ∈ S(IRs), the Schwartz space of C∞ functions of rapid decrease. How-
ever, as already indicated, we will insist that

∫ |ψa(φ)|2Π′dφk = ∞ as well
as

∫ |ψ{φ}|2 δφ = ∞, conditions which characterize a generalized Poisson
distribution for the lattice and in the continuum limit, respectively, as this
divergence is necessary and sufficient in the present case for the smeared
sharp-time field operator ϕ(g), on the lattice and in the continuum, to have
a purely absolutely continuous spectrum. The contrary situation for which
∫ |ψa(φ)|2Π′dφk < ∞, or especially

∫ |ψ{φ}|2 δφ < ∞, conditions which de-
scribe a compound Poisson distribution, will be unsuitable.

Once having ensured that the sharp-time field has a generalized Poisson
(and non-Gaussian) distribution, we choose the associated functional ΨP{φ}
to be the ground state of the continuum Hamiltonian and, based on that
choice, attempt to build multi-time correlation functions in a conventional
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manner. Insofar as the sharp-time correlation functions are non-Gaussian,
one may reasonably expect the multi-time correlation functions to be non-
Gaussian as well. Since the present construction invokes an auxiliary interac-
tion to generate a Poisson distribution only for the sharp-time fields, there is
no reason, in general, to expect that the relativistic field will have a Poisson
distribution for all space and time thereby avoiding manifest triviality of the
S-matrix as discussed above.

Faced with the difficulty of analytically determining Ψa(φ) to carry out
this program we introduce a second model designed so that the continuum
limit of the time zero field, at least for several test cases, is identical to
that based on the first model. In the second model we approximate Ψa(φ)
directly thereby enabling us to recover the auxiliary nonclassical potential
P directly. Given the auxiliary potential we propose a specific form of a
lattice action that we believe embodies our proposals for an alternative and
nontrivial quantization of self-coupled scalar fields such as ϕ4

n for n ≥ 4 (and
potentially an alternative quantization for n = 2 or 3 as well).

1.1 Illustrative Toy Model

It is instructive at this point to introduce a “toy” model to more easily visu-
alize some aspects of the previous discussion. Let us consider the well-known
Cauchy distribution in one dimension given by its characteristic function

C(p) ≡ e−b|p| =
∫

b eipx

π(x2 + b2)
dx

= exp{−b
∫

[1− cos(px)]
dx

πx2
} .

Here b > 0 denotes an arbitrary scale parameter. The spectrum of x is
absolutely continuous as signified by the probability density b/[π(x2 + b2)].
Observe the nonintegrable singularity in the second characteristic weight
function, i.e.,

∫

dx/(πx2) = ∞. The two weight functions involved are,
of course, related to one another. In particular,

|p| = lim
b→0

b−1(1− e−b|p|) = lim
b→0

∫

(1− eipx)
dx

π(x2 + b2)

=
∫

[1− cos(px)]
dx

πx2
.
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While analytically simple, this toy model is special because its moments
do not exist. A closely related family of toy models is determined by the
characteristic function

Cρ(p) = e−b
√

p2+ρ2+bρ =
∫

eipx
bρ

π

K1(ρ
√
x2 + b2 )√

x2 + b2
ebρ dx

= exp{−b
∫

[1− cos(px)]
ρK1(ρ|x|)
π|x| dx} ,

where ρ > 0 is another parameter at our disposal [8]. The conventional modi-

fied Bessel function K1(z) ≃
√

π/2z e−z for z ≫ 1, ensuring that all moments

of the distribution exist. Moreover, since K1(z) ≃ 1/z for 0 < z ≪ 1, it fol-
lows that as ρ→ 0 these distributions converge to the Cauchy case. For any
ρ > 0 observe that for small x the second characteristic weight function is
effectively identical, i.e., b/(πx2), to that of the Cauchy distribution. Thus
we are led to the notion of a set of different distributions all of which have
the same singularity structure of the second characteristic weight function
at small arguments but which differ from each other by their behavior for
intermediate and large arguments. In the present case such a set includes,
e.g., all distributions of the form

exp{−b
∫

[1− cos(px)]
F (x)

πx2
dx} ≡

∫

eipxG(x) dx ,

where F ∈ C2, F (0) = 1, F ≥ 0, and
∫

[F (x)/(1 + x2)] dx < ∞. Although
we can not analytically specify the L1 nonnegative weight function G of
the characteristic function in the general case, we know that it exists. The
characterization of a distribution by means of its second characteristic will
be an important tool in our study.

One aspect of our approach that does not have an analog in this toy
model is the relation of the second model to the first, namely the fact that
these two lattice field theories have different lattice starting points but equal
continuum limits.

Before closing the discussion of our toy models it is worthwhile illustrating
our suggested procedure for constructing multi-time correlation functions.
For simplicity we confine ourselves to the Cauchy model (even though an
entirely analogous procedure could be carried through for the toy model
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with finite moments). In particular, if we identify

〈0|eipQ|0〉 ≡ e−b|p| =
∫

eipx
b dx

π(x2 + b2)

as the ground-state expectation function, then we are led to represent the
Hamiltonian operator H by

Hb ≡ −1
2

∂2

∂x2
+ 1

2
(x2 + b2)1/2

∂2

∂x2
(x2 + b2)−1/2

= −1
2

∂2

∂x2
+

2x2 − b2

2(x2 + b2)2
.

For any b > 0 it is seen that this Hamiltonian has only one normalizable
eigenstate, the ground state with zero energy; this paucity of normalizable
eigenstates is related to the absence of moments for this model. It follows
that

〈0|eip′Qe−iHteipQ|0〉 ≡ b

π

∫

eip
′x

√
x2 + b2

e−iHbt
eipx√
x2 + b2

dx ,

with analogous expressions holding for higher-order multi-time correlations.
The procedure illustrated here is analogous to that to be followed in our
discussion of ϕ4 models in Sections 2 and 3.

On the other hand, for the sake of completeness, we should also illustrate
an alternative dynamical extension analogous to the first proposal to have
a Poisson distribution for fields over all space and time. In this alternative
dynamical extension we modify the second characteristic so that

〈0|eip′Qe−iHteipQ|0〉 ≡ exp[
b

π

∫

1

|x|(e
ip′xe−ihteipx − 1)

1

|x| dx] ,

where in the present case

h ≡ −1
2

∂2

∂x2
+ 1

2
|x| ∂

2

∂x2
|x|−1

= −1
2

∂2

∂x2
+

1

x2
.

At t = 0, of course, the two dynamical extensions coincide. The Hamilto-
nian h has a positive, purely absolutely continuous spectrum, and as a con-
sequence, the asymptotic behavior of both dynamical expressions exhibits
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clustering as t→ ±∞. Thus on general grounds both dynamical expressions
may seem viable. However, as argued earlier, one of these extensions leads
to manifestly trivial scattering in the field theory case. Consequently, our
further discussion will be aimed at converting the sharp-time field distribu-
tion into a generalized Poisson distribution and proceeding in analogy with
the former of the two dynamical toy models.

1.2 Summary of Proposed Lattice Model for ϕ4
n

Here we summarize the results of the next two sections and present in as
concrete a form as possible our proposal for a lattice model designed to lead
to a nontrivial continuum limit and to have the possibility of nontrivial scat-
tering as a relativisitic theory. In the language with which the conventional
lattice models are formulated, our proposal is very much the same save for
two aspects. The first difference is the presence of the auxiliary, nonclassical
potential that enforces a generalized Poisson distribution on the sharp-time
field distribution, and the second difference is the wholly new form taken by
the bare parameters of the theory in terms of the renormalized (or finite,
nonzero) parameters that eventually determine the theory properly.

The model is characterized by the Euclidean lattice form of the correlation
generating function as given by

S(h) = N0

∫

exp[Σhkφka
n − 1

2
Y (a)Σ(φk∗ − φk)

2a(n−2) − 1
2
m2

0(a)Σφ
2
ka

n

−g0(a)Σφ4
ka

n − ΣP (φk, a)a
n] Πdφk .

In this expression [9]

P (φk, a) =
A(a)φ2

k − B(a)

[φ2
k + C(a)]2

,

where

A(a) = Y (a)−1a−2s 8−1(1 + ξ)(3 + ξ) ,

B(a) = Y (a)−1a−2s 4−1(1 + ξ)C(a) ,

C(a) =Mn−2(Ma)2s(1−ξ)/ξ .

In these relations ξ > 0 is a free parameter labeling inequivalent quantiza-
tions; as we shall show, the cases 0 < ξ < 2 and 2 ≤ ξ are qualitatively
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different. For the present, as well as for the most part, we shall confine at-
tention to 0 < ξ < 1. Our analysis indicates that the bare parameters are
related to renormalized parameters according to the relation

m2
0(a) = (Ma)n−2m2 ,

g0(a) = (Ma)3n−4g ,

Y (a) = (Ma)n ,

where M denotes a mass parameter chosen to ensure that engineering di-
mensions are preserved. Observe that these three bare parameter renormal-
izations are multiplicative as opposed to subtractive; this consequence is a
direct reflection of the profound difference that the auxiliary potential intro-
duces into the integrand. Moreover, all three bare parameters are small when
Ma ≪ 1, i.e., as the continuum limit is approached. This means that in the
integration variables indicated the essential support of φ extends roughly to
O((Ma)−s), namely to large values. On the other hand, the contribution of
the auxiliary potential is significant for much smaller values of the integra-
tion variables, namely when φ2 ≃ C(a) = Mn−2(Ma)2s(1−ξ)/ξ . In brief, each
integration variable sees two qualitatively different regions, one for small val-
ues dominated by the auxiliary potential, and one for large values controlled
by the terms of the usual model. Of course, “small” and “large” are relative
terms and may be influenced by a rescaling of the variables of integration;
for example, if we introduce ρk = (Ma)sφk, then it follows that ρk has an
essential support of order one or less. But in this case the influence of the
auxiliary potential occurs for extremely small values of ρk. As the contin-
uum limit is approached the disparate scales for the two effects become even
more pronounced. Incidentally, the importance of the very small and very
large integration domains for each variable would make a naive application of
either renormalization group arguments or Monte Carlo calculations appear
rather difficult.

In a formal continuum limit the density of the auxiliary potential term is
invariably of the form

ch̄2

φ2(x)

for any value of ξ and any space-time dimension n, where c denotes a suitable
constant. We will present arguments that show that this term should not
be interpreted as a renormalization counterterm for the nonlinear interaction
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term, but rather as a necessary renormalization for the kinetic energy term

with which it shares an identical scaling behavior. (The analog of the cen-
trifugal potential arising out of the kinetic energy in nonrelativistic quantum
mechanics is an appropriate one here.)

Such renormalization counterterms have been encountered in previous
models studied by the author, and one may expect that some of the gen-
eral discussion that held true for previous models may well hold true in the
present case [10]. In particular, we have in mind the implications of such a
counterterm for: (i) the presence of a hard-core interaction; (ii) the limiting
behavior as the nonlinear coupling constant is turned off being not the usual
free theory but rather a pseudo-free theory which retains the essential effects
of the hard-core potential; and (iii) the existence of a meaningful perturba-
tion theory in the nonlinear coupling constant, not about the free theory, but
instead about the pseudo-free theory.

2 Lattice Regularized Models: First Formu-

lation

In this section we shall present the first of two formulations of a class of
models each of which we believe has the right behavior so that in the contin-
uum limit a non-Gaussian Euclidean quantum field theory emerges. Based
on the discussion in the preceding section it is possible that in Minkowski
space these models exhibit nontrivial scattering as well. Among such models
are natural candidates for nontrivial theories of ϕ4

n in space-time dimensions
n ≥ 5 and perhaps n = 4 as well. We begin this section with some remarks on
the difference between locality on the lattice and locality in the continuum.

Lattice and continuum locality

Let us illustrate the point of this subsection with a very simple example,
namely one that deals with Gaussian white noise. Suppose we want to find
a lattice prescription for the Gaussian functional integral given by

e−
1
2

∫

h2(x) dnx =
∫

ei
∫

h(x)φ(x) dnx dµ(φ) .

12



The natural lattice formulation of this problem is

e−
1
2
Σkh

2
k
an = N

∫

eiΣkhkφka
n

e−
1
2
Σkφ

2
k
an Πdφk ,

in which the manifest locality—even ultralocality—of the continuum result
is already apparent in the lattice form. However, it is by no means necessary
that the lattice formulation needs to be local in order for the continuum
limit to be local. As an example we study the following alternative lattice
formulation for the same problem.

Let us consider

NΞ

∫

eiΣkhkφka
n

e−
1
2
Σk,lΞk;lφkφla

n

Πdφk ,

where Ξ is a positive-definite matrix, is independent of the lattice spacing,
and has the property that ΣkΞk;l = 1 for each fixed l. For general Ξ, the
lattice exponent is certainly not local on the lattice; however, the continuum
limit leads to the same result as before. Specifically,

lim
a→0

NΞ

∫

eiΣkhkφka
n

e−
1
2
Σk,lΞk;lφkφla

n

Πdφk = e−
1
2

∫

h2(x) dnx .

An acceptable example for Ξ is given by

Ξk;l = M̃ Πn
j=1 sin

2(kj − lj)/(kj − lj)
2 ,

where M̃ is a normalizing constant. This expression has the apparent feature
of being nonlocal. However, in the continuum any two points a finite distance
apart are actually an infinite number of (continuum) lattice steps apart, and
so there is no real nonlocality after all. Insofar as the continuum limit is
concerned, the matrix Ξk;l is just as good as the choice δk,l. One matrix may
be more natural than the other, but it would be incorrect to say that one is
“right” and the other is “wrong”. Since the continuum limit is the ultimate
goal they are both equally “right”.

The purpose of this comment is to assuage any concern about continuum
nonlocality that may be raised in the lattice formulation to follow. What
appears to be nonlocal is in fact perfectly local in the continuum limit.
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2.1 Determining the Second Characteristic

As a preliminary we choose a “time” direction in the Euclidean lattice; this
will become the time direction when one changes from a Euclidean to a
Minkowski theory. For this purpose we single out the first component k1 of
the lattice label as the future time direction, but for convenience we shall
simply refer to k1 as the time direction. Evidently there are s = n − 1
space components, k2, . . . , kn, remaining. We assume the original lattice is a
hypercube with an odd number, 2L+1, of lattice sites in each direction. Thus
the total number of lattice points is N ≡ (2L+ 1)n, while the total number
of lattice points in a spatial slice (at constant k1) is given by N ′ ≡ (2L+1)s.
We adopt periodic boundary conditions in the spatial directions and Dirichlet
boundary conditions in the time direction. Let us next introduce a family
of real constants {βk} (with k a lattice site label) each of which is positive,
βk > 0, and subject to the normalization condition

Σ′
kβk = 1 ,

where the sum is over the N ′ sites in any spatial slice in the lattice, i.e., only
n− 1 dimensions of the lattice. In doing the sum we hold k1 fixed, and the
normalization holds for any k1. We shall use a “prime” to signify when a
sum, or a factor, refers to a lattice of codimension one. A suitable choice of
constants βk is given in the form

βk = βk ≡M ′ Πn
j=2K

−|kj |

where K > 1 and M ′ is a normalization factor given by

M ′ = [(K − 1)/(K + 1− 2K−L)]s .

Armed with these definitions we introduce an ansatz for the weight func-
tion appropriate to the second characteristic. In particular we let

ψa(φ) = J
e−w(φ)

Π′
k[Σ

′
lβk−lφ2

l ]
γ/2

,

where J is a normalization factor (to be chosen below), w(φ), with w(0) = 0,
is a function designed to control the large field behavior, while the factor in
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the denominator controls the small field behavior. We choose the parameter
γ = 1/2 + ξ/(2N ′), 0 < ξ < 1, in order, as we shall see, that

∫

|ψa(φ)|2Π′dφk = ∞ ,

while on the other hand, along with a suitable w,

∫

(Σ′gkφka
s)p|ψa(φ)|2Π′dφk <∞

for all p ≥ 1. In terms of these expressions, the (negative of the) second
characteristic reads

CS(g) ≡ J2
∫

[1− cos(Σ′φkgka
s)]

e−2w(φ)

Π′
k[Σ

′
lβk−lφ2

l ]
γ
Π′

kdφk .

Normalization is readily dispensed with. We choose a special (sp) test
sequence, for example we may choose

gk = gspk ≡ Mn/2e−MaΣn
j=2|kj | ,

for a suitable constant M . This special sequence is chosen so that

Σ′(gspk )2as =M +O(a, L−1)

is finite and nonzero in the continuum limit. We declare that CS(g
sp) = 1, a

condition that fixes the value of J , in particular, so that

J−2 ≡
∫

[1− cos(Σ′φkg
sp
k a

s)]
e−2w(φ)

Π′
k[Σ

′
lβk−lφ

2
l ]
γ
Π′

kdφk .

In order to better ascertain the continuum limit for the second character-
istic, it is convenient to introduce a new set of integration variables which we
shall refer to as hyper-extreme spherical coordinates. Based on the definition
φk ≡ κηk, κ ≥ 0, with Σ′φ2

k ≡ κ2, let us consider the measure

Π′
k[Σ

′
lβk−lφ

2
l ]
−γ Π′

kdφk = Π′
k[Σ

′
lβk−lφ

2
l ]
−γ Π′

kdφk δ(κ
2 − Σ′

kφ
2
k) dκ

2

= κN
′−2 κ−N ′−ξ dκ2 δ(1− Σ′η2k)Π

′
k[Σ

′
lβk−lη

2
l ]

−γ Π′
kdηk

= 2κ−1−ξ dκ dτ(η) ,
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where
dτ(η) ≡ δ(1− Σ′

kη
2
k) [Π

′
k[Σ

′
lβk−lη

2
l ]

−γ Π′
kdηk .

In terms of these variables it follows that

CS(g) = 2J2
∫

[1− cos(κΣ′ηkgka
s)] e−2w(κη)κ−1−ξ dκ dτ(η) ,

and more particularly for the moments that

< (Σ′ gkφka
s)p > = 2J2

∫

(Σ′ gkηka
s)pΠ′

k[Σ
′
lβk−lη

2
l ]

−γ e−2w(κη)

×κp−1−ξ dκ δ(1− Σ′η2k) Π
′
kdηk .

Here we restrict attention to 0 < ξ < 1 which is readily seen to lead to the
desired conditions that

∫

(Σ′φkgka
s)p|ψa(φ)|2Π′dφk diverges for p = 0 and is

finite for p ≥ 1. The case where ξ is larger is treated below.

First look at acceptable expressions for w(φ)

When moments exist, an acceptable expression for w(φ) is one for which
moments of the second characteristic are all of the same order of magnitude.
We can assure this by studying the quotient of any two moments and ensuring
that it neither vanishes nor diverges in the continuum limit. We focus our
initial attention on the quotient

< (Σ′gkφka
s)4 >

< (Σ′gkφkas)2 >
=

∫

(Σ′ gkηka
s)4κ3−ξ e−2w(κη) dκ dτ(η)

∫

(Σ′ gkηkas)2κ1−ξ e−2w(κη) dκ dτ(η)
.

Suppose that w = κ2/T , then it follows that

< (Σ′gkφka
s)4 >

< (Σ′gkφkas)2 >
= c T

∫

(Σ′ gkηka
s)4 dτ(η)

∫

(Σ′ gkηkas)2 dτ(η)

= 3c T as
(Σ′

kg
2
ka

s)(Σ′
lg

2
l a

s)
∫

η2kη
2
l dτ(η)

(Σ′
kg

2
ka

s)
∫

η2k dτ(η)
,

where c denotes a fixed, nonzero, dimensionless constant. Now, as discussed
below, it is reasonable to assume something like

∫

η2kη
2
l dτ(η)

∫

η2m dτ(η)
≈ βk−l .
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As a consequence it is necessary to choose T ∝ (Ma)−2s—for some fixed
parameter M with the dimension of a mass—in order to have a ratio that
stays finite and away from zero as a→ ∞ and N ′ → ∞. Note that T has the
mass dimensions of φ2, namely n−2. It is readily seen that if w = κ4/T 2, with
T ∝ (Ma)−2s, a suitable behavior is also found. In addition all other moment
ratios are maintained correctly with these same choices. Consequently, we
conclude that the proper choice for w is given by

w(φ) = Υ(κη(Ma)s )

for a large class of functions Υ that may involve dimensional constants, but
are (effectively) independent of either the lattice spacing a or the number of
lattice sites in a spatial slice N ′. This remark has strong consequences for the
form of the regularized coefficients in the lattice Hamiltonian and therefore
in the lattice action.

Elementary exercises in many-variable integrations

There are a number of significant differences in many-dimensional integra-
tions between Gaussian-like integrands and Poisson-like integrands of the
general kind that appear in the second characteristic. For this remark we
have in mind integrals of the form

IG(2p) =
∫

(Σφ2
k)

p e−AΣφ2
k Π dφk

as well as those of the form

IP (2p) =
∫

(Σφ2
k)

p e−AΣφ2
k [Σφ2

k]
−N/2 Π dφk ,

where p ≥ 1. Here, in this and the following exercise section, we do not dis-
tinguish between N and N ′, and for simplicity in notation we drop the prime.
Note that the integrals in question are simple “caricatures” of the more com-
plicated integrals of interest; nevertheless these integrals will illustrate an
important point. More relevant integrals are studied below.

If we use the variables κ and {ηk} introduced previously, it follows that

IG(2p) = 2
∫

κ2p e−Aκ2

κN−1 dκ δ(1− Ση2k) Π dηk .
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Evaluation of this expression for large N is dominated by the factor κN−1,
and a steepest descent method can be used to evaluate to a suitable accuracy
the integral over κ. It follows that the stationary point for each integral of

this form is given to leading order by κ =
√

N/(2A). As a consequence, for
each different value of A the integrand lives on a different set—a disjoint
set of field values—as N → ∞ [11]. This fact is responsible for divergences
in perturbation calculations. For example, if we shift the value of A and
attempt to calculate

I ′G(2) = 2
∫

κ2 e−A′κ2

κN−1 dκ δ(1− Ση2k)Π dηk

in terms of IG(2p) by means of a perturbation series in ∆A ≡ A′ − A, then
we are led to the series

I ′G(2) = IG(2)−∆AIG(4) +
1
2
(∆A)2IG(6)− 1

6
(∆A)3IG(8) + · · ·

which exhibits divergences as N → ∞ since IG(2p)/IG(2) ∝ N (p−1). In the
same spirit if one attempted to evaluate

I ′′G = 2
∫

κ2 e−Aκ2−Bκ4Ση4
k κN−1 dκ δ(1− Ση2k) Π dηk

by means of a perturbation in B, then one would be led to the series

I ′′G = IG(2)− BIG(6)
∫

(Ση4k) dσ(η)

+1
2
B2IG(10)

∫

(Ση4k)
2 dσ(η) + · · · ,

where we have introduced

dσ(η) ≡ δ(1− Ση2k) Π dηk
∫

δ(1− Ση2k) Π dηk
.

Here again we encounter divergences, e.g., because IG(6)/IG(2) ∝ N2 while

∫

(Ση4k) dσ(η) ∝ N−1

and so the net value for the first-order correction relative to the initial term is
of order N . In point of fact, the kind of divergences under discussion here are
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extremely simplified examples—analogous to the “caricatures” spoken about
above—of the kind of divergences that arise in perturbative calculations in
relativistic ϕ4 theory!

We now turn our attention to a study of IP . The expressions that we
shall study are once again caricatures of the more complicated ones studied
in previous sections; nevertheless they contain the essential ingredients for
present purposes. In particular, for p ≥ 1, let us examine

IP (2p) =
∫

(Σφ2
k)

p e−AΣφ2
k [Σφ2

k]
−N/2Π dφk

= 2
∫

κ2p e−Aκ2

[κ2]−N/2κN−1 dκ δ(1− Ση2k) Π dηk

= 2
∫

κ2p−1e−Aκ2

dκ δ(1− Ση2k) Π dηk .

Now we see no large power of κ in the integrand to lead to N -dependent
factors. Indeed,

IP (4)

IP (2)
=

∫

κ3e−Aκ2
dκ δ(1− Ση2k) Π dηk

∫

κe−Aκ2 dκ δ(1− Ση2k) Π dηk

=

∫

κ3e−Aκ2
dκ

∫

κe−Aκ2 dκ
=

1

A
,

which is N -independent and finite. With

I ′P (2) = 2
∫

κe−A′κ2

dκ δ(1− Ση2k) Π dηk

a perturbation expansion in ∆A as before is given by

I ′P (2) = IP (2)−∆AIP (4) +
1
2
(∆A)2IP (6)− 1

6
(∆A)3IP (8) + · · ·

which exhibits no divergences whatsoever. In a similar way

I ′′P = 2
∫

κe−Aκ2−Bκ4Ση4k dκ δ(1− Ση2k) Π dηk

admits an expansion in B of the form

I ′′P = IP (2)−BIP (6)
∫

(Ση4k) dσ(η)

+1
2
B2IP (10)

∫

(Ση4k)
2 dσ(η) + · · · .
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The IP coefficients are all finite in this case, but we still have
∫

(Ση4k) dσ(η) ∝ N−1 ,
∫

(Ση4k)
2 dσ(η) ∝ N−2 .

Consequently, if we reinterpret B as being proportional to N , say B = BN ,
then each term of the perturbation series makes perfectly good sense as a
power series in B.

These simple examples serve to illustrate one aspect of the profound dif-
ference that exists between many-variable integrations involving Gaussian-
like integrands compared with those that arise with Poisson-like integrands.
However, there is one glaring deficiency in our discussion, namely we have not
included any examples in which field derivatives play a role. Let us remedy
that situation.

Advanced exercises in many-variable integrations

Let us again return to Gaussian-like integrals, this time some that resemble
scalar field models, namely

IG =
∫

e−AΣ(φk∗−φk)
2a(n−2)−BΣφ2

k
an Πdφk

= 2
∫

e−Aκ2Σ(ηk∗−ηk)
2a(n−2)−Bκ2anκN−1 dκ δ(1− Ση2k) Π dηk .

The subsequent calculation depends on the number of space-time dimensions
involved. Let us start simply and take n = 1, namely

IG = 2
∫

e−Aκ2Σ(ηk+1−ηk)
2a−1−Bκ2aκN−1 dκ δ(1− Ση2k) Π dηk .

With A ≈ B ≈ 1, it follows that κ ≈
√
N , η2k ≈ 1/N , and (ηk+1−ηk)2 ≈ a/N .

This is the case of Brownian motion and it is interesting to observe that in
the continuum limit the time derivative of η is almost everywhere finite. This
behavior is unlike that for φ for which

< (φk+1 − φk)
2 >=< κ2(ηk+1 − ηk)

2 >≈ N(a/N) = a .

It is only when the amplitude factor (κ) is included that the paths pass
from almost everywhere differentiable to nowhere differentiable! Now let
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us turn our attention to higher dimensions, in particular n ≥ 3 (ignoring
logarithmic behavior characteristic of n = 2). In that case—and assuming
for simplicity that Nan ≈ 1—it follows that φ2

k ≈ a−(n−2), κ ≈ N (1−1/n),
η2k ≈ N−1 ≈ an, and (ηk∗ − ηk)

2 ≈ an as well. It follows, for example that
< (φk∗ − φk)

2 >≈ a−(n−2), which shows the divergence of the field difference
comes about solely from the radius factor (κ) and is not at all due to the
variables (ηk).

If we add a quartic interaction term we are led to consider

I ′′
G = 2

∫

e−Aκ2Σ(ηk∗−ηk)
2an−2−Bκ2an−Cκ4Ση4

k
anκN−1 dκ δ(1− Ση2k) Πdηk .

In this case the relative order of magnitude of the terms in the principal part
of the integrand is given by

e−Aκ2Σ(ηk∗−ηk)
2an−2−Bκ2an−Cκ4Ση4

k
an ≈ e−AN−BN(1−2/n)−CN(2−4/n)

,

which has the interesting corollary that the quartic interaction term becomes
comparable with the kinetic term when n = 4 and actually dominates the
kinetic term when n ≥ 5. This is how (strictly) renormalizable and non-
renormalizable models appear in this abbreviated language.

Now let us make a comparable study for Poisson-like integrals. Specifi-
cally, and with p ≥ 1, we consider

IP (2p) = 2
∫

(Σhkηka
n)2p e−Aκ2Σ(ηk∗−ηk)

2an−2−Bκ2anκ2p−1 dκ δ(1− Ση2k) Πdηk .

Our criterion of quality in the present case will relate to the comparable
magnitude of the even moments. To study this issue we examine

IP (4)

IP (2)
=

∫

(Σhkηka
n)4 e−Aκ2Σ(ηk∗−ηk)

2an−2−Bκ2anκ3 dκ δ(1− Ση2k) Πdηk
∫

(Σhkηkan)2 e−Aκ2Σ(ηk∗−ηk)2an−2−Bκ2anκ dκ δ(1− Ση2k) Πdηk
.

To approximate this quotient, we use the estimates that η2k ≈ (ηk∗ − ηk)
2 ≈

1/N , which for n ≥ 3 hold just as before. Thus, in a self-evident notation,
the quotient is approximated by

IP (4)

IP (2)
≈ 3an

∫

(Σk,lh
2
ka

nh2l a
n) < η2kη

2
l >

∫

e−Aκ2an−2−Bκ2anκ3 dκ
∫

(Σkh2ka
n) < η2k >

∫

e−Aκ2an−2−Bκ2anκ dκ

∝ an

N

∫

e−Aκ2an−2−Bκ2anκ3 dκ
∫

e−Aκ2an−2−Bκ2anκ dκ
.
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For small a and large N , the prefactor an/N is tiny, and the only way to
counter this tiny factor is to allow significant weight to large κ values by
making A and B small. To obtain the desired result for the quotient, first
imagine that A = 0. In that case B ∝ 1/N leads to a quotient that is inde-
pendent of a and N . If instead B = 0 then we may choose A ∝ a2/N which
again leads to a quotient that is a- and N -independent. When both terms
are present the same values prove satisfactory. Observe that no reweighting
of field support to disjoint sets occurs if either parameter is rescaled by a
finite amount. This fact is reflected in the statement that an expansion in
powers of B or of A would not lead to divergences order by order. (If this
property were to carry over to the type of integrals that arise for the models
that are the main subject of this paper, then it may well happen that for
such models a perturbation expansion in an interaction term does not lead to
divergences order by order.) For completeness, for the very special examples
of this section, we observe that if we had added another interaction term in
the exponent, such as Cκ4Ση4ka

n, then the correct choice in that case would
be C ∝ an/N2. If instead the added term were Dκ44Ση44k a

n, then the correct
choice would be D ∝ a21n/N22 !

In summary, except for the term involving lattice derivatives, each of
the factors is correctly given by the observation that κ enters in the form

κ
√

(Ma)n/N . For the kinetic term, besides κ2a(n−2)/N , an additional factor

of (Ma)2 is needed as well. Insofar as an acceptable caricature of the lattice
action suitable for “large” field values in the Poisson case goes, we conclude
that we may choose the integrand to be

e−
1
2
((Ma)2/N)Σ(φk∗−φk)

2a(n−2)− 1
2
(m2/N)Σφ2

ka
n−g((Ma)n/N2)Σφ4

ka
n

,

where m2 and g are cutoff-independent parameters.

Further analysis of acceptable expressions for w(φ)

We note that the examples just studied are not directly relevant for the main
problems of interest because we have, for clarity, omitted from consideration
in this simplified model the basic factor Π′

k[Σ
′
lβk−lη

2
l ]

−γ . It is straightforward
to see that this factor reweights the {ηk} variables already constrained to lie
on the unit sphere in N ′ dimensions in such a way that points where η2k = δkl,
for each lattice site label l, are significantly enhanced. That is, the measure
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dτ is heavily weighted on the unit sphere along each coordinate axis, and
significantly reduced away from any coordinate axis. As a consequence, and
in the absence of field gradients, we have [with 〈(·)〉 ≡ ∫

(·)dτ(η)/ ∫ dτ(η)]

〈η2k〉 ≡ 1

N ′
,

〈η2kη2l 〉 ≈ βk−l

N ′
+ l.o.t. ,

〈η2kη2l η2m〉 ≈ βk−lβl−mβk−m

N ′
+ l.o.t. ,

etc., which crudely represent the fact that only very short range correlations
exist due to the strong peaking along coordinate axes, and the only factors
available to characterize that short range dependence are the βk terms. The
first equality is an identity, and the second one is scaled to satisfy the first
as a sum rule. The third equality fails to satisfy a sum rule but is of the
right order of magnitude. There are other terms not explicitly written and
denoted by l.o.t. (lower order terms) and these involve potentially long range
contributions but which are of a very small magnitude, so small in fact that
they will make no contribution in the continuum limit. In the exercises
treated above, for which the β-reweighting factor was omitted, the weight
of the η variables was distributed uniformly over the unit sphere, and that
gave rise to qualitatively different correlation functions than we are here
discussing. The present correlation functions have the feature that as the
points separate, i.e., |k − l| → L, the correlations effectively vanish, while
in the uniformly distributed case that was not the case. In the present case
it is actually essential that the correlations vanish so that our ultimate field
theory of interest can satisfy the cluster property (here in spatial directions
only).

Now let us consider the effect of introducing field derivatives. The effect
of field derivatives is to introduce additional, and longer-range correlations
into the direction field. Thus, as a consequence, we may expect that the
correlations discussed above are transformed into

〈η2k〉 ≡ 1

N ′
,

〈η2kη2l 〉 ≈ e−Ma|k−l|(Ma)s

N ′
+ l.o.t.
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〈η2kη2l η2m〉 ≈ e−Ma(|k−l|+|l−m|+|k−m|)(Ma)2s

N ′
+ l.o.t. ,

for some mass parameter M .
We are now in a position to discuss the addition of field derivatives to the

factor w(φ) in the second characteristic weight function. Based on the way
that w enters the lattice potential, it is clear that our original identification
of w(φ) = Υ(φ(Ma)s) remains a valid conclusion when nonderivative terms
are involved. The behavior of lattice derivatives for space-time dimensions
n ≥ 3 is such that the derivative of the direction field η diverges, even
without the need for large κ values; this conclusion stems from the fact that
(ηk∗−ηk)2 ≈ η2k itself. Thus the classically motivated factor a(n−2) is incorrect
on the lattice (and more particularly in the continuum limit) with respect
to the factor a−2. For dimensions n ≥ 3, this factor must be renormalized
away by an additional factor of a2, just as was the case in the “advanced
exercises”. For the nonderivative terms we are instructed to replace φ by
φ(Ma)s; to augment this recipe in the presence of derivatives we need only
drop the classically motivated a−2 factor in forming the lattice derivative.
Consequently, even in the presence of derivatives, the renormalization of
φ to become φ(Ma)s is the only modification required to obtain a model
with cutoff-independent parameters! With this prescription accepted then
the inclusion of terms with derivatives does not qualitatively change the
discussion given earlier about how to choose w.

The route to these conclusions has not been straightforward because the
road traveled is not a familiar one. Indeed, it is quite possible that we have
been too cavalier in our analysis of the needed renormalization for terms
involving the field gradient; the appropriate factors can no doubt be deter-
mined by a more careful study. However, for the sake of further discussion
we shall adopt our present arguments.

Relaxation of sharp time requirement

Up to this point we have limited the parameter ξ so that 0 < ξ < 1. By
our consistent use of “cosine” in the second characteristics, it is not difficult
to see that we could also allow 0 < ξ < 2 with no real change. Beyond this
value we run into serious difficulty because the lowest order even moment is
no longer finite. Suppose, however, that we dealt not with the characteristic
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function for the field but for a “renormalized” cube of the field. By this
expression we mean to consider

exp{−J2
∫

[1− cos(Σ′gkφ
3
ka

s)]
e−2w(φ) Π′ dφk

Π′[Σ′βk−lφ
2
l ]
γ
} .

In this relation it is clear that the parameter ξ that enters into γ in the usual
way can be extended now so that 0 < ξ < 6 and the indicated expression
will still be well defined. The larger values of ξ do not support sharp-time
fields, although they do support sharp-time fields cubed in the manner shown.
Even larger values of ξ may be entertained by considering still higher-order
renormalized field powers. In brief, therefore, the class of models can be
extended beyond those that support sharp-time fields merely by extending
the range of the parameter ξ.

However, for convenience, we shall continue to restrict our analysis to the
case 0 < ξ < 1 for which the smeared sharp-time field is an operator.

Continuum limit

We now have accumulated enough information in order to take a continuum
limit for certain of the models in question. First we consider a “primordial”
model in which w(φ) ≡ 0, and we consider the second characteristic given in
this case by the expression

Co
S(g) ≡ 2Jo 2

∫

[1− cos(κΣ′ηkgka
s)]κ−1−ξ dκ dτ(η) .

To make further progress we need to investigate the nature of the support
of the measure τ . Recall that earlier we have asserted that the weighting of
the measure τ is concentrated along each coordinate axis on the unit sphere.
Therefore, it is not difficult to argue that in the continuum limit, the measure
dτ would be effectively the same as

dτ(η) ≃ dτ0(η) ≡ F Σ′
l δ(1− η2l ) dηl Π

′′
k 6=l δ(ηk) dηk ,

where F denotes a suitable normalization. Use of this expression for the
second characteristic leads to

Co
S(g) = FJo 2Σ′

l

∫

[1− cos(κgla
s)]κ−1−ξ dκ
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= FJo 2Σ′
l(|gl|as)ξ

∫

[1− cos(v)]v−1−ξ dv

=
Σ′

l|gl|ξas
Σ′

l|gspl |ξas ,

which in the continuum limit becomes

lim
a→0

Co
S(g) = Ko

∫

|g(x)|ξ dsx ,

where (Ko)−1 ≡ ∫ |gsp(x)|ξ dsx.
Next, as a further example, we include one particular term in w and again

take the continuum limit. In particular, we examine the case where

CS(g) = 2J2
∫

[1− cos(κΣ′ηkgka
s)]e−(Ma)2sκ2

κ−1−ξ dκ dτ(η) .

The same discussion regarding the general behavior of the measure τ holds
again, and we conclude that

CS(g) = FJ2Σ′
l

∫

[1− cos(κgla
s)]e−(Ma)2sκ2

κ−1−ξ dκ ,

which implies for the continuum limit that

lim
a→0

CS(g) = K
∫

dsx
∫

{1− cos[̺g(x)]}e−M2s̺2 ̺−1−ξ d̺ ,

where
K−1 ≡

∫

dsx
∫

{1− cos[̺gsp(x)]}e−M2s̺2 ̺−1−ξ d̺ .

3 Lattice Regularized Models: Second For-

mulation

In the preceding section we have made an ansatz for the weight function
of the second characteristic by choosing the form of ψa(φ). We also made
considerable progress in characterizing acceptable functions ψa(φ), as prelim-
inaries to finding the lattice ground state Ψa(φ) which are related by formulas
presented in Section 1. Unfortunately, it is all but impossible to find analytic
expressions for Ψa from the given form of ψa. Thus to proceed further we
must find an alternative way to analytically express the lattice ground state
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Ψa so that we can define the lattice Hamiltonian and the lattice action. We
will do so by choosing a different starting point, but one which has the same

continuum limit for the second characteristic as just discussed.
In our second formulation we do not start with the weight function for

the second characteristic of the sharp-time characteristic function but rather
with the weight function for the characteristic function itself. In other words,
rather than initially assume a form for ψa we shall make an ansatz regarding
Ψa directly. We are unable (and not necessarily interested) to determine
whether or not the distribution of the sharp-time field is a generalized Pois-
son distribution on the lattice (as was the case previously), but since the
continuum limit will agree for the two different starting points it follows that
the continum limit in the second case is indeed described by a generalized
Poisson distribution.

In the present case we postulate the form of the lattice ground state to
be

Ψa(φ) =
e−W (φ)

Π′
k[φ

2
k + C(a)](1+ξ)/4

, C(a) > 0 ,

whereW includes the necessary constant to ensure that
∫ |Ψa(φ)|2Π′

k dφk = 1.
This starting point may look fairly standard accept for the presence of the
product factor in the denominator. Observe in the present case there is
no appearance of the β parameters. Our goal now is to show that this
choice leads to the same continuum limit in the two special cases discussed
previously.

First we assume that W (φ) ≡ c, c a constant, a case that corresponds
to our “primordial” situation. In that case we consider the characteristic
function given by

Co(g) = N
o
∫

eiΣ
′gkφka

s

Π′
k

dφk

[φ2
k + C(a)](1+ξ)/2

,

where N
o, which arises from c, ensures normalization. By a change of inte-

gration variables it follows that

Co(g) =
∏

k

′
Ko

C

∫

ei̺gk
d̺

[̺2 + a2sC(a)](1+ξ)/2

=
∏

k

′{1−Ko
C

∫

[1− cos(̺gk)]
d̺

[̺2 + a2sC(a)](1+ξ)/2
} .
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Observe that

(Ko
C)

−1 =
∫

[̺2 + a2sC(a)]−(1+ξ)/2 d̺ = a−sξ
C(a)−ξ/2F ,

where F ≡ ∫

(u2 + 1)−(1+ξ)/2 du is a fixed number depending only on ξ > 0.
We next choose the a dependence of C(a) so that Ko

C ≡ 2J2as for some
constant J . This leads to

C(a) =Mn−2(Ma)2s(1−ξ)/ξ ,

for some mass M . With this choice for C it follows that

Co(g) =
∏

k

′{1− 2Jo 2as
∫

[1− cos(̺gk)]
d̺

[̺2 + a2sC(a)](1+ξ)/2
} .

Although C(a) may, depending on the value of ξ, converge to zero, remain
constant, or diverge to infinity as a → 0, the combination a2sC(a) ∝ a2s/ξ

always goes to zero as a→ 0. Therefore, we finally conclude that

lim
a→0

Co(g) = exp((−2Jo 2
∫

{1− cos[̺g(x)]}|̺|−1−ξ d̺))

= exp[−Ko
∫

|g(x)|ξ dsx] .

If we again assert that Co(gsp) = exp(−1), then it follows that the continuum
limit is exactly the same as was previously obtained. Hence the ansatz for the
second form of regularization has been verified for the choice W = constant.

We next study the case W = (Ma)2sΣ′φ2
k + c, where c, which is different

than before, is chosen to ensure normalization. The expression to be studied
reads

C(g) = N

∫

eiΣ
′φkgka

s

e−(Ma)2sΣ′φ2
k Π′ dφk

[φ2
k + C(a)](1+ξ)/2

=
∏

k

′
KC

∫

ei̺gke−M2s̺2 d̺

[̺2 + a2sC(a)](1+ξ)/2

=
∏

k

′{1−KC

∫

[1− cos(̺gk)]e
−M2s̺2 d̺

[̺2 + a2sC(a)](1+ξ)/2
} .

In the present case

(KC)
−1 =

∫

e−M2s̺2 d̺

[̺2 + a2sC(a)](1+ξ)/2

= a−sξ
C(a)−ξ/2

∫

e−M2s[a2sC(a)]u2 du

(u2 + 1)(1+ξ)/2
,
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and in the continuum limit the exponent in the integrand of the last integral
makes no contribution and thus asymptotically KC is exactly what it was in
the case when W = constant! Hence we may determine that the continuum
limit in the present case is given by

lim
a→0

C(g) = exp((−2J2
∫

{1− cos[̺g(x)]} e−Ms̺2 d̺

|̺|1+ξ
)) ,

and once again the value of J is fixed by appealing to the special test sequence
gsp. As a consequence, the continuum limit in the present case cooincides
with the second example studied at the end of Section 2. Observe additionally
that this equality of the continuum limit has been acheived with exactly the

same renormalization of the additional term—namely exp[−(Ma)2sΣ′φ2
k]—as

was used in the previous section.
Thus, based on the identical form of the continuum limits and the appear-

ance of an identical renormalization, we are persuaded in favor of adopting
this second and alternative regularization based on the choice of the lattice
ground state Ψa(φ) rather than choosing the weight function ψa(φ) that en-
tered the second characteristic in the first approach. Although we have not
studied any further choices of weight functions w and W in the two cases, we
strongly believe that the second regularization captures the essence of what
is contained in the first regularization. Hereafter, we choose the second form
of regularization exclusively.

3.1 Determination of the Auxiliary Potential

Having agreed that the ansatz

Ψa(φ) =
e−W (φ)

Π′
k[φ

2
k + C(a)](1+ξ)/4

provides an acceptable choice for a lattice ground state, we are in position
to determine the form of the auxiliary potential P . To focus wholly on
the auxiliary potential let us return to the “primordial” model for which
W (φ) = c, namely for a ground state given by

Ψo
a(φ) =

N
o 1/2

Π′
k[φ

2
k + C(a)](1+ξ)/4

.
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With this form of ground state the auxiliary potential P may be identified
by way of the reduced Hamiltonian

Ho
a ≡ −1

2
h̄2Y (a)−1a−s[Σ′ ∂

2

∂φ2
k

− 1

Ψo
a(φ)

Σ′∂
2Ψo

a(φ)

∂φ2
k

]

≡ −1
2
h̄2Y (a)−1a−sΣ′ ∂

2

∂φ2
k

+ Σ′P (φk, a)a
s .

The result is that

P (φk, a) ≡ 1
2
h̄2Y (a)−1a−2s 1

Ψo
a(φ)

∂2Ψo
a(φ)

∂φ2
k

= 1
2
h̄2Y (a)−1a−2s 4

−1(1 + ξ)(3 + ξ)φ2
k − 2−1(1 + ξ)C(a)

[φ2
k + C(a)]2

≡ A(a)φ2
k − B(a)

[φ2
k + C(a)]2

,

which is just the expression previously quoted in Section 1.2. Although we
have normally assumed units such that h̄ = 1, in the preceding formula we
have incorporated the correct h̄2 factor explicitly in order to establish—for
this one time only—its proper role.

We note in passing that the ground state expectation of P diverges in the
continuum limit when it formally becomes proportional to φ−2(x). Therefore
the ground state expectation of the kinetic energy term must also diverge so
that the sum is zero in the present case. This compensation of divergences
demonstrates that the auxiliary potential serves as a renormalization coun-
terterm for the kinetic energy. This same interpretation remains true even
with the addition of other potential terms.

3.2 Lattice Model Proposal

It is now a small step to propose a lattice model for the ϕ4
n theory based on

the auxiliary potential just identified. Let us first recall the discussion related
to the toy model in Section 1.1. There we learned that the model without
moments (based on the Cauchy distribution) led to a one-dimensional po-
tential analogous to the auxiliary potential in the lattice model as identified
with the help of the “primordial” model (W = constant). We also recall that
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for the toy model involving the modified Bessel function the weight function
for the characteristic function has, for very small ρ values, a functional form
for small x identical to the Cauchy distribution. This fact suggests that we
define the model by a lattice action which for small field values is equivalent
to that of the auxiliary potential and for large field values has the functional
form of the conventional action up to suitable bare parameters. In particular,
we choose the generating functional for the lattice Euclidean-space ϕ4

n given
by

S(h) = N0

∫

exp((Σhkφka
n − 1

2
Y (a)Σ(φk∗ − φk)

2a(n−2) − 1
2
m2

0(a)Σφ
2
ka

n

−g0(a)Σφ4
ka

n − Σ {[A(a)φ2
k − B(a)]/[φ2

k + C(a)]2}an)) Πdφk ,

where A, B, and C are given above. Observe that we have not chosen to
define the model by picking W for the simple reason that we do not have any
analytic proposal for that quantity; rather we have returned to the lattice
action which preserves its simple analytic form even in the presense of the
auxiliary potential. Observe also that for small Ma the coefficients of the
conventional action terms (Y,m2

0, and g0) are all small and this fact makes for
a greater isolation of the large and small field behavior. Analogously to the
case of small ρ in the second toy model, this isolation of the two regimes gives
even greater credence to our choice of the auxiliary potential determined from
the “primordial” model as the form adopted when the conventional terms are
present.

It may be natural for the reader to ask why we have not started with the
second formulation of Section 3 and dispensed with the first formulation of
the model in Section 2 all together. The reason we have included the first
formulation is because experience has shown that it is much easier to moti-
vate unusual forms of the weight function in the second characteristic than
in the characteristic function itself. Only after gaining familiarity with the
strange denominators in the weight function of the second characteristic—
factors which are mandated in order to satisfy the physically dictated moment

requirements for the weight function of the second characteristic—and seen
the consequences of these denominator terms in the continuum limit, only
then do the unusual denominators of the weight function for the character-
istic function of the sharp-time field itself become reasonable and therefore
acceptable.
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A remark on O(N) symmetric models

It is interesting to observe that if one deals with an N -component scalar field
with an O(N) symmetry, then the principal change involved is the replace-
ment of all factors φ2

k by the O(N)-symmetric term Σα(φ
α
k )

2, 1 ≤ α ≤ N ,
etc., along with a corresponding change of γ or equivalently ξ. How this ad-
ditional symmetry fits into the present scheme may be partially traced from
previous work [12].
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