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Abstract

In the theory of nets of observable algebras, the modular operators associated

with wedge regions are expected to have a natural geometric action, a general-

ization of the Bisognano-Wichmann condition for nets associated with Poincaré-

covariant fields. Here many possible such modular covariance conditions are dis-

cussed (in spacetime of at least three dimensions), including several conditions

previously proposed and known to imply versions of the PCT and spin-statistics

theorems. The logical relations between these conditions are explored: for ex-

ample, it is shown that most of them are equivalent, and that all of them follow

from appropriate commutation relations for the modular automorphisms alone.

These results allow us to reduce the study of modular covariance to the case

of systems describing non-interacting particles. Given finitely many Poincaré-

covariant non-interacting particles of any given mass, it is shown that modular

covariance and wedge duality must hold, and the modular operators for wedge

regions must have the Bisognano-Wichmann form, so that the usual free fields are

the only possibility. For models describing interacting particles, it is shown that

if they have a complete scattering interpretation in terms of such non-interacting

particles, then again modular covariance and wedge duality must hold, and the

modular operators for wedge regions must have the Bisognano-Wichmann form,

so that wedge duality and the PCT and spin-statistics theorems must hold.

* Supported by a fellowship from the Consiglio Nazionale delle Ricerche.
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I Introduction

Among the most important results of the axiomatic formulation of quantum field the-

ory are the proofs of the existence of a PCT operator [15], and of the connection

between spin and statistics [19, 8]. However, these results rely on complicated analytic

continuation arguments that depend heavily on the detailed structure of Wightman

fields. It would be strange if such highly physical properties did not have a simpler

and more general proof. Here we present one such proof, actually a demonstration

of the stronger property of modular covariance, for nets of local algebras satisfying

asymptotic completeness with certain restrictions on their particle content.

It was the work of Bisognano and Wichmann [1, 2] that first introduced the notion

that there should be a geometric interpretation attached to the modular conjugation

and automorphisms with respect to the vacuum for the algebras of operators associated

with certain highly symmetric spacetime regions. They worked with algebras associ-

ated with a complementary pair of wedge-shaped regions, within the context of a set

of finite-component Lorentz-covariant Wightman fields. In this setting they showed

that duality must hold for such a pair of algebras, that the corresponding modular

automorphisms with respect to the vacuum must be the velocity transformations that

leave the wedge invariant, and finally that the modular conjugations must be antiuni-

tary reflections—essentially versions of the PCT operator, but with parity replaced by

a reflection appropriate to the wedge. The property of duality for such regions, known

as wedge duality, implies essential duality for the corresponding net of local algebras.

There has been a great deal of interest recently in abstracting these notions to nets

of local algebras not necessarily associated with any Wightman field, for they seem to

encode many of the desirable properties of fields in a more physically direct manner.

In particular, they imply versions of the PCT and spin-statistics theorems (in the

Bisognano-Wichmann theory, by contrast, the PCT operator is taken as a necessary

input). This has been spurred by the proof due to Borchers that a weaker result, the

covariance of the translations under modular conjugations and automorphisms, holds

under very general assumptions [3]. This was then followed by a number of related

results [22, 23, 24, 7] concerning the interrelations of the modular structure and the

translations, for the most part summarized in [4]. In two spacetime dimensions, these

are the only relationships required; also for conformally covariant nets they imply

everything desired [11, 5, 25, 10]. We are concerned here, however, with the remaining
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cases, for which it is still not clear what can be proved and what must be assumed.

The Bisognano-Wichmann conditions cannot hold generally as they stand, for it

is easy to construct counterexamples using infinite-component fields [21, 18]. How-

ever, the essence of these examples is that one is free to specify a representation of

the Poincaré group for which the Bisognano-Wichmann conditions do not hold. The

modular operators retain their geometric interpretation, but they generate a different

representation of the Poincaré group. For this reason one wishes to use a criterion that

is independent of any specified representation of the Poincaré group: one that simply

describes the geometric interpretation of the action of the modular structure on the

local structure of a given net. Since both structures are somewhat complicated, there

are a number of such criteria that might be and have been proposed, and an even wider

variety of names for them. The first goal of this paper is to set out some of these crite-

ria, which we will refer to generically as relations of modular covariance, and to clarify

their interrelationships. In particular, we are concerned with the two papers [13] and

[16], which derive related results from somewhat different modular covariance condi-

tions. Here (in Theorem 7) we show that under natural assumptions these conditions

(and many others) are all equivalent, and that all of them in fact follow from much

weaker modular covariance premises, ones which can be expressed entirely in terms of

the modular structure, without reference to the precise local structure of the net. This

we regard as essential to further study of the possible modular structures of nets. As

we will see, it allows us to reduce this to the study of nets without interaction.

The modular covariance conditions of Theorem 7 imply the existence of a PCT op-

erator in even spacetime dimensions. As stated, however, they apply only to observable

nets, for which they imply that the spin must be integral. For the full spin-statistics

theorem it is necessary to extend the assumptions and modular covariance conditions

slightly to cover field nets containing both bosonic and fermionic quantities, with nor-

mal commutation relations (Theorem 7′). These results are sufficiently general as to

justify our calling a net ‘modular covariant’ if and only if it satisfies the conditions

of Theorem 7′. This implies the existence of a natural representation of the Poincaré

group (and, in even spacetime dimensions, a PCT operator), determined entirely by the

modular structure, under which the field net is automatically covariant, and for which

the Bisognano-Wichmann and spin-statistics relations hold. In addition, modular co-

variance implies wedge duality, the strongest duality condition that can be expected

under these circumstances. It is also known that, under rather mild conditions, mod-
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ular covariance for the observable net implies modular covariance for the field net, but

we discuss this only briefly here.

We then turn to the study of certain nets without interaction, those described in

terms of a one-particle space by means of Weyl operators. For these nets the entire

structure is determined by the restriction of the modular operators to the one-particle

space, which determines the localization properties of the one-particle states. If mod-

ular covariance holds on the one-particle space, then it holds for the entire net, which

then arises from free fields of the usual sort; on the other hand, if modular covariance

does not hold on the one-particle space, then the net cannot arise from a set of fields.

We show that if the one-particle space carries a physically reasonable (positive en-

ergy, finite spin, finite multiplicity for each mass) representation of the Poincaré group,

and if certain standard properties are obeyed, then modular covariance must hold. In

these cases the usual one-particle localization is unique, and all such nets arise from

free fields. The representation of the Poincaré group is unique, and the Bisognano-

Wichmann condition holds. The PCT operator, however, is determined only up to

unitary equivalence.

Finally, we consider Poincaré-covariant nets having a complete asymptotic particle

interpretation in terms of non-interacting particles of the sort just described. Scattering

theory in this case is well developed, at least provided all particles have discrete positive

masses, and we now have the additional information that the asymptotic particles can

be described only by free fields. We are able to adapt some previous results [18] to show

that there is a close relationship between the modular operators for the in-fields, the

out-fields, and the interacting net: they all satisfy modular covariance with respect to

the unique representation of the Poincaré group, differing only in their choice of PCT

operators, and this difference describes the scattering. Thus we see that the Bisognano-

Wichmann condition, wedge duality, the PCT theorem, and the spin-statistics theorem

hold not only for nets associated with fields, but in addition for all nets with reasonable

(massive) scattering behavior.

II Notions of Modular Covariance

We begin with Minkowski space M of d spacetime dimensions, with coordinates x =

(x0, x1, . . . , xd−1), where x0 is the time coordinate. We will in general assume d >

2, since although some of our results hold also in the lower-dimensional cases, they
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are no longer particularly relevant there. For the sake of concreteness, one might

simply take d = 3, since the results are generally such that if they hold in three

dimensions they hold also in higher dimensions, but we will avoid explicit references

to d. The d-dimensional Poincaré group P is the group of all inhomogeneous linear

transformations of M preserving the metric with diagonal elements (1,−1, . . . ,−1).

We will be particularly interested in the subgroups P+, the proper Poincaré group,

generated by the translations and all homogeneous transformations of determinant +1,

and P↑
+, the restricted Poincaré group, consisting of all proper orthochronous Poincaré

transformations (those that preserve the sign of the time component). We will also

make use of their universal covering groups P̃+ and P̃↑
+.

Within Minkowski space we distinguish the family of wedge regions: the particular

complementary pair of wedges WR = {x| x1 > |x0|} and WL = {x| x1 < −|x0|} and

their Poincaré transforms. (We will think of WL as complementary to WR, and write

W ′
R =WL, even though strictly speaking W ′

R =WL). A complementary pair of wedges

has a common vertex (for WR and WL, the hyperplane x1 = x0 = 0) and opposite sets

of directions (forWR, a set of directions including x̂1; forWL, a set including −x̂1). We

will write W1‖W2 if the vertices of W1 and W2 are parallel, specialized as W1‖sW2 if

in addition they have the same directions, or W1‖aW2 if they have opposite directions.

To each wedge W we associate certain Poincaré transformations (which we will

actually use primarily as maps of the family of wedges): a reflection j(W ) about the

vertex of the wedge, and a one-parameter family of velocity transformations (in the

appropriate reference frame, and with an appropriate scale) λ(W, t) in the direction

of the wedge, both leaving the vertex fixed. For example, j(WR)(x0, x1, x2, . . . , xd) =

(−x0,−x1, x2, . . . , xd), and λ(WR, t)(x0, x1, x2, . . . , xd) = (x′0, x
′
1, x2, . . . , xd), with x

′
0 =

x0 cosh 2πt+x1 sinh 2πt and x
′
1 = x1 cosh 2πt+x0 sinh 2πt. In general, j(W ) and λ(W, t)

are conjugates of these within the Poincaré group. Thus j(W ) is a proper but time-

reversing involutory Poincaré transformation, which interchangesW withW ′, while the

λ(W, t) form a one-parameter group of proper orthochronous Poincaré transformations,

leaving W and W ′ invariant, and such that λ(W ′, t) = j(W )λ(W, t)j(W ) = λ(W,−t).

The λ(W, t) generate the entire restricted Poincaré group; since d > 2, the j(W )

generate the entire proper Poincaré group.

For our purposes, the only data required from a net will be a map from the family

of wedges W to a family A(W ) of von Neumann algebras of operators on a Hilbert

space H, with a distinguished vacuum vector Ω. The conclusions drawn will also apply
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directly only to the wedge algebras; if these results are to be applied to a local net, then

to begin with it must satisfy essential duality, and the statements must be considered

as referring to its dual net. In what follows we will make the following assumptions:

(i) A(W ′) ⊂ A(W )′ (locality);

(ii) A(W1) ⊂ A(W2) whenever W1 ⊂W2 (isotony);

(iii) Ω is a cyclic vector for A(W1) ∩ A(W2) whenever W1 ∩W2 6= ∅ (cyclicity);

(iv) for all W1 and W2, A(W1) = {A(W1) ∩A(W )|W‖sW2}
′′ (an additivity property).

If the wedge algebras are in fact derived from a local net, then (i)–(iv) follow from

standard assumptions, but we prefer to state them here in the form required. We

will show in many cases that a stronger version of (i) actually holds, namely A(W ′) =

A(W )′ (wedge duality). This implies essential duality, so that if the wedge algebras are

derived from a local net, then there is some maximal local net consistent with them,

which satisfies duality.

Assumptions (i)–(iv) imply, among other things, that for every wedge W , there

are modular involution, conjugation, and automorphism operators S(W ), J(W ) and

∆(W ) for the pair of algebras A(W ),A(W )′ with respect to the vacuum Ω. They may

be defined by the unique polar decomposition S(W ) = J(W )∆(W )1/2 of the closed

antilinear operator S(W ), where S(W ) is defined such that S(W )XΩ = X∗Ω for every

X ∈ A(W ). Then S(W )ψ = ψ if and only if ψ ∈ A(W )saΩ. S(W ) is an antilinear invo-

lution, J(W ) is an antiunitary involution, and ∆(W ) is self-adjoint and positive. The

modular conjugation is the adjoint action of J(W ), and the modular automorphism

group is the one-parameter group given by the adjoint action of ∆(W )it. The prop-

erties of these operators and their actions are well known from the Tomita-Takesaki

theory: for example, J(W )Ω = ∆(W )Ω = 0 and J(W )∆(W )J(W ) = ∆(W )−1; also

J(W )A(W )J(W ) = A(W )′, and ∆(W )itA(W )∆(W )−it = A(W ) for all real t.

Where necessary, we will also make the following additional assumption:

(v) J(ΛW ) is a weakly continuous function of Λ ∈ P↑
+ (a continuity property).

This property too typically holds for most nets that are usually considered; for exam-

ple, it follows from the covariance of the net under any strongly continuous unitary

representation of P↑
+. For some of our results, however, it must be specifically assumed.

Then relations of modular covariance will connect the action of the modular conju-

gation operators J(W ) with the transformations j(W ), and the action of the modular

automorphism operators ∆(W )it with the transformations λ(W, t). Let us list a number

of possible conditions:
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(a) covariance under modular conjugations of modular conjugations,

J(W1)J(W2)J(W1) = J(j(W1)W2); (1)

(b) covariance under modular conjugations of modular automorphisms,

J(W1)∆(W2)J(W1) = ∆(j(W1)W2); (2)

(c) covariance under modular conjugations of modular involutions,

J(W1)S(W2)J(W1) = S(j(W1)W2); (3)

(d) covariance under modular conjugations of wedge algbras,

J(W1)A(W2)J(W1) = A(j(W1)W2); (4)

(e) covariance under modular automorphisms of modular conjugations,

∆(W1)
itJ(W2)∆(W1)

−it = J(λ(W1, t)W2); (5)

(f) covariance under modular automorphisms of modular automorphisms,

∆(W1)
it∆(W2)∆(W1)

−it = ∆(λ(W1, t)W2); (6)

(g) covariance under modular automorphisms of modular involutions,

∆(W1)
itS(W2)∆(W1)

−it = S(λ(W1, t)W2); (7)

(h) covariance under modular automorphisms of wedge algebras,

∆(W1)
itA(W2)∆(W1)

−it = A(λ(W1, t)W2); (8)

(i) the modular conjugations J(W ) are the representatives of j(W ) under some repre-

sentation of the proper Poincaré group;

(j) the modular automorphisms ∆(W )it are the representatives of λ(W, t) under some

representation of the restricted Poincaré group.
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These ten statements, and their combinations, cover most of possibilities for mod-

ular covariance relations that apply to all combinations of wedges. (We exclude here

those referring only to wedges related in a certain way—for example, the conditions

of modular inclusion in [4], which apply only to parallel wedges.) In Theorem 7, we

will demonstrate the equivalence of the majority of these modular covariance relations,

including those of [13] (covariance under modular automorphisms of wedge algebras)

and of [16] (covariance under modular conjugations of wedge algebras).

Note that when we speak of a representation of the Poincaré group, we must require

the conditions appropriate to a group of symmetries: that is, we refer to a strongly

continuous projective representation by unitary or antiunitary operators. This will

therefore be a representation of the covering group, either P̃+ or P̃↑
+, in which the

connected component of the identity P̃↑
+ must be represented by unitary operators. If

the representation condition (i) above is to hold, then the time-reversing operators in

P̃+ must be represented by antiunitary operators (which is in fact what we would expect

physically, due to the positivity of the energy). Notice also, for example, that since

J(W ) is antiunitary, (b) above implies that J(W1)∆(W2)
itJ(W1) = ∆(j(W1)W2)

−it.

III Equivalence of Strong and Weak Formulations

We begin by discussing the relationship between conditions dealing with the wedge

algebras, and those dealing purely with the modular structure. The modular operators

associated with a given algebra contain much less information than the algebra itself,

but there is the following weak result: if ψ ∈ H is such that S(W )ψ = ψ, then there is

a closed symmetric operator X̃ affiliated with A(W ) such that X̃Ω = ψ. It is defined

on the core A(W )′Ω by X̃Y Ω = Y ψ for all Y ∈ A(W )′. (The following results could

of course be proved without this machinery, but only at the cost of a certain increase

in notational complexity; furthermore, the method we use seems in accord with the

modular spirit of our presentation.)

Lemma 1: Suppose assumptions (i)–(iv) hold. Let U be a unitary (or antiuni-

tary) operator such that UΩ = Ω, and γ be a Poincaré transformation such that

US(W )U∗ = S(γW ) for every wedge W . If there is some particular wedge W0 such

that UA(W0)U
∗ = A(γW0), then likewise UA(W )U∗ = A(γW ) for every wedge W .
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Proof: Let us first show that the statement holds when W ⊂ W0. Then we have

immediately UA(W )U∗ ⊂ UA(W0)U
∗ = A(γW0), and also A(γW ) ⊂ A(γW0). If

X ∈ A(W )sa, then UXU∗ ∈ A(γW0)
sa, and furthermore UXΩ ∈ A(γW )saΩ. Thus

there is a closed symmetric operator X̃ affiliated with A(γW ) (and thus also with

A(γW0)) such that X̃Ω = UXΩ. But X̃ and UXU∗ agree on the dense set A(γW0)
′Ω,

from which it follows that X̃ is in fact bounded and equal to UXU∗, which therefore

lies in A(γW ). Thus UA(W )U∗ ⊂ A(γW ). On the other hand, we may apply the

same argument to γW0 and γW , with U and U∗ interchanged and γ−1 taking the role

of γ, to show that U∗A(γW )U ⊂ A(W ). Thus UA(W )U∗ = A(γW ).

Likewise we have UA(W0)
′U∗ = A(γW0)

′, so that, by the same reasoning, if

A(W )′ ⊂ A(W0)
′, we have UA(W )′U∗ = A(γW )′ and again UA(W )U∗ = A(γW ).

Thus the statement of the lemma also holds whenever W ′ ⊂ W ′
0, i.e. whenever

W ⊃ W0. If we have merely that W‖sW0, then there is some W1 ⊂ W0 ∩ W . The

statement of the lemma holds for W1, and hence we may repeat the argument with

W1 in place of W0 to show that it holds for W . Thus UA(W )U∗ = A(γW ) whenever

W‖sW0.

Next let us consider the case in which neither W ∩ W1 nor W ′ ∩ W ′
1 is empty

for any W1‖sW0 (as is the case for most choices of W and W0). Then the vacuum

is cyclic and separating for both A = A(W ) ∩ A(W1) and B = A(γW ′) ∩ A(γW ′
1).

By the results above, UAU∗ ⊂ A(γW1). If X ∈ Asa, then UXU∗ ∈ A(γW1)
sa, but

also UXΩ ∈ A(γW )saΩ. Thus there is a closed symmetric operator X̃ affiliated with

A(γW ) such that X̃Ω = UXΩ. But X̃ and UXU∗ agree on the dense set BΩ, from

which it follows that X̃ is in fact bounded and equal to UXU∗, which therefore is in

A(γW ). Thus UAU∗ ⊂ A(γW ). Letting W1 vary we generate all of A(W ), so that

UA(W )U∗ ⊂ A(γW ). But again as above we can use a similar argument to show that

U∗A(γW )U ⊂ A(W ), so that in fact UA(W )U∗ = A(γW ). For the remaining wedges,

we may repeat these arguments to show that the result holds generally.

This becomes useful when combined with the Tomita-Takesaki theorem, as follows:

Theorem 2: Under assumptions (i)–(iv), the following are equivalent:

(a) covariance under modular conjugations of both modular conjugations

and modular automorphisms;

(b) covariance under modular conjugations of modular involutions;

(c) covariance under modular conjugations of wedge algbras.

If these conditions hold, then so also does wedge duality.
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Theorem 3: Under assumptions (i)–(iv), the following are equivalent:

(a) covariance under modular automorphisms of both modular conjugations

and modular automorphisms;

(b) covariance under modular automorphisms of modular involutions;

(c) covariance under modular automorphisms of wedge algbras.

If these conditions hold, then so also does wedge duality.

Proof: In each case it is clear from the definition of S(W ) that (c) implies (b),

and from the uniqueness of the polar decomposition that (b) is equivalent to (a).

Any of the assumptions of Theorem 2 implies that J(W ′) = J(j(W )W ) = J(W )

and ∆(W ′) = ∆(j(W )W ) = ∆(W )−1. Since we already have that A(W ′) ⊂ A(W )′,

this implies that A(W ′) = A(W )′. Likewise in Theorem 3, A(W ′) is a subalgebra of

A(W )′, whose modular operators are invariant under the modular automorphism group

for A(W )′, and for which the vacuum is cyclic. It follows that A(W ′) is invariant under

the modular automorphism group for A(W ), and by a standard result it is therefore

equal to A(W )′. It remains for us to show that under assumptions (i)–(iv), (b) implies

(c). This follows from Lemma 1 using the Tomita-Takesaki results J(W )A(W )J(W ) =

A(W ′) = A(j(W )W ) and ∆(W )itA(W )∆(W )−it = A(W ) = A(λ(W, t)W ).

Thus we see that the covariance of wedge algebras can always be reduced to appro-

priate statements referring purely to the relations of modular operators to one another,

without reference to the algebras themselves.

IV Representations of the Poincaré Group

We have now to discuss the relationships between the modular covariance conditions

referring only to the modular structure and those calling for the existence of certain

representations of the Poincaré group. In this we make use of the results of [6], which

establish the existence of such representations under rather weak conditions.

Theorem 4: Under assumptions (i)–(v), the following are equivalent:

(a) covariance under modular conjugations of modular conjugations;

(b) the modular conjugations J(W ) are representatives of j(W ) under a representation

of the covering group P̃+ of the proper Poincaré group;

(c) the modular conjugations J(W ) are the representatives of j(W ) under a representa-

tion of the proper Poincaré group P+ which represents orthochronous transformations
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by unitary operators and time-reversing transformations by antiunitary operators; the

vacuum is invariant under it, and the modular conjugations are covariant, and wedge

duality holds.

Assumption (v) is not necessary if (b) or (c) holds.

Proof: Clearly (c) implies (b), and (b) implies both (a) and assumption (v). We

therefore assume (a) and assumptions (i)–(v) and seek to prove the rest. We begin with

a single one-parameter subgroup Λ(t) of the Poincaré group (necessarily the restricted

group), for which we suppose that there is some wedge W such that j(W )Λ(t)j(W ) =

Λ(−t). From this it follows that j(Λ(t)W )Λ(t′)W = Λ(2t − t′)W ′. (There are many

such instances: for example, WR will serve for the translations in the x̂1 direction, the

velocity transformations in the x̂2 direction, or the rotations about x̂3. Thus there is

such aW if Λ(t) is conjugate to any of these one-parameter subgroups, and in particular

such subgroups generate all of P↑
+.)

We can then apply the methods of [4], Proposition 3.1 and Lemma 3.2, the proof

of which can be simplified as follows. If we write Jt = J(Λ(t)W ), then from our

assumptions JtJt′Jt = J2t−t′ . First we wish to show by induction that JntJ(n+1)t = J0Jt

for all integers n. This holds for n = 0, but also JntJ(n+1)tJnt = J(n−1)t, so that

JntJ(n+1)t = J(n−1)tJnt, and the induction proceeds in either direction. Next we wish

to show by induction that (J0Jt)
n = J0Jnt for all integers n. This is immediate for

n = 0,±1, and

(J0Jt)
n+1 = (J0Jt)

nJ0Jt = J0JntJntJ(n+1)t = J0J(n+1)t (9)

provides the induction for n > 0. But then by the same result (J0Jt)
−n = (J0J−t)

n =

J0J−nt. From this we have J0JntJ0Jmt = (J0Jt)
m+n = J0J(n+m)t, and in general if t and

t′ are rationally related then J0JtJ0Jt′ = J0Jt+t′ . Then by continuity it follows that

J0Jt is a continuous one-parameter unitary group.

Thus also U(Λ(t)) = J(W )J(Λ(−t/2)W ) is a continuous one-parameter unitary

group, which can be seen to implement Λ(t) on the modular conjugations: for an arbi-

trary wedge W1, U(Λ(t))J(W1)U(Λ(−t)) = J(Λ(t)W1). Likewise U(Λ(t)) is covariant

under the modular conjugations: J(W1)U(Λ(t))J(W1) = U(j(W1)Λ(t)j(W1)). Thus

also the U(Λ(t)) are covariant with respect to each other: U(Λ′(t′))U(Λ(t))U(Λ′(−t′)) =

U(Λ′(t′)Λ(t)Λ′(−t′)). We may then apply the methods of [6], as also in [13], Propo-

sition 2.4: the U(Λ(t)) generate a central weak Lie extension of P↑
+/H , where H is

the normal subgroup H =
{

Λ ∈ P↑
+

∣

∣

∣ J(ΛW ) = J(W ) for all W
}

of P↑
+. If H is trivial
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or the translation subgroup, then P↑
+/H is the restricted Poincaré or Lorentz group,

and we have a representation of the corresponding covering group, hence in either

case a representation of P̃↑
+. If H = P↑

+, then J(W1) = J(W2) for all W1,W2, and

the representation is trivial immediately. Thus in any case we have a representation

of the covering group P̃↑
+, under which the modular conjugations are covariant. It is

then straightforward to extend this to a representation of the covering group P̃+ of

the proper Poincaré group, since as we have seen the representation is also covariant

under the modular conjugations. Since the vacuum is invariant under each J(W ), it

is also invariant under this representation. As we have remarked before, the subgroup

P̃↑
+ must be represented by unitary operators, and the time-reversing transformations

by antiunitary operators.

To show that this representation is in fact of the proper Poincaré group itself,

we follow the procedure used in [13] and [16]: let R(θ) be the representative of the

rotation by the angle θ about the x̂3 axis, so that J(WR)R(θ)J(WR) = R(−θ). We have

J(WR) = J(j(WL)WL) = J(WL), so 1 = J(WL)J(WR) = R(π)J(WR)R(−π)J(WR) =

R(2π).

Note that an extension of a representation of the restricted Poincaré group to one of

the proper Poincaré group, in which the time-reversing transformations are represented

by antiunitary operators, is almost unique, but not quite. One has always a choice of

phase—that is, the time-reversing transformations may always be multiplied by any

common unitary operator V which commutes with the restricted Poincaré group and

anticommutes (V U = UV ∗) with the time-reversing transformations. For example, if

the representation is irreducible, then V can be any complex phase eiθ.

Next we introduce a lemma that allows us to connect the behavior of modular

automorphisms with that of modular conjugations:

Lemma 5: Suppose assumptions (i)–(iii) hold. If W1,W2 are two wedges such that

W1 ∩W2 6= ∅ and W ′
1 ∩W

′
2 6= ∅, then

∆(W1)
1/2∆(W2)

−1/2 ⊂ J(W1)J(W2). (10)

That is, the operator on the left is densely defined and closable, and the bounded

operator on the right extends it. This implies among other things that for every

ψ ∈ D(∆(W1)
1/2), φ ∈ D(∆(W2)

−1/2), we have
〈

∆(W1)
1/2ψ

∣

∣

∣ ∆(W2)
−1/2φ

〉

=
〈

J(W1)ψ
∣

∣

∣ J(W2)φ
〉

. (11)
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Let U be a unitary (or antiunitary) operator, and γ a Poincaré transformation such

that U∆(W )U∗ = ∆(γW ) for every wedge W . Then also

UJ(W1)J(W2)U
∗ = J(γW1)J(γW2) (12)

for any pair of wedgesW1,W2, and there is a unitary operator V such that UJ(W )U∗ =

V J(γW ) for every wedge W . If in addition there is some particular wedge W0 such

that UJ(W0)U
∗ = J(γW0), then likewise UJ(W )U∗ = J(γW ) for every wedge W .

Proof: By assumption, the vacuum is cyclic for A = A(W1) ∩ A(W2). If X ∈ A,

then S(W1)XΩ = S(W2)XΩ = X∗Ω. Thus S(W1)S(W2) agrees with the identity

on the dense set AΩ. But S(W1) = J(W1)∆(W1)
1/2 and S(W2) = ∆(W2)

−1/2J(W2).

Thus the bounded operator J(W1)J(W2) agrees with the product ∆(W1)
1/2∆(W2)

−1/2

on the dense set J(W2)AΩ. Applying the same reasoning to A(W2)
′ ⊃ A(W ′

2) and

A(W1)
′ ⊃ A(W ′

1) shows that ∆(W2)
−1/2∆(W1)

1/2 agrees with J(W2)J(W1) on a dense

set. In particular, ∆(W1)
1/2∆(W2)

−1/2 has a densely defined adjoint, and thus is

closable. Then since ∆(W1)
1/2∆(W2)

−1/2 agrees with J(W1)J(W2) on a dense set,

they must agree wherever defined. Furthermore since 〈 ∆(W1)
1/2ψ | ∆(W2)

−1/2φ 〉 =

〈 J(W1)ψ | J(W2)φ 〉 for a dense set of ψ and φ, and since the right-hand side is a

bounded function of ψ and φ, equality must hold whenever the left-hand side is de-

fined.

For the second part, let us first assume that W1 and W2 satisfy the condition of the

first part. Then UJ(W1)J(W2)U
∗ extends U∆(W1)

1/2∆(W2)
−1/2U∗, but by assumption

the latter is equal to ∆(γW1)
1/2∆(γW2)

−1/2, which extends to the bounded operator

J(γW1)J(γW2). Thus UJ(W1)J(W2)U
∗ and J(γW1)J(γW2) are extensions of the same

densely defined closable operator, and must in fact be equal. This is so provided that

W1 ∩W2 6= ∅ and W ′
1 ∩W

′
2 6= ∅, but in any case we can find some W3 such that none

of W1 ∩W3, W2 ∩W3, W
′
1 ∩W

′
3, or W

′
2 ∩W

′
3 is empty. Then again we have

UJ(W1)J(W2)U
∗ = UJ(W1)J(W3)U

∗UJ(W3)J(W2)U
∗

= J(γW1)J(γW3)J(γW3)J(γW2) = J(γW1)J(γW2), (13)

without restriction on W1,W2. We may rearrange this to obtain

UJ(W1)U
∗J(γW1) = UJ(W2)U

∗J(γW2) = V (14)

where V is a single unitary operator independent of the choice of wedges. Thus

UJ(W )U∗ = V J(γW ) for any wedge W . Then if UJ(W0)U
∗ = J(γW0) we have

V J(γW0) = J(γW0) and V = I.
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This result is a very strong condition on the modular operators, with several impor-

tant consequences. First, the modular automorphisms must be such that the product

of ∆(W1)
1/2 and ∆(W2)

−1/2 is densely defined and is the restriction of a unitary op-

erator for every W1,W2 with W1 ∩W2 6= ∅ and W ′
1 ∩W ′

2 6= ∅. Second, the modular

automorphisms almost determine the modular conjugations: they determine the prod-

ucts of pairs of modular conjugations, or the modular conjugations themselves up to a

unitary phase operator V . This will be used several times in the next section, in the

proof of our main theorem on modular covariance.

All that remains is to show that a corresponding condition holds for representations

of the Poincaré group, as is necessary if the modular operators are to be derived from

such a representation.

Lemma 6: Let U(λ) be a representation of the restricted Poincaré group P↑
+ satisfying

the spectrum condition. If W1 and W2 are two wedges such that W1 ∩ W2 6= ∅ and

W ′
1 ∩W

′
2 6= ∅, and we write ∆0(W )it = U(λ(W, t)), then

〈

∆0(W1)
1/2ψ

∣

∣

∣ ∆0(W2)
−1/2φ

〉

=
〈

ψ
∣

∣

∣ U(j(W1)j(W2))φ
〉

(15)

for every ψ ∈ D(∆0(W1)
1/2), φ ∈ D(∆0(W2)

−1/2).

Proof: From the proof of Theorem 1.1 of [13] we can see that
〈

∆0(W1)
1/2ψ

∣

∣

∣ ∆0(λ(W, t)W1)
−1/2φ

〉

=
〈

∆0(W1)
1/2ψ

∣

∣

∣ ∆0(W )it∆0(W1)
−1/2∆0(W )−itφ

〉

(16)

=
〈

ψ
∣

∣

∣ U(j(W1)λ(W, t)j(W1)λ(W,−t))φ
〉

=
〈

ψ
∣

∣

∣ U(λ(W,−2t))φ
〉

whenever W1 and W are orthogonal wedges, so that our condition holds for W1 and

W2 = λ(W, t)W1. The same proof also can be adapted to give the same result if

W2 = Λ(t)W1 where Λ(t) is any one-parameter subgroup of the Lorentz group such

that W1 and W2 satisfy the conditions of the present lemma. Thus the lemma holds

whenever W1 and W2 are Lorentz transforms of each other.

If W1 and W2 are arbitrary wedges satisfying the conditions of our lemma, then

there is some W3‖sW2 such that W1 and W3 also satisfy the conditions of our lemma,

and in addition are Lorentz transforms of each other. Thus there is some translation

T (x) having no component parallel to the vertex of W2, with W3 the translate by x of

W2, and
〈

∆0(W1)
1/2ψ

∣

∣

∣ ∆0(W2)
−1/2φ

〉

=
〈

∆0(W1)
1/2ψ

∣

∣

∣ ∆0(W3)
−1/2∆0(W3)

1/2∆0(W2)
−1/2φ

〉
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=
〈

∆0(W1)
1/2ψ

∣

∣

∣ ∆0(W3)
−1/2T (x)∆0(W2)

1/2T (−x)∆0(W2)
−1/2φ

〉

(17)

=
〈

ψ
∣

∣

∣ U(j(W1)j(W3))T (x)∆0(W2)
1/2T (−x)∆0(W2)

−1/2φ
〉

for all ψ ∈ D(∆0(W1)
1/2) and all φ for which the expression is defined.

At this point we employ a converse to Borchers’ Theorem ([9], Theorem 3), a

consequence of the analytic continuation made possible by the spectrum condition.

The theorem shows, for example, that for the particular wedge WR, the expression

T (x)∆0(WR)
1/2T (−x)∆0(WR)

−1/2 agrees with T (2x) wherever it is defined, provided

x lies in the x̂0+ x̂1 or x̂0− x̂1 directions. Thus this is true also for linear combinations

of these directions, i.e., in general, whenever x has no component parallel to the vertex

of the wedge. This means that

〈

ψ
∣

∣

∣ U(j(W1)j(W3))T (x)∆0(W2)
1/2T (−x)∆0(W2)

−1/2φ
〉

(18)

=
〈

ψ
∣

∣

∣ U(j(W1)j(W3))T (2x)φ
〉

=
〈

ψ
∣

∣

∣ U(j(W1)j(W2))φ
〉

for all ψ, φ for which the expression is defined. Thus the lemma holds generally.

V Modular Covariance

We are now ready for our main (and rather heavily overloaded) theorem on modular

covariance.

Theorem 7: Under assumptions (i)–(v), the following are equivalent:

(a) covariance under modular conjugations of modular automorphisms;

(b) covariance under modular conjugations of modular involutions;

(c) covariance under modular conjugations of wedge algebras;

(d) the modular conjugations J(W ) are representatives of j(W ) under a representation

of the covering group P̃+ of the proper Poincaré group, under which the modular auto-

morphisms are covariant;

(e) the modular conjugations J(W ) are the representatives of j(W ) under a represen-

tation of the proper Poincaré group P+ satisfying the spectrum condition, under which

the vacuum is invariant, the modular conjugations, modular automorphisms, modular

involutions, and wedge algebras are all covariant, and wedge duality holds;

(f) covariance under modular automorphisms of modular automorphisms;

(g) covariance under modular automorphisms of modular involutions;

15



(h) covariance under modular automorphisms of wedge algebras;

(i) the modular automorphisms ∆(W )it are the representatives of λ(W, t) under a rep-

resentation of the covering group P̃↑
+ of the restricted Poincaré group;

(j) the modular automorphisms ∆(W )it are representatives of λ(W, t) under a unitary

representation of the restricted Poincaré group P↑
+ satisfying the spectrum condition,

under which the vacuum is invariant, the modular conjugations, modular automor-

phisms, modular involutions, and wedge algebras are all covariant, and wedge duality

holds;

(k) the modular conjugations J(W ) are the representations of j(W ), and the modu-

lar automorphisms ∆(W )it of λ(W, t), under a representation of the proper Poincaré

group P+ which represents orthochronous transformations by unitary operators and

time-reversing transformations by antiunitary operators; this representation satisfies

the spectrum condition, under it the vacuum is invariant, the modular conjugations,

modular automorphisms, modular involutions, and wedge algebras are all covariant,

and wedge duality holds.

Assumption (v) is not necessary if any of (d)–(k) holds.

Remark: The paper [16] assumes the existence and uniqueness of a covariant repre-

sentation of P̃↑
+, and then shows essentially that (c) above implies (e). The paper [13]

shows essentially that (h) above implies (k).

Proof: We have seen in the proof of Theorems 2 and 3 that wedge duality follows

from most of these statements. Also, assumption (v) follows from (d), (e), (j), or (k).

In fact, (k) implies all the other statements, (e) implies (a)–(d), and (j) implies (f)–(i).

We will therefore begin by showing that (a)–(d) are all equivalent to (e), continue by

showing that (f)–(i) are all equivalent, and finally show that (e), (i), (j), and (k) are

all equivalent.

By Theorem 2, (c) is equivalent to (b), or to the conjunction of (a) above with (a)

of Theorem 4. We show that (a) above implies (a) of Theorem 4. If (a) above holds,

then by Lemma 5 we have J(W1)J(W2)J(W1) = V (W1)J(j(W1)W2) where V (W1)

depends only on W1 and not on W2. But we may choose W1 = W2, from which we

get J(W1) = V (W1)J(j(W1)W1) = V (W1)J(W1) and V (W1) = I, so that modular

conjugations are covariant under modular conjugations. Thus (a), (b), and (c) are all

equivalent. Clearly (d) implies (a); on the other hand, by Theorem 4, (a) of Theorem

4 combined with assumption (v) implies that the modular conjugations generate a

representation, which by (c) is covariant. Thus (d) is equivalent to (a)–(c). That the
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spectrum condition holds follows from a converse to Borchers’ Theorem [22, 6, 9]. The

equivalence of (a)–(e) then follows using Theorems 2 and 4.

By Theorem 3, (h) is equivalent to (g), or to the conjunction of (f) with the covari-

ance under modular automorphisms of modular conjugations. We will therefore first

show that (f) implies the latter covariance. If (f) holds, then by Lemma 5 we have

∆(W1)
itJ(W2)∆(W1)

−it = V (W1, t)J(λ(W1, t)W2) (19)

where V (W1, t) is independent of W2. We may choose W1 = W2, obtaining

J(W1) = ∆(W1)
itJ(W1)∆(W1)

−it = V (W1, t)J(λ(W1, t)W1) = V (W1, t)J(W1), (20)

so that V (W1, t) = I identically. From this follows the desired covariance and the

equivalence of (f), (g), and (h). Clearly (i) implies (f), so we must show that (f)

implies (i). This result is contained in [6], cf. also [13], and is analogous to that of

Theorem 4. We have immediately one-parameter unitary groups ∆(W )it, which by the

same procedure as in Theorem 4 give a central weak Lie extension, and thus a unitary

representation of the covering group P̃↑
+ under which the modular automorphisms are

covariant. Since the vacuum is invariant under each ∆(W )it, it is invariant under this

representation.

Now we must show that (e), (i), (j), and (k) are all equivalent. Let us begin by

showing that (e) implies (i), (j) and (k). In the representation of the Poincaré group

generated by the J(W ), let ∆0(W )it be the representative of λ(W, t). Then the ∆(W )

are covariant under the ∆0(W )it. Thus for any particular wedge W , ∆(W ) commutes

strongly with ∆0(W ), so the two positive operators have a common dense set Dω(W )

of vectors ψ such that ∆(W )izψ and ∆0(W )izψ are both entire analytic. Let us take

W1, W2 such that W1 ∩W2 6= ∅ and W ′
1 ∩W

′
2 6= ∅. For any ψ ∈ Dω(W1), φ ∈ Dω(W2)

we may define a jointly entire analytic function

f(z, w) =
〈

∆(W1)
iw∆0(W1)

izψ
∣

∣

∣ ∆(W2)
iw∆0(W2)

izφ
〉

(21)

satisfying

|f(z, w)| ≤
∥

∥

∥∆(W1)
iw∆0(W1)

izψ
∥

∥

∥

∥

∥

∥∆(W2)
iw∆0(W2)

izφ
∥

∥

∥ (22)

=
∥

∥

∥∆(W1)
Im w∆0(W1)

Im zψ
∥

∥

∥

∥

∥

∥∆(W2)
−Im w∆0(W2)

−Im zφ
∥

∥

∥ . (23)

Then we may use Lemmas 5 and 6 to compute

f(z, w + i/2) =
〈

∆(W1)
1/2∆(W1)

iw∆0(W1)
izψ

∣

∣

∣ ∆(W2)
−1/2∆(W2)

iw∆0(W2)
izφ

〉

=
〈

J(W1)∆(W1)
iw∆0(W1)

izψ
∣

∣

∣ J(W2)∆(W2)
iw∆0(W2)

izφ
〉

(24)
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and

f(z + i/2, w) =
〈

∆0(W1)
1/2∆(W1)

iw∆0(W1)
izψ

∣

∣

∣ ∆0(W2)
−1/2∆(W2)

iw∆0(W2)
izφ

〉

=
〈

J(W1)∆(W1)
iw∆0(W1)

izψ
∣

∣

∣ J(W2)∆(W2)
iw∆0(W2)

izφ
〉

(25)

from which we deduce that f(z, w) = f(z+i/2, w−i/2). Let us consider f(z+ζ, w−ζ)

as a function of ζ : it is periodic in ζ with period i/2, and satisfies a bound independent

of Re ζ , so it is bounded and, hence, constant. Thus f(z, w) = f(z + ζ, w − ζ) for all

z, w, ζ , and in particular f(t, 0) = f(0, t), so that

〈

∆(W1)
itψ

∣

∣

∣ ∆(W2)
itφ

〉

=
〈

∆0(W1)
itψ

∣

∣

∣ ∆0(W2)
itφ

〉

. (26)

Since ψ and φ may vary over dense sets, we conclude that for all real t we have

∆(W1)
−it∆(W2)

it = ∆0(W1)
−it∆0(W2)

it, and by suitably varying W1 and W2 we see

that V (W, t) = ∆0(W )it∆(W )−it is in fact independent of W . But V (W, t) is a

one-parameter unitary group, so from V (W,−t) = V (W ′, t) = V (W, t) we find that

V (W, t) = 1 identically and ∆(W ) = ∆0(W ). This implies (i), (j), and (k) directly.

It will then suffice to show that (i) implies (a). This result is contained in [6], and

is closely connected with our Lemmas 5 and 6. This completes the proof.

VI PCT and Spin-Statistics Theorems

If d is even, then the complete spacetime inversion is an element of P+. If the wedge

algebras are covariant under a representation of P+ (or of P̃+) then the (antiunitary)

representative of this inversion is just the PCT operator Θ. Thus in even dimensions,

Theorem 7 is a PCT theorem; in odd dimensions, on the other hand, it seems that it

must suffice to have a representation of P+ (or of P̃+).

So far the argument has been stated entirely in terms of observable algebras, and

thus necessarily in terms of bosonic quantities. In this case Theorem 7 guarantees rep-

resentations of P+ and P↑
+ rather than of their covering groups—that is, it guarantees

that all spins are integral. Thus it is also a spin-statistics theorems for bosonic statis-

tics. It may also be extended to fermionic statistics by the use of a standard notation

[2]. We let Γ be a unitary involution such that ΓΩ = Ω and ΓA(W )Γ = A(W ) for

all W . Operators that commute with Γ are intended to be bosonic, while those that

anticommute are to be fermionic. Let Z = (I+ iΓ)/(1+ i), and let us alter assumption
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(i) as follows:

(i′) ZA(W ′)Z∗ ⊂ A(W )′ (twisted locality).

Wedge duality is likewise altered to ZA(W ′)Z∗ = A(W )′ (twisted wedge duality).

The alterations correspond to normal commutation relations: commutation between

spacelike separated operators, except that two spacelike separated fermionic operators

anticommute. The argument proceeds much as before, save that in place of covari-

ance under the modular conjugations we must substitute covariance under the twisted

modular conjugation operators Z∗J(W ). Γ commutes with every J(W ) and ∆(W ), so

Z∗J(W ) = J(W )Z is again an antiunitary involution. The results are as before, except

that (i′) implies that Z∗J(WR)Z = J(WL), so that the final argument in Theorem 4

now shows that R(2π) = Z∗J(WR)ZJ(WL) = Z2 = Γ. Thus in each case we have

representations of the covering groups P̃+ or P̃↑
+, but subject to the condition that

R(2π) = Γ. The modified Theorem 7′ as follows is therefore an algebraic PCT and

spin-statistics theorem.

Theorem 7′: Under assumptions (i′) and (ii)–(iv), any of the subparts corresponding

to (a)–(j) of Theorem 7 is equivalent to the following:

(k′) the twisted modular conjugations Z∗J(W ) are the representations of j(W ), and

the modular automorphisms ∆(W )it of λ(W, t), under a representation of the cover-

ing group P̃+ of the proper Poincaré group, subject to the condition that R(2π) =

Γ, which represents orthochronous transformations by unitary operators and time-

reversing transformations by antiunitary operators; this representation satisfies the

spectrum condition, and under it the vacuum is invariant, and the modular conju-

gations, modular automorphisms, modular involutions, and wedge algebras are all co-

variant, and twisted wedge duality holds.

However, there is more than this that can be said. Using Theorem 7′ we can show

only that if any one of the equivalent conditions (a′)–(k′) holds for the field net, then so

also do all the rest. What is in fact true, with only a few additional assumptions, is that

modular covariance for the observable net implies modular covariance for the field net.

However, the present context does not appear to be the appropriate one for a discussion

of these issues. Various aspects of the matter are treated in [12] and in [5, 13, 16, 14].

In some sense this is the true spin-statistics theorem in this context, but of course it

depends on the modular covariance of the observable net, precisely the question studied
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here so far. It is for this reason, as well as for clarity of exposition, that the presentation

in the previous sections has been entirely in terms of observables: modular covariance

for the observables implies modular covariance generally. The remainder of this paper

will discuss modular covariance for field nets directly.

VII Localized States for Elementary Systems

We must now explain our earlier statement that these theorems allow us to reduce

the study of the possible modular structures of nets to the study of nets without

interaction; this will give substance to the rather abstract results of Theorems 7 and

7′. We first note that the relevant portions of these theorems apply equally to families of

‘modular operators’ not necessarily associated with any von Neumann algebras. Let us

consider a family of antiunitary involutions J(W ) and unbounded positive operators

∆(W ), or equivalently the corresponding unbounded antilinear involutions S(W ) =

J(W )∆(W )1/2, acting on a Hilbert space H1. There is then a corresponding family of

subsets R(W ) of H1 defined by R(W ) = {ψ| S(W )ψ = ψ}. Conversely, the operators

can be recovered from the R(W ) by letting S(W )(ψ + iφ) = ψ − iφ for every ψ, φ ∈

R(W ). Consider the following assumptions:

(i) S(W )∗ψ = ψ for every ψ ∈ R(W ′);

(ii) R(W1) ⊂ R(W2) whenever W1 ⊂W2;

(iii) R12 = R(W1)∩R(W2) is such that R12+iR12 is dense inH1 wheneverW1∩W2 6= ∅;

(iv) for all W1 and W2, R(W1) = {R(W1) ∩R(W )|W‖sW2}
−;

(v) J(ΛW ) is a weakly continuous function of Λ ∈ P↑
+;

or, in the more general case, given a unitary involution Γ,

(i′) ZS(W )∗ψ = ψ for every ψ ∈ R(W ′).

These correspond directly to assumptions (i)–(v) and (i′) for families of wedge algebras

A(W ). Wedge duality corresponds to S(W ′) = S(W )∗, and twisted wedge duality to

S(W ′) = ZS(W )∗. Theorems 7 and 7′ still hold, with the omission of (c), (h), and

all other references to wedge algebras. Thus it is still reasonable to speak of modular

covariance for such a family of modular operators. Notice that the ∆(W ) do not

determine the J(W ) uniquely, but only up to a phase operator V . This is entirely

consistent with the results of Lemma 5.

Next, we point out that a construction analogous to that of the free fields can

produce a family of wedge algebras describing non-interacting particles corresponding
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to any such family of modular operators. Let us write H1 = Hb
1 ⊕ Hf

1 where Hb
1 and

Hf
1 are the eigenspaces of Γ with eigenvalues +1 and −1 respectively (the bosonic and

fermionic one-particle spaces). Then over H1 we construct a mixed bosonic/fermionic

Fock space H = Hb⊗Hf , where Hb is the bosonic (symmetric) Fock space over Hb
1, and

Hf is the fermionic (antisymmetric) Fock space over Hf
1 . On H it is possible to define

bosonic field operators φb(ψ) for ψ ∈ Hb
1, fermionic field operators φf(ψ) for ψ ∈ Hf

1 ,

and, by adding these, general self-adjoint field operators φ(ψ) for ψ ∈ H1, defined such

that φ(ψ)Ω = ψ. We then define algebras A(W ) generated by the field operators φ(ψ)

for every ψ ∈ R(W ). If the R(W ) satisfy conditions (i)–(v) or (i′) above, then the

A(W ) satisfy the corresponding conditions (i)–(v) or (i′) previously defined for them.

Furthermore the modular conjugations and automorphisms for the A(W ) agree with

the specified J(W ) and ∆(W ) on the one-particle space in H, which we may identify

with H1. Such a family of wedge algebras describes a system without interaction, but it

clearly gives examples of any phenomenon that occurs at the level of modular operators.

If the J(W ) and ∆(W ) satisfy the conditions of Theorem 7′, then the A(W ) correspond

to a (generalized) free field, and thus certainly arise from a net of local algebras. If they

do not, however, then by the Bisognano-Wichmann theorem they cannot correspond

to any set of Wightman fields, and they may or may not arise from a local net. We

knew already that every family of wedge algebras produces a corresponding family of

modular operators; what this shows is that a family of modular operators produces a

family of wedge algebras. Thus for every result about families of wedge algebras, there

is a corresponding result about families of modular operators, and vice versa. The

study of modular structures for general families of wedge algebras is reduced to that of

modular structures in the abstract, which correspond in this way to algebras without

interaction.

Systems of algebras of this type are not the only ones to describe models without

interaction, but they form an important class: given any one-particle space H1, these

are those that describe all states of arbitrarily many such particles, present together

without interaction. The Hilbert space H is uniquely determined by H1 and Γ, but

the algebras A(W ) depend on the family of modular operators on H1—this family

describes the localization properties of the one-particle states, and we will refer to it as

the localization structure for such a model. For the free fields, the localization structure

is determined entirely by the representation of P̃+, by the Bisognano-Wichmann condi-

tion, but it is not known whether there might be other possibile localization structures
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not corresponding to free fields. Here we study the question of uniqueness for families

of modular operators on H1, assuming the existence of an appropriate representation

of the Poincaré group. In this case there is a distinguished family J0(W ) = U(j(W )),

∆0(W )it = U(λ(W, t)) of modular operators. For any other family J(W ), ∆(W ) co-

variant under the representation, we may define J ′(W ) = J(W )J0(W ) = J0(W )J(W )

and ∆′(W )it = ∆(W )it∆0(W )−it, taking advantage of the commutation properties pro-

vided by the covariance. If our representation is only of the restricted Poincaré group,

then we may at least define ∆0(W ) and ∆′(W ) in the same way.

The most interesting case is that in which H1 carries an irreducible representation of

the Poincaré group, corresponding to Wigner’s notion of an elementary system. Newton

and Wigner [20] studied the possibilities for localization of states in the traditional

quantum-mechanical sense on elementary systems; what we are studying here is a

different sort of localization structure, one appropriate to the systems we describe here,

and in particular to the free fields. We will treat not only elementary systems, but also

reducible representations, provided they satisfy certain multiplicity restrictions.

Lemma 8: Suppose assumptions (i′), (ii), and (iii) hold. Let U(λ) be a representa-

tion of the covering group P̃↑
+ of the restricted Poincaré group, satisfying the spectrum

condition, under which the modular automorphisms ∆(W ) are covariant. For any two

wedges W1,W2 such that W1 ∩W2 6= ∅ and W ′
1 ∩W

′
2 6= ∅, there is a unitary operator

V (W1,W2) such that

〈

∆′(W1)
1/2ψ

∣

∣

∣ ∆′(W2)
−1/2φ

〉

= 〈 ψ | V (W1,W2)φ 〉 (27)

for every ψ ∈ D(∆′(W1)
1/2), φ ∈ D(∆′(W2)

−1/2) (and each of these sets is dense).

Proof: Since the ∆(W ) are covariant under the ∆0(W )it, we see that for any

particular wedge W , ∆0(W ) commutes strongly with ∆(W ). Thus there is a dense

domain Dω(W ) on which ∆′(W )iz = ∆(W )iz∆0(W )−iz for all complex z. Thus for all

ψ ∈ Dω(W1), φ ∈ Dω(W2), we may use Lemmas 5 and 6 (appropriately extended for

the possibility of fermions) to compute

〈

∆′(W1)
1/2ψ

∣

∣

∣ ∆′(W2)
−1/2φ

〉

=
〈

∆0(W1)
−1/2∆(W1)

1/2ψ
∣

∣

∣ ∆0(W2)
1/2∆(W2)

−1/2φ
〉

=
〈

∆(W1)
1/2ψ

∣

∣

∣ U(j(W1)j(W2))∆(W2)
−1/2φ

〉

(28)

=
〈

∆(W1)
1/2ψ

∣

∣

∣ ∆(j(W1)W
′
2)

−1/2U(j(W1)j(W2))φ
〉

= 〈ψ| J(W1)U(j(W1)j(W2))J(W2)φ〉 ,
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and the operator in the last expression is unitary. The result then follows by linearity

for all ψ, φ for which the expression is defined.

Next, we see that relations of this sort cannot be satisfied by bounded operators,

by commuting operators, or even by matrices of commuting operators.

Lemma 9: If the equality of Lemma 8 holds, and if each ∆′(W ) is a bounded operator,

then ∆′(W ) = I for every wedge W .

Proof: In this case, ∆′(W1)
1/2∆′(W2)

−1/2 = V (W1,W2) whenever W1, W2 are as in

Lemma 8. Thus V (W1,W2)
∗ = ∆′(W2)

−1/2∆′(W1)
1/2, so that V (W1,W2)V (W1,W2)

∗ =

∆′(W1)
1/2∆′(W2)

−1∆′(W1)
1/2 = I. Thus ∆′(W2)

−1 = ∆′(W1)
−1, and using appropri-

ate pairs of wedges we see that ∆′(W ) is independent of W . But then ∆′(W )it =

∆′(W ′)−it = ∆′(W )−it so that ∆′(W ) = I.

Lemma 10: If the equality of Lemma 8 holds, and if there is an abelian von Neumann

algebra N and an embedding of the n×n matrix algebra Mn(N ) over N in B(H) such

that every ∆′(W )it lies in Mn(N ), then ∆′(W ) = I for every wedge W .

Proof: For simplicity we may consider N as generated by a single self-adjoint operator

X . For any unbounded measurable function f(X), the sets Ea = f−1([−a, a]) form an

increasing family of measurable sets on which f is bounded, and such that ∪aEa = R.

Likewise if we have a finite family fi of such functions, then Ea = ∩if
−1
i ([−a, a]) has

the same properties. For each wedge W , ∆′(W ) is an n× n matrix whose entries are

unbounded measurable functions of X . Since there are only finitely many such entries,

for any finite collection of wedges W there is such a family of sets Ea on which every

entry in every ∆′(W ) is finite. If Πa are the corresponding spectral projections for X ,

then ∆′
a(W ) = Πa∆

′(W ) = ∆′(W )Πa is in Mn(N ) for every a, and Πa tends strongly

to the identity as a→ ∞. Then if W1 andW2 are as in Lemma 8, ∆′
a(W1) and ∆′

a(W2)

satisfy the relation of Lemma 8, but are both bounded, and hence the proof of Lemma

9 (which requires only a suitable finite collection of wedges) can be used to show that

∆′
a(W ) is the identity on ΠaH. Thus in the limit we have ∆′(W ) = I.

These results imply uniqueness in case the representation of the Poincaré group

satisfies certain multiplicity conditions. These will not hold on the full Fock space, but

they can be satisfied on the one-particle space. In particular, they hold in the case of

elementary systems. These conditions also suffice to guarantee the uniqueness of the

representation of the Poincaré group under which the net is covariant.
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Theorem 11: If H1 carries a representation U(λ) of the covering group P̃↑
+ of the

restricted Poincaré group, satisfying the spectrum condition, and such that for any given

mass there occur only finitely many finite-spin irreducible representations, each with

finite multiplicity, then there is up to unitary equivalence at most one set of modular

operators covariant under the U(λ) and satisfying assumptions (i′), (ii), and (iii). It

must satisfy assumptions (iv) and (v), twisted wedge duality, and modular covariance.

The modular automorphisms are uniquely determined, while the modular conjugations

are determined only up to a unitary operator commuting with all U(λ).

Proof: There is a set of free fields with H1 for one-particle space if and only if

H1 admits a PCT operator with respect to the given representation U(λ), which thus

extends to a representation of the proper group P̃+. Let us first assume that this is the

case, so that there is a free-field net satisfying (i′) and (ii)–(v), twisted wedge duality,

and modular covariance, for which H1 is the one-particle space. The PCT operator

and the representation of P̃+ are unique up to a Poincaré-invariant unitary operator.

By the Bisognano-Wichmann results, the modular operators on H1 for any free-field

net must come from one of these representations.

Let us assume that there is some other set J(W ), ∆(W ) of modular operators onH1,

and let us use the notation of Lemma 8. We now require a version of Borchers’ Theorem

[3]; one directly applicable to the present situation may be found in Theorem 3 of [9].

This result, dependent on the spectrum condition, implies that ∆(W )itT (x)∆(W )−it =

∆0(W )itT (x)∆0(W )−it if T (x) is any translation. Thus ∆′(W ) commutes strongly with

all translations, and with the von Neumann algebra T generated by all translations.

Since ∆0(W ) and ∆′(W ) commute with the mass operator, so also does ∆(W ), and

without loss of generality we may restrict ourselves to the case of a single mass m.

Then for this case we note that the multiplicity conditions imply that T ′ is isomorphic

to Mn(T ), where n is the total number of local degrees of freedom for all particles of

mass m. Then Lemma 10 gives us our result immediately.

On the other hand, ifH1 does not admit a PCT operator, then we may substitute for

it a direct sum H1⊕H′
1, where H

′
1 is the PCT conjugate of H1, without disturbing the

multiplicity conditions, to obtain a representation which does admit a PCT operator.

Any set of modular operators on H1 gives a set of modular operators on H1⊕H′
1 by the

same operation. But by the argument just given, there is precisely one set of modular

operators for H1 ⊕H′
1, and it satisfies modular covariance. Thus there can be no set

of modular operators for H1.
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Thus if the particle content of H1 is sufficiently restricted, there is only one pos-

sible localization structure, that corresponding to the usual free fields. If we consider

non-interacting systems of the sort described above, the only possibilities are those cor-

responding to free fields, which necessarily arise from local nets. Thus in these cases

the Bisognano-Wichmann condition, wedge duality, the PCT theorem, and the spin-

statistics theorem must hold. As the examples of [21] and [18] show, the net of modular

operators and the representation of the Poincaré group need not be unique in the ab-

sence of multiplicity constraints. These examples still satisfy modular covariance, but

it is not known whether there might be other Poincaré-covariant structures not sat-

isfying modular covariance. If we omit the hypothesis of Poincaré covariance, there

will be many possibilities not satisfying wedge duality [26]. One additional interesting

possibility suggested by the result of [17] is that the modular automorphism group

might have a geometric interpretation differing from that of Bisognano and Wichmann

by a translation parallel to the vertex of the wedge. What we see here is that this

possibility cannot occur in simple non-interacting models.

VIII Asymptotic Locality

In this section we will assume that we are dealing with a Poincaré-covariant net of local

algebras having a complete asymptotic interpretation via the Haag-Ruelle scattering

theory, in terms of massive particles. Standard assumptions for nets of local algebras

then imply that the wedge algebras must satisfy conditions (i′), (ii), and (iii). The

restriction to massive particles is probably not necessary, but the scattering theory

for massive particles is considerably simpler. The Haag-Ruelle theory assures us that

the non-interacting behavior of the asymptotic particles is described by non-interacting

systems of the sort constructed in the last section, but it does not specify any particular

localization structure. The localization structure for the non-interacting systems must

be determined from the interacting net after the manner described in [18] (asymptotic

locality). However, if the theory is such that the asymptotic one-particle space H1

satisfies the multiplicity conditions of Theorem 11, then we know that the only possible

localization structures describing the free behavior of the asymptotic particles are those

of free-field nets. There are in fact two sets of free fields relevant to scattering, the

in-fields and the out-fields, and these differ by a Poincaré-invariant unitary operator,

the S-matrix.
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Theorem 12: Let A(W ) be a family of wedge algebras derived from a local net co-

variant under a representation U(λ) of the covering group P̃↑
+ of the restricted Poincaré

group, that satisfies the spectrum condition. Suppose the A(W ) satisfy conditions (i′),

(ii), and (iii), and also asymptotic completeness, with a one-particle subspace H1 on

which the mass spectrum is discrete and positive, and for which the multiplicity condi-

tions of Theorem 11 hold. Then the A(W ) satisfy twisted wedge duality and modular

covariance.

Proof: We will use the same notation as in Theorem 11. As in Theorem 11, all the

modular operators for wedge regions commute with the mass. The one-particle space

H1 can be distinguished as the discrete-mass subspace, so that each ∆(W )it must

leave H1 invariant, and must restrict to a set of modular operators on H1 satisfying

conditions (i′), (ii), and (iii). By Theorem 11, we see that H1 must admit a PCT

operator, and ∆(W ) must agree with ∆0(W ) on H1. The modular conjugations may

differ on H1, but only by a Poincaré-invariant unitary operator. This is consistent

with the asymptotic locality result of [18]. What we now wish to show is that the

same result holds on all of H. We will do this by showing that the modular operators

act multiplicatively on the asymptotic fields. Then the modular automorphisms must

arise from the common representation of the Poincaré group, and both twisted wedge

duality and modular covariance must hold.

We first notice that by the Tomita-Takesaki theorem, for any wedge W0, we have

∆(W0)
itA(W0)∆(W0)

−it = A(W0) = ∆0(W0)
itA(W0)∆0(W0)

−it (29)

for all real t. Also, by Borchers’ Theorem [3], for every translation T (x) we have

∆(W0)
itT (x)∆(W0)

−it = ∆0(W0)T (x)∆0(W0)
−it (30)

for all t. Thus by covariance we have

∆(W0)
itA(W1)∆(W0)

−it = ∆0(W0)
itA(W1)∆0(W0)

−it (31)

for all real t and any W1‖sW0, and by the same reasoning likewise

J(W0)A(W1)J(W0) = J0(W0)A(W1)J0(W0) (32)

for every W1‖sW0. The collection of A(W ) and Z∗A(W )′Z for each W‖sW0 forms a

two-dimensional net of wedge algebras, and the set of algebras A(W1) ∩ Z∗A(W2)
′Z
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for W1,W2‖sW0 forms a two-dimensional local net. It is highly degenerate, but it is

still possible to construct its Haag-Ruelle scattering theory. The asymptotic fields will

be generalized free fields, produced by the same sort of dimension-reducing procedure

from the original asymptotic fields. Their one-particle space will again be H1, but

now reinterpreted as carrying a highly reducible representation of the two-dimensional

Poincaré group. With respect to this net, ∆′(W0)
it and J ′(W0) are local internal

symmetries, and as in [18], they must act multiplicatively on the asymptotic fields.

But we have already concluded in the previous paragraph that ∆′(W0) is trivial on H1,

and J ′(W0) is a Poincaré-invariant unitary operator, so this must also be true on all of

H.

Thus we see that the Bisognano-Wichmann condition, modular covariance, wedge

duality, the PCT theorem, and the spin-statistics theorem all hold for nets satisfying

asymptotic completeness with appropriate restrictions on their asymptotic particle

content: namely, that the particle spectrum be discrete and positive in mass, and

finite in spin and total multiplicity for each mass.
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