
ar
X

iv
:h

ep
-t

h/
95

11
21

2v
1 

 2
9 

N
ov

 1
99

5

Generalised Hamiltonian embedding of the
Proca model

N. Banerjee and R. Banerjee

S. N. Bose National Centre for Basic Sciences
DB 17, Sector I, SaltLake, Calcutta 700064, India.

Abstract

We convert the second class Proca model into a first class theory

by using the generalised prescription of Batalin, Fradkin and Tyutin.

We then show how a basic set of gauge invariant fields in the embedded

model can be identified with the fundamental fields in the proca model

as well as with the observables in the Stückelberg model or in the

model involving the interaction of an abelian 2-form field with the

Maxwell field. The connection of these models with the massive Kalb-

Ramond model is also elucidated within a path integral approach.
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The generalised canonical formalism of Batalin, Fradkin and Tyutin (BFT)
[1, 2] is a powerful approach to study the connection among different theories,
in particular it has been effectively used [3, 4] to convert second class systems
into true (i.e., first class) gauge theories by extending the phase space of the
original theory. The partition function is then constructed which reduces in a
definite (unitary) gauge to the partition function of the starting theory. It is
also possible to compute the partition function for other choices of gauge. By
virtue of the Fradkin-Vilkovisky [5] theorem, the theories corresponding to
these partition functions (obtained by different gauge fixings) are all equiv-
alent. The basic problem in this approach is to make a judicious choice of
gauge that would yield some physically interesting theory. Indeed, as is quite
well known, the choice of a viable gauge is a rather tricky and subtle issue [6].
Apart from this there is an arbitrariness in the manner in which the phase
space can be extended. For example, by a straightforward (conventional)
extension of the phase space of the proca model one can obtain, in Faddeev-
Popov like gauges the Stückelberg-embedded form of this model [4]. If, on
the contrary, one adopts an alternative way of enlargement [7] whereby anti-
symmetric tensor fields are introduced, the Stückelberg scalar is replaced by
2-form gauge field. Consequently an equivalence between apparently distinct
models may be achieved since these have a common origin.

The purpose of this paper is to systematically develop the canonical for-
malism such that the above mentioned ambiguities related to either gauge
fixing or the embedding procedure are completely avoided. We present our
ideas in the context of Proca model which has received considerable atten-
tion [4, 7]. The general ideas of BFT will be used to convert the second
class constraints and Hamiltonian of the Proca model into their correspond-
ing first class forms, by extending the phase space. It is then shown how by
performing an inverse Legendre transformation in this extended space, the
Stückelberg embedded Lagrangian of the Proca model emerges naturally.
Going back to the extended phase space, we show that the gauge invari-
ant fields in this space are equivalent to the fundamental fields in the Proca
model. They satisfy the same algebra and have identical equations of mo-
tion. Furthermore, the involutive Hamiltonian can be expressed in terms of
gauge invariant fields, modulo a term proportional to the generator of gauge
transformation. This signalises the existence of an underlying gauge theory.
One is then led in a natural way to the connection between the proca model
and the gauge invariant sector of a model involving a massless 2-form gauge
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field interacting with a Maxwell field. It is important to point out that gauge
fixing is not used at any stage of the analysis. Neither do we resort to differ-
ent embedding procedures to obtain our results. We conclude by discussing
a purely (configuration space) path integral approach which also does not
involve any gauge fixing.

The Lagrangian for the Proca model is given by,

L = −
1

4
FµνF

µν +
m2

2
AµA

µ (1)

and leads to the field equations,

∂µF
µν = −m2Aν . (2)

It describes a purely second class system with the constraints,

Ω0 = Π0 ≈ 0 (3)

Ω = ∂iΠ
i +m2A0 ≈ 0 (4)

and the canonical Hamiltonian,

Hc =
∫

d4x

[

1

2
ΠiΠi +

1

4
FijFij −

m2

2
AµA

µ − A0∂iΠ
i

]

(5)

where Πi = −F0i is the momentum conjugate to Ai.
We next convert the second class system into first class by adopting the

basic ideas of BFT [1, 2]. The original phase space is enlarged by introducing
a canonical pair of fields θ and Πθ. Then a new set of first class constraints
can be defined in this extended space,

Ω′

0 = Ω0 +m2θ (6)

Ω′ = Ω + Πθ (7)

which are strongly involutive. It is easy to verify that a Hamiltonian which
is in involution with Ω′

0 and Ω′ is given by,

H ′ = Hc +
∫

(

Π2
θ

2m2
−

m2

2
∂iθ∂

iθ +m2θ∂iA
i

)

(8)
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which satisfies the involutive Poisson algebra,

{Ω′

0(x), H
′} = Ω′(x) (9)

{Ω′(x), H ′} = 0. (10)

The first class constraints Ω′

0 and Ω′ are the generators of gauge transforma-
tions,

{A0, G[γ0]} = γ0 (11)

{Ai, G[γ]} = −∂iγ (12)

{θ, G[γ]} = γ (13)

{Πθ, G[γ0]} = −m2γ0 (14)

where,

G[γ0] =
∫

d4xγ0(x)Ω
′

0(x) (15)

G[γ] =
∫

d4xγ(x)Ω′(x). (16)

First we show how to obtain the Stückelberg form [4] by performing an
inverse Legendre tranformation,

L′ = Π0Ȧ0 +ΠiȦ
i +Πθθ̇ −H ′ (17)

The momentum Π0 is easily eliminated by using the constraint Ω′

0. The
other two momenta Πi and Πθ are eliminated by using Hamilton’s equations
of motion,

Ȧi = {Ai, H
′} = −Πi + ∂iA0 (18)

θ̇ = {θ,H ′} =
Πθ

m2
(19)

and we find,

L′ = −
1

4
FµνF

µν +
1

2
m2AµA

µ +
1

2
m2∂µθ∂

µθ −m2θ∂µA
µ (20)

which, upto a boundary term, reproduces the familiar Stückelberg structure
[4] with θ playing the role of the Stückelberg scalar [5],

L′ = −
1

4
FµνF

µν +
m2

2
(Aµ + ∂µθ)(A

µ + ∂µθ) (21)
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We next show how the Proca model gets related to the abelian 2-form
gauge field. It follows from (11) to (14) that the following combinations of
fields,

F0 = A0 +
Πθ

m2
(22)

Fi = Ai + ∂iθ (23)

is gauge invariant and satisfy the algebra,

{F0(x), F0(y)} = 0 (24)

{F0(x), Fi(y)} =
1

m2
∂iδ(~x− ~y) (25)

{Fi(x), Fj(x)} = 0 (26)

The above algebra is precisely identical to the Dirac algebra [4] of the Proca
fields in which case the constraint Ω0, Ω (3) are strongly implemented. More-
over, the Fµ-fields satisfy the equation of motion,

∂µG
µν = −m2F ν + g0νΩ′ (27)

obtained from the involutive Hamiltonian (8) and Gµν = ∂µFν −∂νFµ. Thus,
modulo a term proportional to the first class constraint Ω′, the equations of
motion (27) are identical to (2). We therefore conclude that the Fµ fields in
the embedded (Stückelberg) version play the role of the fundamental fields Aµ

in the Proca model. The next step is to express the involutive Hamiltonian
(8) in terms of the Fµ fields,

H ′ =
∫

d3x

[

1

2
Π2

i +
1

4
F 2
ij +

m2

2
(F 2

0 + F 2
i )

]

−
∫

d3xA0(∂iΠ
i +m2F0) (28)

Observe that all reference to the original canonical pair (θ,Πθ) has been
eliminated from the involutive Hamiltonian in favour of the Fµ fields. Fur-
thermore, (28) is written in terms of gauge invariant fields with A0 playing
the role of the Lagrange multiplier associated with the generator of gauge
transformations. It is clear, therefore, that this suggests an alternative way
of exposing the underlying gauge symmetry through the pure Maxwell term
(since this part is exactly reproduced in (28)) plus something which interacts
with it. The structure of this ‘remainder’can be recognised by realising that
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Fµ being gauge invariant and divergenceless (which follows from (27) and
(10)) allows the introduction of an abelian 2-form gauge field Bµν by,

Fµ =
1

2
ǫµναβ∂

νBαβ =
1

6
ǫµναβG

ναβ (29)

Gναβ = ∂[νBαβ] (30)

This is similar in spirit to the analysis in 2+1 dimensions where the Hopf
term could thereby be introduced in the nonlinear sigma model [9] or the
equivalence between the Maxwell-Chern-Simons theory and a self dual model
established [10]. The involutive Hamiltonian (28) may now be expressed as,

H ′ =
∫

[

1

2
Π2

i +
1

4
F 2
ij −

m2

12
GijkG

ijk +
m2

4
G0jkG

0jk

]

−
∫

A0

[

∂iΠ
i +

m2

2
ǫijk∂

iBjk

]

(31)

One immediately recognises that Gauss operator associated with the La-
grange multiplier A0 as that which occurs in the theory of an abelian 2-form
field interacting with the Maxwell field and whose dynamics is governed by
the Lagrangian density [7, 11],

L̃ = −
1

4
F 2
µν −

m2

6
ǫµνρσA

µGνρσ +
m2

12
GµνρG

µνρ (32)

It takes only a slight effort to show that the complete involutive Hamiltonian
(31) follows from (32). The canonical momenta obtainable from (32) are
given by,

Π0 = 0; Π0i = 0 (33)

Πi = −F0i; Πij = m2(ǫijkA
k +G0ij) (34)

and the canonical Hamiltonian is

H̃ =
∫

d3x

[

ΠiȦ
i +

1

2
ΠijḂ

ij − L̃
]

=
∫

d3x

[

1

2
Π2

i +
m2

2
A2

i +
1

4
F 2
ij +

1

4m2
Π2

ij +
1

2
ǫijkAiΠjk

+
m2

12
G2

ijk −A0(∂iΠ
i +

m2

2
ǫijk∂

iBjk) +B0j∂iΠij

]

(35)
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Apart from the primary constraints (33) there are two secondary constraints,

∂iΠ
i +

m2

2
ǫijk∂

iBjk ≈ 0 (36)

∂iΠij ≈ 0 (37)

As expected, all these constraints are first class. Using the definition for the
canonical momenta Πij (34), it is easy to show that (31) maps on to (35)
modulo a term proportional to the first class constraint ∂iΠij = 0. Since the
physical states are annihilated by such constraints the equivalence between
(31) and (35) in the gauge invariant sector is established. We therefore find
out that the Proca model is alternatively mapped on to the gauge invariant
sector of models defined by either the Stückelberg Lagrangian (21) or the
Maxwell-Kalb-Ramond (MKR) Lagrangian (35), both of which are derived
within a unified canonical framework.

Furthermore the correspondence among the basic fields in these models
is given by,

(A0)Proca ↔ (A0 +
Πθ

m2
)Stückelberg form ↔ (

1

6
ǫijkG

ijk)MKR (38)

(Ai)Proca ↔ (Ai + ∂iθ) Stückelberg form ↔ (−
1

2
ǫijkG

0jk)MKR (39)

and are the analouges of the corresponding mappings obtained by one of us
[10] in 2+1 dimensional case.

The Proca model or its equivalent formulations describe the propagation
of a single massive mode. It is known [11] that this is also true for a model
described by a free massive abelian 2-form potential - the Kalb-Ramond (KR)
model whose Lagrangian is given by,

LKR =
1

12
GµνρG

µνρ −
1

4
BµνB

µν (40)

We shall conclude this paper by explicitly revealing the connection of (40)
with the Proca model (1) and thereby with the other alternative formulations
(21) and (35). To this effect consider the following master Lagrangian,

LM =
m2

2
AµA

µ −
m2

4
BµνB

µν +
m

6
ǫαµνρA

αGµνρ (41)
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Master Lagrangians, incidentally, have been exploited earlier [12] to discuss
the equivalence among various theories but these were usually confined to
2+1 dimensions [13]. The partition function corresponding to (41), in the
presence of external sources Jµ, Kµ, is given by,

ZM =
∫

DAµDBµν exp i
∫

d4x

(

LM + JµA
µ +

Kµ

6
ǫµαβσG

αβσ

)

(42)

Performing the gaussian integration over the abelian 2-form field Bµν yields,

ZM =
∫

DAµ exp i
∫

d4x

(

m2

2
AµA

µ −
1

4
F 2
µν + JµA

µ +
1

m2
Kβ∂αF

αβ

)

(43)

where a nonpropagating contact term has been dropped. In the absence of
sources (43) is exactly the partition function for the proca model [1].

Alternatively, doing the Aµ-integration in (42) leads to,

ZM =
∫

DBµν exp i
∫

d4x

(

1

12
GµνρG

µνρ −
m2

4
BµνB

µν

+
1

6
ǫµαβσG

αβσ(Jµ +Kµ)
)

(44)

where, once again, a nonpropagating contact term has been ignored. In the
absence of sources (44) is the partition function for the Kalb-Ramond model
(40). Since (43) and (44) were derived from a common origin, it establishes
their duality. Furthermore, comparing the source terms proportional to Jµ,
Kµ, the following identifications are obtained,

(Aµ)Proca ↔ (−
1

m2
∂αFαµ)Proca ↔ (−

1

6m
ǫµαβσG

αβσ)KR (45)

It is straightforward to reproduce the equations of motion of either the Proca
field or the Kalb-Ramond field from the above correspondence. This corre-
spondence can also be used, in conjunction with (38), (39) to relate the basic
fields in the Stückelberg and MKR versions with those in the KR model.

To conclude, we have employed the general notions of Batalin, Fradkin
and Tyutin [1, 2] to obtain a deeper insight into the connection between the
fields of the Proca model and those in the corresponding Stückelberg em-
bedded version or in a model involving the interaction of a massless abelian
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2-form field with the Maxwell field (Maxwell-Kalb-Ramond model). A sig-
nificant aspect of this work was to provide a unique enlargement technique
of the phase space of the original Proca model which led, in a systematic
and natural way, to the gauge invariant sector of either the Stückelberg type
model or the MKR model. The use of different enlargement prescriptions,
as advocated in the literature [1, 2, 7], can therefore be avoided. Moreover,
since gauge fixing was not necessary at any stage of the computations, sub-
tleties and ambiguities involved in such a procedure were eliminated. We also
furnished a path integral formulation, whereby starting from a master La-
grangian the duality between the Proca model and the massive Kalb Ramond
model was established. An identification between the fields in the respective
models was also obtained. The master Lagrangian was gauge fixed from
the begining so that the problem of gauge fixing was once again bypassed.
Although the computations were presented in 3+1 dimensions, it is easy to
extend these to arbitrary d+ 1 (d ≥ 3) dimensions. The Proca field in that
case would be connected to a d − 1-form abelian field. The d = 2 example,
incidentally, is special since it admits the Chern Simons 3-form and has been
discussed extensively in the literature [12, 14].
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