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Abstract

We identify a new symmetry for the equations governing odderon am-
plitudes, corresponding in the Regge limit of QCD to the exchange of
3 reggeized gluons. The symmetry is a modular invariance with respect
to the unique normal subgroup of SL(2,Z) of index 2. This leads to a
natural description of the Hamiltonian and conservation-law operators as
acting on the moduli space of elliptic curves with a fixed “sign”: elliptic
curves are identified if they can be transformed into each other by an even

number of Dehn twists.
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1 Introduction

Recent experimental data in small Bjorken x region have gained much attention
in the study of the Regge limit of QCD. Already in the late 70’s the amplitude
corresponding to the exchange of two reggeized gluons was calculated, and the
formula for the intercept of the renowned BFKL pomeron was derived (see [1]
[2]). Lipatov’s solution depends in a crucial way on the global conformal sym-
metry of the problem. The BFKL equations were generalized to the case of the
exchange of 3 reggeized gluons (so-called odderon) by Kwieciński, Prasza lowicz
[3] and Bartels [4]. Later, this approach was extended to the case of arbitrary
number of reggeons in the form of the Generalised Leading Logarithm Approx-
imation (GLLA) [4].

In the large Nc limit, the intriguing connection between the GLLA equa-
tions and exactly solvable lattice models was established. The GLLA equations
are reduced in this limit to a Schroedinger equation with a two-body interac-
tion Hamiltonian. Due to the holomorphic separability of this Hamiltonian the
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problem reduces further to the exactly solvable Heisenberg XXX spin s = 0
chain ([5], [6], [7]). However, despite the richness of mathematical structures
involved (global SL(2,C)-invariance and abundance of integral of motions ) as
well as diversity of approaches to the problem (Yang-Baxter equations, Bethe
ansatz([5], [6], [7], [8]) quasiclassical approximation[9]), the explicit expression
for the intercept of the odderon has not been found yet.

In this letter we show that the odderon possesses (albeit in a somewhat hid-
den form) the modular symmetry, ubiquitous in conformal field theories (CFT)
and string theory. In the next section we recall the theory of the odderon, then,
following Lipatov, the consequences of global SL(2,C)invariance. As new re-
sults, we analyse the role of cyclic symmetry in this framework and we explicitely
demonstate the link to modular invariance through two alternative descriptions
of elliptic curves. This link may lead to the effective, two-dimensional string
theory for QCD in the moduli space of elliptic curves with fixed “parity”, corre-
sponding to the transformations of the torus through the even number of Dehn
twists.

2 The Odderon

The Regge limit of QCD is defined as the kinematical region

s≫ −t ≈M2 (1)

where M is the hadron mass scale, or, in the case of Deep Inelastic Scattering, as
the small x = Q2/s limit. Here we sketch, following [7], the equivalence between
the Regge intercept of amplitudes and energy levels of a two-body Hamiltonian.

The aim is to find the Regge behaviour of the amplitude A(s, t) ∼ sω0+1.
Mellin transformation leads to

A(s, t) = is

∫ δ+i∞

δ−i∞

dω

2πi

( s

M2

)ω

A(ω, t) (2)

so the Regge behavior corresponds to finding the poles of the amplitude A(ω, t).
Rewriting this amplitude as the convolution of “hadron” wave functions ΦA,B

and a kernel T ({ki}, {k′j}, ω) we get:

A(ω, t) =

∫

d2ki

∫

d2k′jΦA({ki})T ({ki}, {k′j}, ω)ΦB({k′j}) (3)

where {ki} and {k′j} are the transverse momenta of the N exchanged reggeons
( in the case of odderon N = 3 ). The next step amounts to writing the Bethe-
Salpeter equations for the kernel T :

ωT (ω) = T0 + HT (ω) (4)
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where T0 is the free propagator and H is the operator corresponding to the inser-
tion of single gluonic interactions between all pairs of reggeons. This equation
can be formally solved:

T (ω) =
T0

ω −H (5)

Therefore the poles of the amplitude correspond to the eigenvalues of the hamil-
tonian operator H. After performing Fourier transformation ( ki −→ bi) and
using the complex notation zj := xj + iyj, the Hamiltonian splits into a sum of
a holomorphic part and an antiholomorphic part. In the large Nc limit the two
commute. It is therefore sufficient to consider only the holomorphic part, which
in the case of odderon reads

(H(z1, z2) +H(z2, z3) +H(z3, z1))Ψ(z1, z2, z3) = EΨ(z1, z2, z3) (6)

where

H(z1, z2) =
∞
∑

l=0

2l+ 1

l(l + 1) − L2
12

− 2

l + 1
(7)

with

L2
12 := −z212

d

dz1

d

dz2
(8)

being the holomorphic Casimir operator of the group SL(2,C). The eigenvalue
E of the holomorphic hamiltonian and the corresponding eigenvalue Ē of the
antiholomorphic one are related to the Regge intercept by the formula:

ω0 =
αsNc

4π
(E + Ē) (9)

The celebrated BFKL solution (N = 2 case) corresponds in this language to
finding the maximal eigenvalue of the equation

H(z1, z2)Ψ(z1, z2) = EΨ(z1, z2) (10)

and has the known solution

E = −4[ψ(m) − ψ(1)] (11)

where ψ is the derivative of the logarithm of the Euler Γ function and m is a
conformal weight. The maximum of (11) is achieved at m = 1/2 and reproduces
the BFKL slope

ωBFKL
0 =

αsNc

π
4 ln 2 (12)
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2.1 Conservation laws

The Hamiltonian H is invariant with respect to the action of SL(2,C) on holo-
morphic functions given by:

(g·Ψ)(z1, z2, z3) = Ψ

(

az1 + b

cz1 + d
,
az2 + b

cz2 + d
,
az3 + b

cz3 + d

)

for g =

(

a c
b d

)

∈ SL(2,C)

(13)
Therefore it commutes with the holomorphic Casimir operator for this repre-
sentation:

q̂2 := −z212
d

dz1

d

dz2
− z223

d

dz2

d

dz3
− z231

d

dz3

d

dz1
(14)

This enables us to consider functions transforming under the unitary represen-
tations of SL(2,C) labelled by n ∈ N and ν ∈ R. In this case the eigenvalue q2
is ((1 + n)/2 + iν)((−1 + n)/2 + iν).

It has been shown [10] that the system possesses another integral of motion
— an operator q̂3:

q̂3 = z12z23z31∂1∂2∂3 (15)

which commutes with the hamiltonian H .
One of the strategies for solving the odderon problem, proposed by Lipatov

[10], was to diagonalize the conservation laws q̂2 and q̂3 and to substitute the
solution into the Schroedinger equation in order to find the energy eigenvalue.

2.2 Conformal ansatz

Lipatov [11] has chosen an ansatz, which automatically diagonalizes q̂2:

Ψz0(z1, z2, z3) =

(

z12z23z31
z210z

2
20z

2
30

)m/3

ϕ(λ) (16)

where m = 1/2 + iν +n/2, n is an integer and ν is a real number. Here, z0 ∈ C

is just a parameter and λ is the anharmonic ratio:

λ =
z12z30
z13z20

(17)

Lipatov further derived the form of the operator q̂3 within this ansatz. In-
serting Ψz0(z1, z2, z3) into the equation

q̂3Ψ(z1, z2, z3) = q3 · Ψ(z1, z2, z3) (18)

and canceling the factor (. . .)m/3 he obtained:

∇1
1

λ(1 − λ)
∇2∇3ϕ(λ) = q3ϕ(λ) (19)
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where

∇1 =
m

3
(1 − 2λ) + λ(1 − λ)∂, (20)

∇2 =
m

3
(1 + λ) + λ(1 − λ)∂, (21)

∇3 = −m
3

(2 − λ) + λ(1 − λ)∂, (22)

(23)

The Hamiltonian (6) has also been rewritten in terms of λ.

3 Cyclic invariance

It is easy to see that both the Hamiltonian H and q̂3 are invariant under cyclic
permutations of the gluonic coordinates z1, z2, z3. We show now how this sym-
metry manifests itself in the formalism of the preceding section. Under the
permutation z1 −→ z2 −→ z3 the anharmonic ratio transforms as follows:

λ −→ 1 − 1

λ
−→ 1

1 − λ
(24)

We postulate, that the ground state is symmetric under this transformation and
so

ϕ(λ) = f(s1, s2, s3, j̃) (25)

where si are the symmetric polynomials in x1 = λ, x2 = 1 − 1/λ and x3 =
1/(1 − λ), and j̃ is the Vandermonde determinant. Namely

s1 = x1 + x2 + x3 =
λ3 − 3λ+ 1

λ(λ − 1)
(26)

s2 = x1x2 + x2x3 + x3x1 =
λ3 − 3λ2 + 1

λ(λ − 1)
(27)

s3 = x1x2x3 = −1 (28)

j̃ = (x1 − x2)(x2 − x3)(x3 − x1) =
(λ2 − λ+ 1)3

λ2(λ− 1)2
(29)

It turns out that the only independent quantity is A = s1+s2 = (λ+1)(2λ−1)(λ−2)
λ(λ−1)

related to j̃ by the equation 4j̃ = A2 + 27. It is convenient to introduce the
notation:

B := 8A =
√

j − 1728 (30)

j := 256j̃ = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
(31)
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At this moment we make a refinement of Lipatov’s ansatz, namely

Ψz0(z1, z2, z3) =

(

z12z23z31
z210z

2
20z

2
30

)m/3

f(B)

=

(

z12z23z31
z210z

2
20z

2
30

)m/3

f

(

8
(λ+ 1)(2λ− 1)(λ− 2)

λ(λ− 1)

)

(32)

where m = 1/2 + iν + n/2, n is an integer and ν is a real number. λ is the
anharmonic ratio:

λ =
z12z30
z13z20

(33)

Now we insert the function ϕ(λ) = f(B) into the conservation law (19).
After reexpressing the result in terms of j and B =

√
j − 1728 we get:

{

j2

2

d3

dB3
+ 2

√

j − 1728j
d2

dB2
+ (j(1 +

m(1 −m)

6
) − 3 · 28)

d

dB
+

(m− 3)m2)

27

√

j − 1728 − 8q3

}

f(
√

j − 1728) = 0 (34)

The orginal Hamiltonian (6) expressed by Lipatov in terms of λ can also
be recast using the functions B =

√
j − 1728 (although obtaining an explicit

expression seems to be highly non-trivial).
In the next section we will show that the variable j can indeed be considered

as a modular invariant and we give a geometric interpretation of the symmetry
considered here.

4 Elliptic curves

According to one of the many possible definitions (see e.g. [12]), an elliptic
curve is a complex curve of genus one. There are two alternative descriptions
of these objects. The first one is the Weierstrass parametrization which labels
each elliptic curve by a complex number λ ∈ C. The curve given by λ is given
by the equation

y2 = x(x− 1)(x− λ) (35)

where x and y are complex coordinates. Two such curves are conformally iso-
morphic if and only if their j-invariants coincide. The j-invariant is given by
the formula:

j = 28 · (λ2 − λ+ 1)3

λ2(λ− 1)2
(36)
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Note that this expression is identical to the Vandermonde determinant con-
sidered before (31). The only problem that we encounter here in providing a
geometric interpretation to our variables (30) and (31) is the fact that

√
j − 1728

may differ in sign for isomorphic elliptic curves. Therefore one must consider
elliptic curves with some additional structure, which we will define after pre-
senting the other description of genus one curves.

We see here that, since the Hamiltonian can be expressed through the in-
variants

√
j − 1728, it can be identified in a natural way with an operator acting

on the moduli space of elliptic curves with that additional structure.
Alternatively one can view elliptic curves as complex tori C/(Z+Zτ) parametrized

by τ ∈ C in the upper half-plane. Another way of looking at this quotient
space is to consider it as the torus obtained by identifying opposite edges in
the pararellogram bounded by 0,1,τ and 1 + τ . The j-invariant is now a tran-
scendental function of τ . This description is linked to the preceding one by the
correspondence [13]:

λ(τ) =

(

Θ2(0; τ)

Θ3(0; τ)

)4

(37)

where Θ2(0; τ) and Θ3(0; τ) are the Jacobi theta functions. Moreover, the sym-
metry which leaves j invariant corresponds in this description to modular in-
variance in the τ -plane i.e.

j(τ) = j(τ ′) ⇐⇒ τ ′ =

(

aτ + b

cτ + d

)

for

(

a b
c d

)

∈ SL(2,Z) (38)

In our case, the symmetry λ −→ 1 − 1
λ −→ 1

1−λ corresponds to modular trans-

formations belonging to Γ2 — the unique normal subgroup of SL(2,Z)of in-

dex 2 [13]. This is an infinite group generated by the matrices

(

1 2
0 1

)

and
(

1 −1
1 0

)

. We still have to define the additional geometric structure on the

torus which is left invariant by the subgroup Γ2.
The two elementary Dehn twists, which generate the full modular group, are

associated to the two noncontractible loops of winding number one. The “Dehn
twist” operation consists of cutting the torus along the chosen loop, twisting
one boundary by 2π, and gluing it back (see e.g. [14]). Although the number of
Dehn twists (nD) is not well defined, given an isomorphism corresponding to a
modular transformation between equivalent tori, the parity of number of Dehn
twists ((−1)nD ) is well defined. The subgroup Γ2 corresponds precisely to the
transformations of the torus through an even number of Dehn twists. We may
therefore attach a kind of “sign” to each torus.

Using the correspondence between λ and τ one can reexpress the Hamilto-
nian and the integral of motion in terms of τ .
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5 Conclusions

In this letter we have shown that the odderon problem possesses a new symmetry
- i.e. modular symmetry with respect to Γ2 — an index 2 normal subgroup of
SL(2,Z). Expressing the conservation law (19) through modular invariants
(34) leads in a natural way to the new methods of solving 3rd order Fuchsian
differential equations proposed by B.H. Lian and S-T Yau’s in the framework
of mirror symmetry [15]. This analogy may be an aid in carrying out Lipatov’s
strategy mentioned in section 2.1 and may lead to the analytical solution of the
odderon problem.[16]

Apart from the practical applications of this symmetry, we hope that it
may lead to deeper understanding of the Regge limit of QCD. The modular
invariance of the odderon leads to a natural interpretation of all the operators
as acting on the moduli space of genus one curves with fixed ‘sign’, i.e. the
even-parity of the number of Dehn twists. In particular this may be a further
step in establishing the relation between QCD and effective string theory.
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